静态时序分析(Static Timing Analysis)
- 格式:pdf
- 大小:179.42 KB
- 文档页数:29
何谓静态时序分析(Static Timing Analysis,简称STA)何谓静态时序分析(Static Timing Analysis,简称STA)?它可以简单的定义为:设计者提出一些特定的时序要求(或者说是添加特定的时序约束),套用特定的时序模型,针对特定的电路进行分析。
分析的最终结果当然是要求系统时序满足设计者提出的要求。
下面举一个最简单的例子来说明时序分析的基本概念。
假设信号需要从输入到输出在FPGA内部经过一些逻辑延时和路径延时。
我们的系统要求这个信号在FPGA内部的延时不能超过15ns,而开发工具在执行过程中找到了如图4.1所示的一些可能的布局布线方式。
那么,怎样的布局布线能够达到我们的要求呢?仔细分析一番,发现所有路径的延时可能为14ns、14ns、16ns、17ns、18ns,有两条路径能够满足要求,布局布线就会选择满足要求的两条路径之一。
1.静态时序分析模型因此,有些说法是错误的,不分什么情况就说时序不收敛,其实在不加约束的情况下谈时序约束是没有意义的。
附加约束的基本作用1.提高设计的工作频率对很多数字电路设计来说,提高工作频率非常重要,因为高工作频率意味着高处理能力。
通过附加约束可以控制逻辑的综合、映射、布局和布线,以减小逻辑和布线延时,从而提高工作频率。
2.获得正确的时序分析报告几乎所有的FPGA设计平台都包含静态时序分析工具,利用这类工具可以获得映射或布局布线后的时序分析报告,从而对设计的性能做出评估。
静态时序分析工具以约束作为判断时序是否满足设计要求的标准,因此要求设计者正确输入约束,以便静态时序分析工具输出正确的时序分析报告。
3.指定FPGA/CPLD引脚位置与电气标准FPGA/CPLD的可编程特性使电路板设计加工和FPGA/CPLD设计可以同时进行,而不必等FPGA/CPLD引脚位置完全确定,从而节省了系统开发时间。
这样,电路板加工完成后,设计者要根据电路板的走线对FPGA/CPLD加上引脚位置约束,使FPGA/CPLD与电路板正确连接。
静态时序分析(statictiminganalysis)---时序路径时序分析⼯具会找到且分析设计中的所有路径。
每⼀个路径有⼀个起点(startpoint)和⼀个终点(endpoint)。
起点是设计中数据被时钟沿载⼊的那个时间点,⽽终点则是数据通过了组合逻辑被另⼀个时间沿载⼊的时间点。
路径中的起点是⼀个时序元件的时钟pin或者设计的input port。
input port可以作为起点是因为数据可以由外部源(external source)进⼊设计。
终点则是时序元件的数据输⼊pin或者设计的output port。
同理output port可以作为终点是因为数据可以被外部源捕捉到。
上图显⽰⼀个时序路径的例⼦。
path1 开始于⼀个input port 且结束于时序元件的数据输⼊端path2 开始于时序元件的时钟pin且结束于时序元件的数据输⼊端path3 开始于时序元件的时钟pin且结束在⼀个output portpath4 开始于input port 且结束于 output port每⼀个path都有专属的slack,slack值可以是正,0或者负。
某⼀个path拥有最坏的slack的话则称之为 critical pathcritical path拥有最⼤的负slack值。
若是所有的path都没有时序违规,则slack都是正数,此时最⼩的那个slack则是critical path。
复数critical paths意味着某⼀组的path都是critical path。
路径可以被分组(group)来得到各⾃的时序分析,时序报告和优化。
在IC compliler中输⼊report_timimg可以得到时序报告,如下所⽰。
Startpoint: I_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_ (rising edge-triggered flip-flop clocked by SYS_2x_CLK)Endpoint: I_RISC_CORE/I_ALU/Zro_Flag_reg (rising edge-triggered flip-flop clocked by SYS_2x_CLK)Path Group: SYS_2x_CLKPath Type: maxPoint Incr Path----------------------------------------------------------------------------------clock SYS_2x_CLK (rise edge) 0.000.00clock network delay (propagated) 0.510.51I_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_/CP (senrq1) 0.000.51 rI_RISC_CORE/I_INSTRN_LAT/Instrn_1_reg_27_/Q (senrq1) 0.62 1.13 fI_RISC_CORE/I_INSTRN_LAT/Instrn_1[27] (INSTRN_LAT) 0.00 1.13 fI_RISC_CORE/I_ALU/ALU_OP[3] (ALU) 0.00 1.13 fI_RISC_CORE/I_ALU/U288/ZN (nr03d0) 0.36 * 1.49 rI_RISC_CORE/I_ALU/U261/ZN (nd03d0) 0.94 * 2.43 fI_RISC_CORE/I_ALU/U307/ZN (invbd2) 0.35 * 2.78 rI_RISC_CORE/I_ALU/U343/Z (an02d1) 0.16 * 2.93 rI_RISC_CORE/I_ALU/U344/ZN (nr02d0) 0.11 * 3.04 fI_RISC_CORE/I_ALU/U348/ZN (nd03d0) 0.28 * 3.32 rI_RISC_CORE/I_ALU/U355/ZN (nr03d0) 0.29 * 3.60 fI_RISC_CORE/I_ALU/U38/Z (an02d1) 0.15 * 3.75 fI_RISC_CORE/I_ALU/U40/Z (an02d1) 0.12 * 3.87 fI_RISC_CORE/I_ALU/U48/ZN (nd02d1) 0.06 * 3.93 rI_RISC_CORE/I_ALU/U27/ZN (nd02d1) 0.06 * 3.99 fI_RISC_CORE/I_ALU/Zro_Flag_reg/D (secrq4) 0.00 * 3.99 fdata arrival time 3.99clock SYS_2x_CLK (rise edge) 4.00 4.00clock network delay (propagated) 0.47 4.47clock uncertainty -0.10 4.37I_RISC_CORE/I_ALU/Zro_Flag_reg/CP (secrq4) 0.00 4.37 rlibrary setup time -0.37 4.00data required time 4.00--------------------------------------------------------------------------------data required time 4.00data arrival time -3.99-------------------------------------------------------------------------------slack (MET) 0.01此例⼦的图如下:报告开始显⽰了路径的起点,路径终点,路径组名和路径检测的类型。
2025年招聘数字后端工程师笔试题及解答(答案在后面)一、单项选择题(本大题有10小题,每小题2分,共20分)1、在软件开发中,以下哪个技术不属于后端技术栈?A、PythonB、JavaC、React.jsD、Node.js2、在关系型数据库中,以下哪个关键字用于实现数据行的唯一性约束?A、NOT NULLB、PRIMARY KEYC、FOREIGN KEYD、CHECK3、在计算机科学中,下列关于位运算的描述哪个是正确的?A. 位运算符可以应用于浮点数。
B. 位运算符仅对整数类型的数据有效。
C. 位运算符的操作不会影响寄存器中的标志。
D. 位运算的操作速度通常比算术运算慢。
4、下列关于数据库索引的叙述中,哪一项是正确的?A. 索引可以加快查询的速度,因此应该为每一个字段创建索引。
B. 创建索引不会占用额外的存储空间。
C. 唯一索引不允许重复值,并且不允许空值。
D. 索引能够加快查询速度,但会减慢数据插入和更新操作。
5、数字后端工程师在处理大量数据时,经常会遇到内存不足的问题。
以下哪种技术可以帮助解决内存不足的问题?A. 数据分片B. 数据压缩C. 数据缓存D. 数据去重6、在分布式系统中,为了保证数据的一致性,通常会采用以下哪种一致性模型?A. 强一致性B. 弱一致性C. 最终一致性D. 单调一致性7、在数据库设计中,为了提高数据库的逻辑独立性和物理独立性,我们通常会遵循哪一范式来进行数据表的设计?A. 第一范式(1NF)B. 第二范式(2NF)C. 第三范式(3NF)D. BCNF(Boyce-Codd范式)8、在并发控制机制中,哪种技术可以防止由于多个事务同时对同一资源进行操作而导致的数据不一致问题?A. 乐观锁B. 悲观锁C. 两阶段提交(2PC)D. 以上皆可9、以下哪种编程语言主要用于构建后端服务,尤其是RESTful API?A. PythonB. JavaC. JavaScript (Node.js)D. C++ 10、在微服务架构中,以下哪个工具通常用于服务之间的通信?A. RedisB. KafkaC. RabbitMQD. Elasticsearch二、多项选择题(本大题有10小题,每小题4分,共40分)1、在数字后端设计中,时钟树综合(CTS, Clock Tree Synthesis)的主要目的是什么?(多选)A. 最小化时钟偏差B. 优化功耗C. 增加电路的逻辑复杂度D. 确保所有寄存器都能同步接收时钟信号E. 提高系统的工作频率2、关于静态时序分析(Static Timing Analysis, STA),下列说法哪些是正确的?(多选)A. 可以用于检查设计是否满足给定的操作条件下的性能要求。
静态时序分析(statictiminganalysis)静态时序分析(static timing analysis,STA)会检测所有可能的路径来查找设计中是否存在时序违规(timing violation)。
但STA只会去分析合适的时序,⽽不去管逻辑操作的正确性。
其实每⼀个设计的⽬的都相同,使⽤Design Compiler和IC Compile来得到最快的速度,最⼩的⾯积和最少的耗能。
根据设计者提供的约束,这些⼯具会在⾯积,速度和耗能上做出权衡。
更深层的来看,STA⼀直都寻找⼀个问题的答案:在所有条件下,当时钟沿到达时,数据会正确地在每个同步device的输⼊端正确显⽰吗?这问题可以⽤下图来表⽰:如图中所⽰,虚线表⽰了时序路径。
两者使⽤了同⼀个时钟驱动,理想情况下FF1的数据变化之后在下个时钟沿能够准确到达FF2。
两者的时序图如下:在FF1的时钟沿到来时,会把FF1的D端的数据送⼊flip-flop。
在经过⼀个clock-to-Q的延时之后,数据会送⼊FF1的Q端。
此过程叫做时序路径的launch event。
信号经过了两个FF之间的组合逻辑之后,到达了组合逻辑的输出,也就是FF2的输⼊端(FF2.D),这个叫做arrival time。
然⽽数据并不是在时钟沿到达FF2的同时到达,⽽是要⽐时钟沿早到那么⼀点点。
早到的这个时间叫做required time,不同的device的required time不⼀样。
数据装载到FF2的时间点叫做capture event。
device的required time和数据到达的时间(arrival time)两者之差则叫做slack。
图中所⽰,数据⽐时钟早到很多,则slack为正。
如果数据刚好在required time时间点到达,则slack为0,若是数据晚到的话则是负了。
例如required time是launch event之后的1.8ns,⽽arrival time是launch event之后的1.6ns,则slack = 1.8-1.6=0.2ns。
静态时序分析Static Timing Analysis基础与应用前言在制程进入深次微米世代之后,晶片(IC)设计的高复杂度及系统单晶片(SOC)设计方式兴起。
此一趋势使得如何确保IC品质成为今日所有设计从业人员不得不面临之重大课题。
静态时序分析(Static Timing Analysis简称STA)经由完整的分析方式判断IC是否能够在使用者的时序环境下正常工作,对确保IC品质之课题,提供一个不错的解决方案。
然而,对于许多IC设计者而言,ST A是个既熟悉却又陌生的名词。
本文将力求以简单叙述及图例说明的方式,对S TA的基础概念及其在IC设计流程中的应用做详尽的介绍。
什么是STA?STA的简单定义如下:套用特定的时序模型(Timing Model),针对特定电路分析其是否违反设计者给定的时序限制(Timing Constraint)。
以分析的方式区分,可分为Path-Based及Block-Based两种。
先来看看Path-Based这种分析方式。
如图一所示,讯号从A点及B点输入,经由4个逻辑闸组成的电路到达输出Y 点。
套用的Timing Model标示在各逻辑闸上,对于所有输入端到输出端都可以找到相对应的延迟时洹6 褂谜吒 ǖ腡iming Constraint为:1.讯号A到达电路输入端的时间点为2(AT=2,AT为Arrival Time)。
2.讯号B到达电路输入端的时间点为5(AT=5)。
3.讯号必须在时间点10之前到达输出端Y(RT=10,RT为Required Time)。
现在我们针对P1及P2两条路径(Path)来做分析。
P1的起始点为A,讯号到达时间点为2。
经过第1个逻辑闸之后,由于此闸有2单位的延迟时间,所以讯号到达此闸输出的时间点为4(2+2)。
依此类推,讯号经由P1到达输出Y 的时间点为7(2+2+3)。
在和上述第三项Timing Constraint比对之后,我们可以得知对P1这个路径而言,时序(Timing)是满足使用者要求的。
静态时序分析(Static Timing Analysis)基础与应用前言在制程进入深次微米世代之后,晶片(IC)设计的高复杂度及系统单晶片(SOC)设计方式兴起。
此一趋势使得如何确保IC品质成为今日所有设计从业人员不得不面临之重大课题。
静态时序分析(Static Timing Analysis简称STA)经由完整的分析方式判断IC是否能够在使用者的时序环境下正常工作,对确保IC品质之课题,提供一个不错的解决方案。
然而,对于许多IC设计者而言,STA 是个既熟悉却又陌生的名词。
本文将力求以简单叙述及图例说明的方式,对STA 的基础概念及其在IC设计流程中的应用做详尽的介绍。
什么是STA?STA的简单定义如下:套用特定的时序模型(Timing Model),针对特定电路分析其是否违反设计者给定的时序限制(Timing Constraint)。
以分析的方式区分,可分为Path-Based及Block-Based两种。
先来看看Path-Based这种分析方式。
如图一所示,讯号从A点及B点输入,经由4个逻辑闸组成的电路到达输出Y 点。
套用的Timing Model标示在各逻辑闸上,对于所有输入端到输出端都可以找到相对应的延迟时间。
而使用者给定的Timing Constraint为:1.讯号A到达电路输入端的时间点为2(AT=2,AT为Arrival Time)。
2.讯号B到达电路输入端的时间点为5(AT=5)。
3.讯号必须在时间点10之前到达输出端Y(RT=10,RT为Required Time)。
现在我们针对P1及P2两条路径(Path)来做分析。
P1的起始点为A,讯号到达时间点为2。
经过第1个逻辑闸之后,由于此闸有2单位的延迟时间,所以讯号到达此闸输出的时间点为4(2+2)。
依此类推,讯号经由P1到达输出Y的时间点为7(2+2+3)。
在和上述第三项Timing Constraint比对之后,我们可以得知对P1这个路径而言,时序(Timing)是满足使用者要求的。