人教版高中数学必修三《2.1.2系统抽样》
- 格式:pptx
- 大小:830.70 KB
- 文档页数:24
数学备课大师 目录式免费主题备课平台!2.1.2 系统抽样尤溪一中 姜志茂设计理念:立足“以人为本,以学生发展为本”的基本理念,努力解决好以下三个问题:⑴依据课程目标,结合教材内容和学生实际,确定教学目标。
⑵依据建构主义理论,学习不是被动接受而是主动建构的过程,强调学习的情境性、个体性、生成性,选择教学方法,实现教学目标。
⑶以教师为主导,学生为主体,探究为主线,通过主动、探究、合作为主要特征的学习方式,强调“活动”的内化,让学生体验“学数学、用数学”的意识和能力。
教学内容:《普通高中课程标准实验教科书——数学③》(人教版)第二章第一课第二节2.1.2 系统抽样教学目标:1. 知识与技能:(1)通过案例及练习,使学生理解和掌握系统抽样的概念方法与步骤;(2)会用系统抽样法从总体中抽取个体,能根据总体的特征选择适当的抽样方法;(3)正确理解系统抽样与简单随机抽样的关系。
2. 过程与方法:通过对实际问题的探究,让学生体验从总体中抽取样本的全过程,归纳应用系统抽样来解决实际问题的具体方法步骤,体验“学数学、用数学”的意识和能力3. 情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
学情与教材分析:学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,可以创设一个恰当的问题情境,让学生类比简单随机抽样的方法步骤,尝试解决抽取样本的过程,并围绕代表性与公平性两原则,分析比较从而达到对新知识新方法的学习与掌握。
教学重点:正确理解系统抽样的概念方法步骤,能够灵活应用系统抽样的方法解决统计问题。
教学难点:当nN 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。
教学准备:制作相关ppt 幻灯片,如复习提问的问题与答案,系统抽样的方法步骤,例题及解答等教学过程:一、新课引入[教学内容]1、复习提问:(1)什么是简单随机抽样?有哪两种方法?(2)抽签法与随机数表法的一般步骤是什么?(3)简单随机抽样应注意哪两个原则?(4)什么样的总体适合简单随机抽样?为什么?[设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础[教学内容]2、实例探究当总体数量较多时,应当如何抽取?结合课本课本P60探究问题,设计你的抽取样本的方法。
第二章统计2.1.2 系统抽样一、选择题1.为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,47【答案】D【解析】要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,则样本间隔为50÷5=10,则只有7,17,27,37,47满足条件,故选D.2.在高一年级402人中要抽取10名同学进行问卷调查,若采用系统抽样方法,下列说法正确的是A.将402人编号,做成号签,再用抓阄法抽取10名B.将402人随机编号,然后分成10个组,其中两个组每组41人,其余各组每组40人,再从第一组中随机抽取一个编号,从而得到各组中的编号C.先将402人中随机剔除2人,再将余下400人随机编号平均分成10组,从第一组中随机抽取一个编号,再按抽样距40在其余各组中依次抽取编号D.按照班级在每班中按比例随机抽取【答案】C3.2007名学生中选取50名学生参加中学生夏令营,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下的2000人再按系统抽样的方法抽取,则每人入选的概率A.不全相等B.均不相等C.都相等,且为502007D.都相等,且为140【答案】C【解析】根据题意,先用简单随机抽样的方法从2007人中剔除7人,则剩下的再按系统抽样的抽取时,每人入选的概率为20005050200720002007⨯=,故每人入选的概率相等.故选C.4.某班的54名同学已编学号为1,2,3,…,54,为了解该班同学的作业情况,老师收取了学号能被5整除的10名同学的作业本,这里运用的抽样方法是A.简单随机抽样法B.系统抽样法C.随机数表法D.抽签法【答案】B5.为了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样的方法抽取样本进行分组时,每组的个体数为A.24 B.25 C.26 D.28【答案】B【解析】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.∵5008=200×25+8,故应从总体中随机剔除个体的数目是8,每组的个体数为25,故选B.6.中央电视台动画城节目为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样法抽取,其组容量为A.10 B.100 C.1000 D.10000【答案】C【解析】系统抽样的特点是从比较多比较均衡的个体中抽取一定的样本,并且抽取的样本具有一定的规律性,先将整体分成若干个小组,在每个小组中抽取一个.现要从已确定编号的一万名小观众中抽出十名幸运小观众,其组容量为1000010=1000.故选C.7.南山中学实验学校2015级入学考试共设置60个试室,试室编号为001~060,现根据试室号,采用系统抽样的方法,抽取12个试室进行抽查,已抽看了007试室号,则下列可能被抽到的试室号是A.002 B.031 C.044 D.060【答案】A【解析】样本间隔为60÷12=5,∵样本一个编号为007,则抽取的样本为:002,007,012,017,022,027,032,037,042,047,052,057.∴可能被抽到的试室号是002,故选A.8.长郡中学将参加摸底测试的1200名学生编号为1,2,3,…,1200,从中抽取一个容量为50的样本进行学习情况调查,按系统抽样的方法分为50组,如果第一组中抽出的学生编号为20,则第四组中抽取的学生编号为A.68 B.92 C.82 D.170【答案】B【解析】样本间隔为1200÷50=24,第一组中抽出的学生编号为20,则第四组中抽取的学生编号为:20+ 24×3=92,故选B.9.将40件产品依次编号为1~40,现用系统抽样(按等距离的规则)的方法从中抽取5件进行质检,若抽到的产品编号之和为90,则样本中的最小编号为A.2 B.3 C.4 D.5【答案】A【解析】该系统抽样的抽取间隔为40÷5=8,设抽到的最小编号x,则x+(8+x)+(16+x)+(24+x)+(32+x)=90,所以x=2.故选A.二、填空题10.从总体容量为503的总体中,用系统抽样方法抽取容量为50的样本,首先要剔除的个体数是____________,抽样距是____________.【答案】3 10【解析】总数不能被样本容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.∵503=50×10+3,故应从总体中随机剔除个体的数目是3,抽样距为503350=10.故答案为:3,10.11.某大型超市为了促销,欲从已确定编号的20000名消费者中抽取200名幸运者进行奖励,现采用系统抽样方法抽取,则每组的个体数是____________.【答案】100【解析】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除.∵20000=200×100,故每组的个体数为100.故答案为:100.12.某单位有技术工人36人,技术员24人,行政人员12人,现需从中抽取一个容量为n的样本,如果采用系统抽样或分层抽样,都不需要剔除个体,如果样本容量为n+1,则在系统抽样时,需从总体中剔除2个个体,则n=____________.【答案】6【解析】由题意知用系统抽样和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,用系统抽样时,需在总体中先剔除2个个体,∵总体容量为36+24+12=72;当样本容量为n 时,系统抽样的间隔为72n ,分层抽样比例是72n ,抽取的工人为72n ×36=2n ,技术员为72n ×24=3n ,行政人员为 72n ×12=6n ,∴n 是6的倍数,72的约数,且小于等于12;即n =6,12;当样本容量为n =6时,n +1=7,系统抽样的间隔为727=10…2,∴需从总体中剔除2个个体,满足题意;当样本容量为n =12时,n +1=13,系统抽样的间隔为7213=5…7,∴需从总体中剔除7个个体,不满足题意;综上,样本容量n =6.故答案为:6.13.简单随机抽样,系统抽样的共同特点是____________.【答案】抽样过程中每个个体被抽取的机会相同【解析】二种抽样方法有共同点也有不同点,它们的共同点就是抽样过程中每个个体被抽取的机会相同.故答案为:抽样过程中每个个体被抽取的机会相同.三、解答题14.从含有100个个体的总体中抽取10个个体,请用系统抽样法给出抽样过程.15.某车间有189名职工,现在要按1:21的比例选派质量检查员,采用系统抽样的方式进行,请写出其抽样过程.【解析】第一步:先将189人按1到189号进行编号第二步:确定分段间隔为21,确定组数189÷21=9,所以将189人分成9组,每组21人,第三步:在第一段用简单随机抽样确定第一个个体编号(如1号).第四步:按一定规则抽取样本(如1+21n ,0≤n ≤8).16.一个总体中有840个个体,随机编号为0,1,2,3,…,839,以编号顺序将其平均分为10个小组,组号依次为0,1,2,3,…9.现要用系统抽样的方法抽取一容量为10的样本.(1)假定在组号为0这一组中先抽取得个体的编号为21,请写出所抽取样本个体的10个号码;(2)求抽取的10人中,编号落在区间[252,671]的人数.17.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.【解析】(1)随机地将这1003个个体编号为0001,0002,0003, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.第一步:将总体中的1000个个体重新编号为0,1,2,…,999并依次分为50个小组,第一组的编号为0,1,2,…19;第二步:在第一组用随机抽样方法,随机抽取的号码为l(0≤l≤19),那么后面每组抽取的号码为个位数字为l+20n,n∈N*的号码;第三步:由这50个号码组成容量为50的样本.说明:总体中的每个个体被剔除的概率相等(31003),也就是每个个体不被剔除的概率相等10001003⎛⎫⎪⎝⎭.采用系统抽样时每个个体被抽取的概率都是501000,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是10005050 100310001003⨯=.。
2.1.2 系统抽样教学目标:1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
4、重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
教学设想:【创设情境】:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?【探究新知】一、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系N].统抽样又称等距抽样,这时间隔一般为k=[n(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
思考?(1)你能举几个系统抽样的例子吗?(2)下列抽样中不是系统抽样的是()A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈点拨:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。
2.1.2 系统抽样[读教材·填要点]1.系统抽样的概念先将总体从1开始编号,然后按号码顺序以一定的间隔进行抽取,然后从号码为1~k 的第一个间隔中随机地抽取一个号码,然后按此间隔等距抽取即得所求样本.2.系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号,有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[小问题·大思维]1.系统抽样有什么特点?提示:(1)适用于总体中个体数较大且个体差异不明显的情况.(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样.每个个体被抽到的可能性相等.2.如何区分一种抽样方法是系统抽样还是简单随机抽样?提示:(1)系统抽样的显著特点是抽出个体的编号是等距的.(2)简单随机抽样的间隔不是恒定的.系统抽样的概念[例1] A .从全班48名学生中随机抽取8人参加一项活动B .一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况[自主解答]A总体容量较小,样本容量也较小,可采用抽签法;B总体中的个体有明显的层次不适宜用系统抽样法;C总体容量较大,样本容量也较大,可用系统抽样法;D若总体容量较大,样本容量较小时可用随机数表法.[答案] C——————————————————1.应用系统抽样的前提条件(1)个体较多,但均衡的总体;(2)当总体容量较大,样本容量也较大时,适宜用系统抽样.2.系统抽样方法的判断(1)看能否保证每个个体被等可能抽到;(2)看是否将总体分成几个均衡的部分,是不是等间距抽样,且每一个部分都有个体入样.——————————————————————————————————————1.某商场想通过检查发票及销售记录的2%来快速估计每月的销售总额并采取如下方法:从某月发票的存根中随机抽一张,如15号,然后按顺序往后取出65号,115号,165号,…,将发票上的销售额组成一个调查样本.这种抽取样本的方法是() A.抽签法B.随机数表法C.系统抽样法D.其他方式的抽样解析:上述方法符合系统抽样的形式.答案:C系统抽样的应用[例2]50的样本,那么采用什么抽样方法比较恰当?简述抽样过程.[自主解答]适宜选用系统抽样,抽样过程如下:(1)随机地将这1 000名学生编号为000,001,002, (999)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号000,001,002,…,019中,利用简单随机抽样抽取一个号码,比如是017.(4)以017为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:017,037,057,…,977,997.若将“1 000名学生的成绩”改为“1 002名学生的成绩”,又该如何抽样?请写出抽样过程. 解:因为1 002=50×20+2,为了保证“等距”分段,应先剔除2人.(1)将1 002名学生用随机方式编号;(2)从总体中剔除2人(剔除方法可用随机数法),将剩下的1 000名学生重新编号(编号分别为000,001,002,…,999),并分成50段;(3)在第一段000,001,002,…,019这二十个编号中用简单随机抽样抽出一个(如003)作为起始号码;(4)将编号为003,023,043,…,983的个体抽出,组成样本.——————————————————1.解决系统抽样问题中两个关键的步骤为(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.2.当总体中的个体不能被样本容量整除时,需要在总体中剔除一些个体.——————————————————————————————————————2.某单位的在岗职工为620人,为了调查上班时,从家到单位的路上平均所用的时间,决定抽取10%的职工调查这一情况,如何采用系统抽样抽取样本?解:用系统抽样抽取样本,样本容量是620×10%=62.步骤是:(1)编号:把这620人随机编号为001,002,003, (620)(2)确定分段间隔k =62062=10,把620人分成62组,每组10人,每1组是编号为001~010的10人,第2组是编号为011~020的10人,依次下去,第62组是编号为611~620的10人.(3)采用简单随机抽样的方法,从第1组10人中抽出一人,不妨设编号为l (1≤l ≤10).(4)那么抽取的职工编号为l+10k(k=0,1,2,…,61),得到62个个体作为样本,如当l =3时的样本编号为003,013,023,…,603,613.从2 004名同学中,抽取一个容量为20的样本,写出用系统抽样法抽取的步骤.[错解](1)将2 004名同学随机方式编号;(2)从总体中剔除4名同学,将剩下的分成20段;(3)在第一段中用简单随机抽样抽取起始号码,比如66;(4)将编号为66,166,266,366,…,1 866,1 966作为样本.[错因]在第二步剔除4名同学后没有对剩余进行从0 000,0 001,…,1 999重新编号.[正解](1)采用随机的方式给这2 004名同学编号为0 001,0 002,…,2 004.(2)利用简单随机抽样剔除4个个体,并对剩余的2 000个个体重新编号为0 001,0 002,…,2 000.(3)分段.由于20∶2 000=1∶100,故将总体分为20个部分,其中每一部分100个个体.(4)在第1部分随机抽取1个号码,比如0 066号.(5)从第0 066号起,每隔100个抽取1个号码,这样得到容量为20的样本:0 066,0 166,0 266,0 366,0 466,0 566,0 666,0 766,0 866,0 966,1 066,1 166,1 266,1 366,1 466,1 566,1 666,1 766,1 866,1 966.1.在10 000个有机会中奖的号码(编号为0 000~9 999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法解析:由题意,中奖号码分别为0 068,0 168,0 268,…,9 968.显然这是将10 000个中奖号码平均分成100组,从第一组号码中抽取出0 068号,其余号码是在此基础上加上100的整数倍得到的,可见,这是用的系统抽样法.答案:B2.用系统抽样的方法从个体为1 003的总体中,抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是( )A.11 000B.11 003C.501 003D.120解析:根据系统抽样的方法可知,每个个体入样的可能性相同,均为n N,所以每个个体入样的可能性是501 003. 答案:C3.(2012·山东高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15解析:从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n 组抽到的号码为a n =9+30(n -1)=30n -21,由451≤30n -21≤750,得23615≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10人. 答案:C4.采用系统抽样从含有8 000个个体的总体(编号为0 000,0 001,…,7 999)中抽取一个容量为50的样本.已知最后一个入样的编号为7 894,则第一个入样的编号是________.解析:样本间隔k =8 00050=160.最后一个编号为7 894,则7 894-49×160=54,所以第一个入样编号为0 054.答案:0 0545.下列抽样中,是系统抽样的是________(填上所有是系统抽样的序号).①电影院调查观众的某一指标,通知每排(每排人数相等)座号为16的观众留下来座谈;②搞某一市场调查,规定在商场门口随机抽一人询问,直到调查到规定的人数为止;③工厂生产的产品,用传送带将产品送入包装车间,质检人员从传送带上每隔5分钟抽取一件产品进行检验;④从标有1~15的15个球中,任选3个作样本,按从小到大的顺序排列,随机选起点i 0,以后i 0+5,i 0+10(超过15则从1再数起)号入样.解析:由系统抽样步骤可知,①③④符合要求.答案:①③④6.为了了解某地区今年高一学生期末考试数学科的成绩,拟从参加考试的15 000名学生的数学成绩中抽取容量为150的样本.请用系统抽样写出抽取过程.解:(1)将参加考试的15 000名学生随机地编号:1,2,3,…,15 000.(2)分段:由于样本容量与总体容量的比是1∶100,我们将总体平均分为150个部分,其中每一部分包括100个个体.(3)在第一部分,即1号到100号用简单随机抽样,抽取一个号码,比如是56.(4)以56作为起始数,然后顺次抽取156,256,356,…,14 956,这样就得到一个容量为150的样本.一、选择题1.有40件产品,编号从1至40,现在从中抽取4件检验,用系统抽样方法确定所抽的编号为()A.5,10,15,20B.2,12,22,32C.2,14,28,38 D.5,8,31,36答案:B2.中央电视台“动画城节目”为了对本周的热心小观众给予奖励,要从已确定编号的一万名小观众中抽出十名幸运小观众.现采用系统抽样的方法抽取,每组容量为() A.10 B.100C.1 000 D.10 000答案:C3.为了了解一次期终考试的1 253名学生的成绩,决定采用系统抽样方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2 B.3C.4 D.5解析:1 253÷50=25…3,故剔除3个.答案:B4.从2 004名学生中选取50名组成参观团,若采用下面的方法选取:先利用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的机会()A .不全相等B .均不相等C .都相等D .无法确定解析:系统抽样是等可能的,每人入样的机率均为502 004. 答案:C二、填空题5.一个总体中共有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样的方法抽取一个容量为10的样本,规定:如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码的个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.解析:本题的入手点在于题设中的“第k 组中抽取的号码的个位数字与m +k 的个位数字相同”.由题设可知:第7组的编号为60,61,62,63,…,69,而第7组中抽取的号码的个位数字与6+7=13的个位数字相同,故第7组抽取的号码是63.答案:636.(2011·罗源高一检测)为了了解1 203名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,现采用选取的号码间隔一样的系统抽样方法来确定所选取样本,则抽样间隔k =________.解析:由于1 20340不是整数,所以从1 203名学生中随机剔除3名,则分段间隔k =1 20040=30.答案:407.某班有学生48人,现用系统抽样的方法,抽取一个容量为4的样本,已知座位号分别为6,30,42的同学都在样本中,那么样本中另一位同学的座位号应该是________.解析:由题意,分段间隔k =484=12,所以6应该在第一组,所以第二组为6+484=18. 答案:188.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:分段间隔是3 000150=20,由于第一组抽出号码为11,则第61组抽出号码为11+(61-1)×20=1 211.答案:1 211三、解答题9.要装订厂平均每小时大约装订图书362册,需要检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.解:第一步,把这些图书分成40个组,由于36240的商是9,余数是2,所以每个小组有9册书,还剩2册书.这时抽样距就是9.第二步,先用简单随机抽样的方法从这些书中抽取2册,不进行检验.第三步,将剩下的书进行编号,编号分别为0,1, (359)第四步,从第一组(编号为0,1,…,8)的书中用简单随机抽样的方法,抽取1册书,比如说,其编号为k .第五步,顺次抽取编号分别为下面数字的书:k ,k +9,k +18,k +27,…,k +39×9.这样总共就抽取了40个样本.10.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10,其他步骤相应改为:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,12号为第二样本户,….(3)确定随机数字用的是简单随机抽样即为取一张人民币,编码的后两位数为02.。