作为软模板和甲基橙聚吡咯的制备
- 格式:pdf
- 大小:418.96 KB
- 文档页数:5
现在做的聚吡咯,吡咯是2ml,苯6ml,引发体系:APS 0.63g,(过硫酸铵,健康危害:对皮肤粘膜有刺激性和腐蚀性。
吸入后引起鼻炎、喉炎、气短和咳嗽等。
眼、皮肤接触可引起强烈刺激、疼痛甚至灼伤。
口服引起腹痛、恶心和呕吐。
长期皮肤接触可引起变应性皮炎。
环境危害:燃爆危险:本品助燃,具腐蚀性、刺激性,可致人体灼伤。
)水1ml,乙醇1ml,盐酸0.1ml配成的溶液从中取出0.2ml,刚一加到单体溶液中几秒钟就有黑色固态生成了。
一种制备高导电性聚吡咯材料的方法,依次由以下步骤组成:(1)合成纳米氧化铝模板(a)将铝片先用70%高氯酸和无水乙醇混合液在0~5℃下抛光5~10分钟,电压为15~22V;混合液中高氯酸和无水乙醇的体积比1:4;(b)铝片用二次水清洗后在多元酸及其对应的电压下首次氧化1~2小时,以不锈钢板做对电极;然后在60℃下以6%的磷酸和1.8%的铬酸混合洗液清洗铝片半小时,除去氧化膜;(c)铝片用二次水清洗后,用与上述(b)步骤相同的电压进行阳极氧化6小时;然后用氯化物饱和水溶液剥离铝基质,再用5%的磷酸通孔30分钟,得到纳米氧化铝模板,清洗并保存在二次水中。
(2)玻碳电极经金相砂纸和氧化铝抛光成镜面,用硝酸和氢氧化钠处理,然后用二次蒸馏水充分洗涤后,将纳米氧化铝模板紧密的装配在玻碳电极上,浸入pH=3的0.2mol/L吡咯溶液,在0~0.75V电压范围内,以100mv/s的速度扫描200周次,取出,用5%HPO3浸泡,溶去模板后用二次水洗涤后晾干发明公开了一种合成纳米氮化铬/聚吡咯复合材料的方法,包括如下步骤:1. 将改性剂溶入去离子水中,超声分散40分钟形成乳液,搅拌下加入纳米氮化铬粉体,室温下超声分散30~60分钟,得到改性纳米氮化铬的悬浮液;2. 将得到的悬浮液放在冰水浴中,加入吡咯单体,搅拌;取引发剂溶于去离子水中制成溶液逐滴滴入混合溶液中,聚合反应2~5小时,将悬浮液减压抽滤,分别用去离子水和乙醇超声洗涤过滤3次,产物在60℃下真空干燥24h,得到纳米氮化铬-聚吡咯复合材料。
摘要Fe3O4作为活动芯的空心聚吡咯(PPy)的蛋黄壳通过模板辅助选择性刻蚀方法获得了胶囊。
首先通过溶剂热法制备了Fe3O4纳米粒子。
然后,通过溶胶—凝胶反应在Fe3O4纳米粒子表面包覆上一层SiO2壳。
随后,将PPy壳包覆在Fe3O4和SiO2的复合材料。
在选择性腐蚀了中间SiO2层,得到了Fe3O4作为蛋黄和PPy 的纳米复合材料。
在制备过程中可以得到了一定厚度的聚吡咯和SiO2层。
聚(N-乙烯基吡咯烷酮)对包覆在复合材料表面PPy层的影响进行了详细的研究。
蛋黄壳状Fe3O4和聚吡咯复合材料可以提供分离纳米钯的作用。
钯(Pd)纳米颗粒密集均匀被固定在聚吡咯壳内部和外部表面,由于PPy骨架上的氨基基团与Pd2+离子之间的相互作用。
Fe3O4和PPy/Pd复合材料催化剂对亚甲基蓝染料在硼氢化钠作为还原剂情况下可以表现出良好的催化活性。
此外,这种催化剂可以很容易地从反应溶液中分离出来并进行重复使用,这是由于磁性主要来源于Fe3O4核。
目录摘要 (I)目录 (II)第一章绪论 (3)第二章实验 (4)2.1 材料 (4)2.2 尼龙6薄膜形成 (4)2.3 厚度测量 (4)2.4 WAXS (5)2.5 红外及红外分析 (5)2.5 水接触角测量 (5)第三章结果和结论 (7)3.1 晶体学研究............................................................................ 错误!未定义书签。
3.2 水接触角测量 ........................................................................ 错误!未定义书签。
3.3 N-H键的方向性..................................................................... 错误!未定义书签。
聚吡咯的合成方法聚吡咯可由吡咯单体通过化学氧化法或者电化学方法制得。
化学聚合是在一定的反应介质中通过采用氧化剂对单体进行氧化或通过金属有机物偶联的方式得到共轭长链分子并同时完成一个掺杂过程。
该方法的合成工艺简单,成本较低,适于大量生产。
使用化学法制备聚吡咯时的产物一般为固体聚吡咯粉末,即难溶于一般的有机溶剂,机械性能也较差不易进行加工。
合成聚吡咯产品是的机理:首先,当体系中有氧化剂存在时,呈电中性的一个聚吡咯单体分子会在氧化剂的作用下被氧化失去一个电子,变成阳离子自由基。
然后两个阳离子自由基在体系中碰撞结合成含有两个阳离子自由基的双阳离子二聚吡咯,此时的双阳离子在体系中经过歧化作用生成一个呈电中性的二聚吡咯。
电中性的二聚吡咯又会与体系中的阳离子自由基相互结合生成三聚吡咯的阳离子自由基,经过歧化作用而生成三聚体的聚吡咯,周而复始最终生成了长分子链的聚吡咯。
电化学聚合是在电场作用下,采用电极电位作为聚合反应所需要的能量,经过一段时间的反应后会在电极表面沉淀一层聚合物从而得到共轭高分子膜。
通过控制聚合条件如电解液种类、吡咯单体的浓度、溶剂、聚合电压、电流大小和温度等因素可制备具有各种不同形貌和性能的高聚物膜。
进行电化学聚合时一般以铂、金、不锈钢、镍等惰性金属或导电玻璃、石墨和玻炭电极等作为电极使用。
在使用电化学方法制备聚吡咯时的聚合机理与用化学氧化法制备时的机理相似,也可以用自由基机理来解释:首先,吡咯单体分子在电场的作用下,会在电极的表面失去电子而成为阳离子自由基,然后自由基会与另一单体相互结合而成为吡咯的二聚体。
经过链增长步骤,最终得到聚吡咯大分子链。
通常来说,使用化学氧化聚合法或电化学聚合法制备聚吡咯时,得到的产品都是黑色的固体,在使用化学氧化聚合法时制备的聚吡咯的产物一般是黑色粉末,而通过电化学聚合法则会在电极表面得到一层PPy薄膜。
甲基橙印迹磁性壳聚糖聚合物的制备及吸附特性李漫;蔡照胜;房桂干;梁龙;周静【摘要】以通过溶胶-凝胶法自制的Fe3O4@壳聚糖(CTS)微球为载体,甲基橙(MO)为模板分子,采用水溶液聚合法制得磁性壳聚糖表面分子印迹聚合物(MMIPs).通过SEM、XRD、FT-IR和VSM表征了MMIPs的结构和性能,并探究了其对MO的识别与选择性吸附特性.研究表明:与非印迹聚合物(NIMPs,饱和吸附量为20.56 mg/g)相比,在相同条件(pH值6.5、25℃)下,MMIPs对MO具有明显的特异性吸附能力,在60 min左右吸附饱和,饱和吸附量(Qe)可达113.16 mg/g;MMIPs对MO的吸附符合Langmuir等温吸附模型和准二级吸附动力学模型;在其他干扰染料的存在下,MMIPs的选择性系数(K)最高可达2.85,对MO具有选择识别性;此外,吸附完成后MMIPs可在磁场作用下快速分离,解吸附后循环使用5次,吸附率均在90%以上.%Magnetic chitosan( Fe3O4@CTS) microspheres were prepared through sol-gel method firstly.Then, a novel, magnetic molecularly imprinted polymers( MMIPs) were synthesized by aqueous solution polymerization with Fe3O4@CTS as support and functional monomer and methyl orange as template molecules.Characterizations of the obtained MMIPs were achieved by SEM, XRD, FT-IR and VSM.Batch adsorption experiments were performed to investigate the adsorption conditions, selectivity and reusability of the adsorption of MO on MIMPs.The results showed that the maximum adsorption capacity was 113.16 mg/g and equilibrium adsorption was achieved around 60 min observed at pH value 6.5 and temperature 25℃, and the MMIPs had specific adsorption capacity for MO compared with the non-imprinted magnetic particles( NIMPs) .Adsorptionprocess could be well described by Langmuir adsorption isotherms and the kinetic data could be fitted with pseudo-second-orderequation.Furthermore, the selectivity coefficient of MO and other dyes onto MMIPs indicated an overall preference with the maximum selectivity coefficient(K) of 2.85.Moreover, MMIPs could be separated by external magnet, which could be reused for 5 times with a high adsorption efficiency overall 90%after desorption.【期刊名称】《生物质化学工程》【年(卷),期】2018(052)003【总页数】8页(P1-8)【关键词】壳聚糖微球;磁性分子印迹聚合物;甲基橙;特异性吸附【作者】李漫;蔡照胜;房桂干;梁龙;周静【作者单位】中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室,江苏南京 210042;盐城工学院化学化工学院,江苏盐城 224051;中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室,江苏南京210042;南京林业大学林业资源高效加工利用协同创新中心,江苏南京 210037;中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室,江苏南京 210042;南京林业大学林业资源高效加工利用协同创新中心,江苏南京 210037;中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室,江苏南京 210042【正文语种】中文【中图分类】TQ35染料废水作为水污染的一个分支,主要来自于食品加工、纺织印染、造纸印刷、化妆品生产等行业[1]。
Preparation and characterization of PPy with methyl orange as soft templateMei Li •Wenguang Li •Jun Liu •Jinshui YaoReceived:8July 2012/Accepted:19July 2012/Published online:27July 2012ÓSpringer Science+Business Media,LLC 2012Abstract PPy nanotubes were succesfully synthsized in neutral MO aqueous solutions by in situ polymerization using FeCl 3or APS as oxidant respectively.These nano-tubes were characterized with SEM,TEM,FTIR XRD and EDS and results showed MO molecules entered into the PPy chain as dopant.The good conducting characteristic may be related to the higher doping level of the MO and conductivity of the PPy nanotubes was up to 29.07S Ácm -1.The shape of the obtained PPy would be changed slightly and its solubility was greatly improved because of the addition of HCl in neutral MO aqueous solutions.1IntroductionConducting polymer micro/nanotubes,being excellent candi-dates for use as molecular wire materials due to their one-dimensional structure and metal-like conductivity [1,2],have also been extensively explored [3,4].Basically,micro/na-notubules of conducting polymers have been obtained by twotypical methods:template-directed synthesis and template-free growth.The former method uses track-etched polymeric membranes or porous alumina as ‘‘hard templates’’to prepare tubular structures in the pores [5].Recently,the template-directed method has been proven to be an effective and versatile technique to synthesize conducting polymer tubes with uniform dimensions.However,the used hard-template materials usually have to be removed using strong acids/bases or an organic medium or with elevated temperature after the synthesis [6].From the viewpoints of safety and environmental hazards,such a process greatly increases the cost and risk for large-scale manufacture.Furthermore,the extremely harsh post-treatment conditions may drastically alter or even destroy themicro/nanostructures of the resulting materials.On the other hand,a template free method has been invented and developed recently to synthesize conducting polymer micro/nanotubules by employing ‘‘soft templates’’such as organic acids,surfactant micelles,liquid crystalline,and reverse micro-emulsions [7].It is proposed that the soft templates promote the conducting polymer to grow in a tubular form and need not be removed after the polymerization.In such cases,however,the soft templates are often not quite stable,the versatility for different systems is poor and the multi-formity of final products is obvious [8].Until now,it remains a desirable target to develop a convenient synthetic method to obtain exclusive hollow micro/nanotubular structures using a template (hard or soft)that is highly stable under the reaction conditions and can be facilely removed in the post-treatment process.Among the family of conducting polymers,polypyrrole (PPy)has been most extensively studied because these products exhibit good environmental stability and the elec-trical properties can be modified by changing the oxidation and protonation states [9].To fabricate PPy nanotubules,we have recently developed a fibrillar self-degraded template composed of anionic azo dye methyl orange (MO)and FeCl 3M.Li (&)ÁW.Li ÁJ.Liu ÁJ.YaoSchool of Materials Science and Engineering,Shandong Polytechnic University,Daxue Road,Western University Science Park,Jinan 250353,People’s Republic of Chinae-mail:limei@;plum3lm@M.Li ÁJ.YaoShandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional Ceramics,Jinan 250353,People’s Republic of ChinaM.Li ÁJ.YaoKey Laboratory of Amorphous and Polycrystalline Materials,Shandong Polytechnic University,Jinan 250353,People’s Republic of ChinaJ Mater Sci:Mater Electron (2013)24:906–910DOI 10.1007/s10854-012-0847-x[10].In this paper,anionic azo dye methyl orange dissolved in water and MOfibril was formed as a soft template for the fabrication of conducting PPy microtubules.PPy nanotubes with different diameter were obtained after the polymeriza-tion of monomers onfibril surface when the oxidant(APS or FeCl3)was added slowly.Thisfinding provides us a facile and inexpensive way to fabricate conducting polymer nanotubes.Moreover,it may open a new route to design orchestrate particular shape and morphology of micro/ nanostructures.2Experimental2.1Preparation of samplesThe experimental conditions were listed in Table1in detail. In a typical procedure as S-2,1.95g(7.22mmol)of FeCl3 was dissolved in150mL of0.30mM MO(sodium4-[4‘-(dimethylamino)phenyldiazo]phenylsulfonate)((CH3)2NC6 H4-N=NC6H4SO3Na)deionized water solution.Afloc-culent precipitate appeared immediately.Then0.5mL (7.22mmol)of pyrrole monomer was added into it and the mixture was stirred at room temperature for24h.The formed PPy precipitate was washed with deionized water/ ethanol several times untilfiltrate was colorless and neutral, andfinally dried under a vacuum atmosphere at40°C for 24h.Replacing the oxidant FeCl3with ammonium peroxy-sulfate(APS)and repeating the above process,black PPy precipitate was obtained.2.2CharacterizationThe morphology of the product was directly observed with scanning electron microscopy(SEM)(FEIco-Holland,JSM-6700F)and transmission electron microscopy(TEM)(JEOL, JEM-1011).An X-ray diffraction(XRD)pattern was taken with a Shimadzu XRD6000instrument at a10°/min scanning speed from10°to80°.FTIR spectra of the samples were obtained with a Shimadzu FTIR-8400s spectrophotometer in the4,000–500cm-1range,the sample was impressed into KBr pellets.EDS results were tested by Vario EL elementar analysen syetem GmbH.Germany.Four-point probes resis-tivity measurement system was received from GuangZhou and the electrical conductivity of composites was measured using four-point probes technique at room temperature.3Results and discussion3.1Structures and morphologyIn the SEM images(Fig.1a,b),the tubular and granular morphology,which correspond to the case of different oxidant of APS and FeCl3,are observed.The surface of theTable1The conductivity and solubility of PPy prepared in different conditions Sample MO(g)HCl(ml)Oxidant(g)Molar ratio ofoxidant to monomerConductivity[SÁcm-1]Solubility inCH2Cl2(g/L) S-1––FeCl31.9510.00050.0010S-20.098–APS1.65129.070.0420S-30.098–FeCl31.951 2.1050.1241S-40.0980.4APS1.6510.3460.2587S-50.0980.5APS1.6510.50.2500S-60.0980.6APS1.6510.90910.1682S-70.0980.7APS1.6510.0250.3124 Fig.1The SEM images of PPy nanotubes with different oxidants a S-2b S-3nanotubes is rough and composed with many PPy granules.The tubular structure of PPy-MO is further confirmed by TEM micrograph where outer and inner diameters of the hollow nanotubes are about 300and 30nm,in Fig.2a and the corresponding values are about 200and 20nm in Fig.2b respectively.Figure 3shows the FT-IR spectra of different MO-oxidant templates.It can be seen that the peaks at 2,924and 2,854cm -1in curves a and b which are attributed to the stretching vibration mode of methylene groups in the long alkyl chains of MO molecules indicating the presence of more MO molecules.The characteristic PPy peaks are located at 1,535and 1,454cm -1due to the pyrrole ring stretching and the conjugated C–N stretching mode,respectively.The peaks at 1,294and 1,031cm -1are related to the in-plane vibrations of C–H,1,166cm -1is assigned to the C–N stretching mode [11–13],In addition,the peaks at 898,673cm -1correspondsto the stretching vibration of the SO 3¯group,which indicates the MO entering the PPy nanotubes as dopant [14].The XRD patterns of the PPy nanotubes prepared with different oxidants are shown in Fig.4.As shown in Fig.4,the broad reflection centered at 2h value of 10°and 27°wascharacteristic of the doped amorphous PPy.Another three diffraction peaks at 2h =17°,43°,54°in curves a and b are more obvious than curve c,especially in curve b.This change may suggest that the regular array of PPy molecules to some extent when APS is used as oxidant which is beneficial to the conductivity as shown in Table 2.The results of the EDS analysis are shown in Table 2.It can be seen that PPy was doped with –SO 32-which was supplied with MO.Correspondingly,the electric conduc-tivities of the nanotubes at room temperature were 2.105and 29.07S Ácm -1respectively.In comparison with some results reported previously [9,15–17],the conductivities here are rather higher mainly because of the higher doping level of the products,which has been implied from the high mass percent values of S elements shown in Table 2.3.2SolubilityIn order to improve the solubility of the obtained PPy,HCl was added into the MO solutions in the syntheticprocessFig.2The TEM images of PPy nanotubes with different oxidants a S-2bS-3Fig.3The FTIR spectra of PPy nanotubes a S-3b S-2cS-1Fig.4The XRD spectra of PPy nanotubes a S-3b S-2c S-1and the SEM images of S-4,S-5,S-6and S-7were shown in Fig.5.The tubular and granular morphology of PPy co-existed in different samples which implied that the addition of HCl influenced the aggregation of MO mole-cules.The MO tubes were destroyed to different degrees by HCl which leaded to more PPy particles occurred in the prepared samples.These samples show better solubility in CH2Cl2as shown in Table1and the best value is0.3124g/ L when the amount of HCl is0.7ml.At the same time,the conductivity of above samples decreased greatly which gave a hint that the increase of the solubility was at the expense of the decrease of conductivity.4ConclusionIn summary,we have demonstrated a simple and general strategy by using a soluble MO template in neutral aqueous solutions for the construction of conducting polymer nano-tubes.The MO template is readily dissolved in neutral water,so the microstructures of the resulting materials will not be destroyed during the template-removing process.PPy nano-tubes have been prepared using this MO template and exhibited good conducting characteristic.Further investigations are now focusing on enlarging the versatility of the template for con-structing nanotubular structural materials,and exploring more application by increasing its solubility and manufacturing. Acknowledgments We greatly appreciate the support of the College Scientific Plan Fund of Shandong Education Department(J10LD23) and the Doctoral Startup Foundation of Shandong Institute of Light Industry(12042826).References1.M.E.Azim-Araghi,S.Riyazi,J.Mater.Sci.:Mater.Electron.(2012).doi:10.1007/s10854-012-0807-52.S.Kumar,A.Vohra,S.K.Chakarvarti,J.Mater.Sci.:Mater.Electron.23,1485–1491(2012)3.D.Normile,Science286,2056–2061(1999)4.X.Duan,Y.Huang,Y.Cui,J.Wang,C.M.Lieber,Nature409,66–70(2001)5.Y.Wang,C.H.Yu,Z.Li,D.S.Zhou,W.Chen,G.Xue,ColloidPolym.Sci.287,1325–1330(2009)Table2EDS results and conductivity of PPy chemically synthesized in the presence of MO Sample C H N S S/N r(SÁcm-1)S-353.77 4.21415.06 2.3720.157 2.105S-251.45 4.33414.22 5.8180.40929.07 Fig.5The SEM images of PPy with different HCl a S-4b S-5c S-6d S-76.M.G.Han,S.H.Foulger,mun.24,3092–3094(2005)7.G.C.Li,Z.K.Zhang,Macromolecules37,2683–2685(2004)8.Z.X.Wei,Z.M.Zhang,M.X.Wan,Langmuir18,917–921(2002)9.Z.M.Zhang,Z.X.Zhang,M.X.Wan,Macromolecules35,5842–5937(2002)10.X.M.Yang,Z.X.Zhu,T.Y.Dai,Y.Lu,Macromol.RapidCommun.26,1736–1740(2005)11.G.I.Mathis,V.T.Troung,Synth.Met.89,103–109(1997)12.L.T.Qu,G.Q.Shi,F.E.Chen,Macromolecules36,1063–1067(2003)13.S.Xing,G.Zhao,Mater.Lett.61,2040–2044(2007)14.X.T.Zhang,J.Zhang,R.M.Wang,Chem Phys Chem5,998–1002(2004)15.B.H.Kim,D.H.Park,J.Joo,S.G.Yu,Synth.Met.150,279–284(2005)16.S.Cho, D.H.Choi,S.H.Kim,S.B.Lee,Chem.Mater.17,4564–4566(2005)17.X.Y.Zhang,J.S.Lee,G.S.Lee,D.K.Cha,Macromolecules39,470–472(2006)。