七年级数学上册强化训练 新人教版含答案 (9)
- 格式:doc
- 大小:224.48 KB
- 文档页数:6
人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN牢记方法规则:1.判断绝对值里面量的正负2.去掉绝对值产生括号3.去掉括号合并同类项第1天1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.第2天6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.第3天11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.第4天16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b ﹣c|.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.参考答案1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.解:由图可得,c<b<0<a,则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c)=b﹣a﹣2a﹣2c﹣b+2c=﹣3a.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.解:根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.解:∵由图可知,c<a<b,∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)=a﹣c﹣2b+c﹣a﹣c﹣a﹣b=﹣a﹣3b﹣c.6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.解:根据图示,可得c<b<0<a,且a<|c|,∴a+c<0,2a+b>0,c﹣b<0,∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)=b.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.解:根据数轴上点的位置得:﹣1<c<0<a<b,∴c﹣1<0,a﹣c>0,a﹣b<0,则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,∴a﹣c<0,a+b>0,b﹣c<0,2b<0原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)=c﹣a﹣a﹣b﹣c+b﹣2b=﹣2a﹣2b.11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.解:∵由数轴上a、b、c的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b=﹣c.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.解:∵由图可知,c<a<0<b,∴2b﹣c>0,c-a<0,a﹣b<0,∴原式=2b﹣c+2(c-a)+3(b﹣a)=2b﹣c+2c﹣2a+3b-3a=-5a+b+c.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.解:∵由数轴上a、b、c的位置可知,a<b<0<c,∴a﹣b<0,c﹣a>0,b+c>0,∴原式=﹣a﹣[﹣(a﹣b)]+(c﹣a)+(b+c)=﹣a+a﹣b+c﹣a+b+c=﹣a+2c.16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则|2a﹣b|+3|c﹣a|﹣2|b﹣c|,=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),=﹣2a+b+3c﹣3a+2b﹣2c,=﹣5a+3b+c.18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b ﹣c|.解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,则|a﹣b|+3|c﹣a|﹣|b﹣c|=b﹣a+3(c﹣a)﹣(c﹣b)=b﹣a+3c﹣3a﹣c+b=2b﹣4a+2c.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|,=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,=﹣3a﹣c+b.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.。
人教版七年级数学上册《有理数的加减法》强化训练卷1.计算(1)(﹣6)+(﹣13).(2)(﹣)+.2.计算(1)(﹣4)+9 (2)13+(﹣12)+17+(﹣18)3.在横线上填写每步运算的依据.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)( )=[(﹣6)+(+6)]+(﹣15)( )=0+(﹣15)( )=﹣15( )4.计算:(1);(2).5.先将下列各式写成省略加号的和的形式,再按括号内要求交换加数的位置.(1)(+16)+(﹣28)﹣(﹣6)﹣(﹣13)﹣(+7)= (写成省略加号的和)= (使符号相同的加数在一起)= (运算结果);(2)(﹣3.1)﹣(﹣4.5)+(4.4)﹣(+1.3)+(﹣2.5)= (写成省略加号的和)= (使和为整数的加数在一起)= (运算结果).6.计算(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7(2)(﹣)+13+(﹣)+17.7.阅读下面文字对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)﹣1+(﹣2)+7+(﹣4)(2)(﹣2019)+2018+(﹣2017)+20168.计算:(1)(2)9.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣6﹣7+19﹣11+3;(2)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣);(3)﹣(﹣1)+(﹣1)﹣.10.已知|a|=8,b2=36,且b>a,求a+b的值.11.若x2=9,|y|=2,且x<y,求x+y的值.12.已知|m|=4,|n|=6,且|m+n|=m+n,求m﹣n的值.13.若x是最大的负整数,|y|=5,z是相反数等于本身的数,求:x+y+z的值.14.已知|m|=4,|n|=3.(1)当m、n同号时,求m﹣n的值;(2)当m、n异号时,求m+n的值.15.在有些情况下,不需要计算出结果也能把绝对值符号去掉.例如:|6+7|=6+7;|6﹣7|=7﹣6;|7﹣6|=7﹣6;|﹣6﹣7|=6+7(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式:①|7﹣21|= ;②|﹣﹣0.8|= ;③|﹣|= :(2)数a在数轴上的位置如图所示,则|a﹣2.5|= .A.a﹣2.5B.2.5﹣aC.a+2.5D.﹣a﹣2.5(3)利用上述介绍的方法计算或化简:①|﹣|+|﹣|﹣|﹣|+;②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.16.若,…,照此规律试求:(1)= ;(2)计算;(3)计算.答案1.解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.2.解:(1)(﹣4)+9=5;(2)13+(﹣12)+17+(﹣18)=13+17+(﹣12)+(﹣18)=30+(﹣30)=0.3.解:(﹣6)+(﹣15)+(+6)=(﹣6)+(+6)+(﹣15)(加法交换律)=[(﹣6)+(+6)]+(﹣15)(加法交结合律)=0+(﹣15)(互为相反数的两个数相加得零)=﹣15(一个数与零相加仍得这个数)故加法交换律;加法结合律;互为相反数的两个数相加得零;一个数与零相加仍得这个数4.解:(1)=﹣4(2)=4.5+(﹣54)=﹣49.55.解:(1)原式=16﹣28+6+13﹣7=16+6+13+(﹣28﹣7)=0;(2)原式=﹣3.1+4.5+4.4﹣1.3﹣2.5=(4.4﹣3.1﹣1.3)+(4.5﹣2.5)=2.故(1)16﹣28+6+13﹣7;16+6+13+(﹣28﹣7);0.(2)﹣3.1+4.5+4.4﹣1.3﹣2.5;(4.4﹣3.1﹣1.3)+(4.5﹣2.5);2.6.解:(1)原式=﹣10.7+5.7=﹣5;(2)原式=﹣1+30=29.7.解:(1)﹣1+(﹣2)+7+(﹣4)=(﹣1﹣)+(﹣2﹣)+(7+)+(﹣4﹣)=(﹣1﹣2+7﹣4)+(﹣﹣+﹣)=0﹣=﹣;(2)(﹣2019)+2018+(﹣2017)+2016=(﹣2019﹣)+(2018+)+(﹣2017﹣)+(2016+)=(﹣2019+2018﹣2017+2016)+(﹣+﹣+)=﹣2﹣=﹣2.8.解:(1)原式==10﹣6=4;(2)原式==﹣100.9.解:(1)﹣6﹣7+19﹣11+3=﹣6﹣7﹣11+19+3=﹣24+22=﹣2;(2)===;(3)===.10.解:∵|a|=8,b2=36∴a=±8,b=±6,由b>a,得a=﹣8,b=±6,所以a+b=6+(﹣8)=﹣2 或a+b=﹣6+(﹣8)=﹣14.11.解:∵x2=9,|y|=2,∴x=±3,y=±2,∵x<y,∴x=﹣3,y=2或x=﹣3,y=﹣2,∴x+y=﹣1或﹣5.12.解:∵|m|=4,|n|=6,∴m=±4,n=±6,∵|m+n|=m+n,∴m+n≥0,∴m=±4,n=6,∴当m=4,n=6时,m﹣n=﹣2,当m=﹣4,n=6时,m﹣n=﹣10,综上:m﹣n=﹣2或﹣10.13.解:根据题意得:x=﹣1,y=±5,z=0,则x+y+z=﹣1﹣5+0=﹣6或x+y+z=﹣1+5+0=4.14.解:(1)∵|m|=4,|n|=3,∴当m、n同号时,m=4,则n=3,故m﹣n=1;m=﹣4时,n=﹣3,故m﹣n=﹣1;(2))∵|m|=4,|n|=3,∴当m、n异号时,m=4,则n=﹣3,故m+n=1;m=﹣4时,n=3,故m+n=﹣1.15.解:(1)①|7﹣21|=21﹣7;②|﹣﹣0.8|=;③|﹣|=﹣;故①21﹣7;②+0.8;③﹣;(2)由数轴得:a<2.5,则|a﹣2.5|=2.5﹣a,故选:B;(3)利用上述介绍的方法计算或化简:①|﹣|+|﹣|﹣|﹣|+;=+﹣+,=﹣+,=,②|﹣|+|﹣|﹣|﹣|+2(),其中a>2.当2<a<5时,原式=﹣+﹣﹣+,=﹣+,=,当a≥5时,原式=+﹣﹣+,=.16.解:(1)=.故;(2)原式===;(3)原式===.。
1.计算-10+8÷(-2)2-(-4)×(-3); 4×(-3)2-5×(-2)3+6;-14-16×[2-(-3)2]; (-3)2-112×29-6÷|-23|2;2×[5+(-2)3]-(-|-4|÷12); -23-[-3+(-3)2÷(-15)].()411293⎛⎫-+-÷--- ⎪⎝⎭. 2431242(1)()32293---⨯-+÷-(-1)2×5+(-2)3÷4 22)21(4124)3285(3-+-÷+⨯-)361()1279543(-÷+- )23(]31)211()1[(22016+-÷⨯-+-2.化简:2m 2-4m +1-2(m 2+2m -21); 5xy 2-[2x 2y -(2x 2y -3xy 2)]3.当x 为何值时,整式x 12++1和2x4-的值互为相反数?4.已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.5.先化简再求值:3(3xy − x 2 ) − [2x 2 − 2(5xy − 2x 2 ) − xy],其中x, y 满足|x + 2| +(y − 3)2 = 0.6.先化简,再求值:(2x 2﹣2y 2)﹣3(x 2y 2+x 2)+3(x 2y 2+y 2), 其中 x =﹣1,y =2.7.先化简,再求值:()[]x y xy x y xy 23473-+-+-,其中3,2=--y x .8.若a 、b 互为相反数,c 、d 互为倒数,2=m ,求()cdm b a ---.9.小红做一道数学题:两个多项式A 、B ,已知6542--=x x B ,试求A+B 的值。
小红误将A+B 看成A-B ,得到的答案为121072++-x x (计算过程正确)。
人教版七年级数学上册第一章 有理数专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A .||1a <B .0ab >C .0a b +>D .11a ->2、数轴上表示-3的点到原点的距离是( )A .-3B .3 CD .133、如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --4、下列计算结果为0的是( )A .2222--B .223(3)-+-C .22(2)2-+D .2333--⨯5、下列各式中,结果是100的是( )A .()100-+B .()100--C .100-+D .100--6、下列各数中,是负数的是( )A .-1B .0C .0.2D .12 7、在有理数1,12,-1,0中,最小的数是( )A .1B .12C .-1D .08、2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km9、北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A .10:00B .12:00C .15:00D .18:0010、若22a a -=,则a 的取值范围是( ).A .0a >B .0a ≥C .0a ≤D .0a <第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、3-的绝对值是______,3-的倒数是______.2、33x x -=-,则x 的取值范围是______.3、172-的相反数是___________.4、a ,b 是有理数,它们在数轴上的对应点的位置如下图所示,把a ,a -,b ,b -按照从小到大的顺序排列为________.5、若数轴上点A 表示4,点B 表示﹣2,有一个动点P 从点A 出发,沿若数轴以每秒2个单位/秒的速度向左运动,有一个动点Q 从点B 出发,沿着数轴以每秒3个单位/秒的速度向右运动,若运动的时间为t ,当点P 与点Q 的距离为10时,则t =_____.三、解答题(5小题,每小题10分,共计50分)1、计算:(1)1+2﹣3﹣4+5+6﹣7﹣8+…+2017+2018﹣2019﹣2020+2021;(2)(﹣112)+(﹣202156)﹣(﹣4040712)+(﹣101334)+(﹣100523). 2、如图,数轴上点A ,B ,M ,N 表示的数分别为-1,5,m ,n ,且AM =23AB ,点N 是线段BM 的中点,求m ,n 的值.3、如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①②③④四部分,点A ,B ,C 对应的数分别是a ,b ,c ,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a(3)若点B 到表示1的点的距离与点C 到表示1的点的距离相等,且3a b c --=-,求3(2)a b b c -+--的值.4、已知有理数a ,b 满足ab 2<0,a +b >0,且|a|=2,|b|=3,求13a -+(b -1)2的值. 5、某便利店购进标重10千克的大米5袋,可实际上每袋都有误差;若超出部分记为正数,不足部分记为负数,那么这5袋大米的误差如下(单位:千克):0.4 ﹣0.2 ﹣0.3 +0.6 +0.5(1)问这5袋大米总计超过多少千克或不足多少千克?(2)问这5袋大米总重量是多少千克?-参考答案-一、单选题1、D【解析】【分析】直接利用a ,b 在数轴上位置进而分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 错误;因为a <0,b >0,所以0ab <,故选项B 错误;因为a <0,b >0,所以0a b +<,故选项C 错误;因为a <0,则11a ->,故选项D 正确;故选:D .【考点】此题主要考查了根据点在数轴的位置判断式子的正误,正确结合数轴分析是解题关键.2、B【解析】【分析】由题意可知表示-3的点与原点的距离是-3的绝对值以此分析即可.【详解】解:在数轴上表示-3的点与原点的距离是|-3|=3.故选:B .【考点】本题考查有理数与数轴,熟记数轴的特点以及绝对值的几何意义是解题的关键.3、C【解析】【分析】根据数轴上两点的位置,判断,a b 的正负性,进而即可求解.【详解】解:∵数轴上,A B 两点表示的数分别是,a b ,∴a <0,b >0, ∴()b a b a a b -=--=+,故选:C .【考点】本题考查了数轴,绝对值,掌握求绝对值的法则是解题的关键.4、B【解析】【分析】根据有理数的乘方对各选项分别进行计算,然后利用排除法求解即可.【详解】A. 2222--=−4−4=−8,故本选项错误;B. 223(3)-+-=−9+9=0,故本选项正确;C. 22(2)2-+=4+4=8,故本选项错误;D. 2333--⨯=−9−9=−18,故本选项错误.故选B.【考点】此题考查有理数的乘方,解题关键在于掌握运算法则5、B【解析】【分析】直接根据负号的个数和绝对值的定义化简即可【详解】解:A 、()100=-100-+,故错误B 、()100=100--,故正确C 、100-+=-100,故错误D 、100--=-100,故错误【考点】本题考查多重符号的化简、绝对值的化简,熟练掌握多重符号化简的规律是解题的关键,理解绝对值的定义是重点6、A【解析】【分析】根据小于0的数为负数,可作出正确的选择.【详解】解:A、-1<0,是负数,故选项正确;B、0既不是正数,也不是负数,故选项错误;C、0.2>0,是正数,故选项错误;>0,是正数,故选项错误.D、12故选:A.【考点】本题考查了负数.能够准确理解负数的概念是解题的关键.7、C【解析】【分析】根据负数小于0,0小于正数即可得出最小的数.【详解】解:1,1,-1,0这四个数中只有-1是负数,2所以最小的数是-1,故选:C.【考点】本题考查了有理数的大小比较.理解0大于任何负数,小于任何正数是解题关键.8、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】科学记数法表示:384 000=3.84×105km故选B.【考点】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、C【解析】【分析】根据北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,逐项判断出莫斯科时间,即可求解.【详解】解:由北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,所以A. 当北京时间是10:00时,莫斯科时间是5:00,不合题意;B. 当北京时间是12:00时,莫斯科时间是7:00,不合题意;C. 当北京时间是15:00时,莫斯科时间是10:00,符合题意;D. 当北京时间是18:00时,不合题意.故选:C【考点】本题考查了有理数减法的应用,根据北京时间推断出莫斯科时间是解题关键.10、B【解析】【分析】根据绝对值的代数意义或绝对值的非负性解题.【详解】解:【方法1】正数的绝对值是本身,负数的绝对值是它的相反数,0的绝对值是0,由此可知,当22a a -=时,20a -≤,即0a ≥.选B .【方法2】 任何数的绝对值都是非负数,即20a -≥. ∵22a a -=,∴20a ≥,即0a ≥.故选B .【考点】 绝对值的非负性是指在a 中,无论a 是正数、负数或者0,a 都是非负数(正数或0).这样的非负数我们在后面的学习中会陆续接触到.绝对值的非负性主要应用在解决“若几个非负数的和为零,则这几个非负数都是0”等问题上.二、填空题1、 31 3 -【解析】【分析】根据绝对值和倒数的定义解答即可.【详解】解:-3的绝对值是3;-3的倒数是13 -;故答案为:3;13 -.【考点】本题考查了绝对值和倒数的定义,熟练掌握绝对值和倒数的定义是解题的关键.2、3x≤【解析】【分析】根据绝对值的意义,绝对值表示距离,所以30x-≥,即可求解;【详解】根据绝对值的意义得,30x-≥,3x∴≤;故答案为3x≤;【考点】本题考查绝对值的意义;理解绝对值的意义是解题的关键.3、1 7 2【分析】绝对值相等,符号相反的数互为相反数.【详解】 解:172-的相反数是172. 故答案是:172.【考点】本题考查相反数的定义,解题的关键是根据相反数的定义求相反数.4、b a a b -<<-<【解析】【分析】根据数轴表示数的方法得到0a b <<,且b a >-,则有b a a b -<<-<.【详解】解:0a b <<,且b a >-,b a a b ∴-<<-<.故答案为:.b a a b -<<-<【考点】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.5、165【解析】当运动时间为t 秒时,点P 表示的数为24t -+,点Q 表示的数为32t -,根据点P 与点Q 的距离为10,即可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,点P 表示的数为24t -+,点Q 表示的数为32t -,依题意,得:|(24)(32)|10t t -+--=,即6510t -=或5610t -=, 解得:45t =-(不合题意,舍去)或165t =. 故答案为:165. 【考点】本题考查了一元一次方程的应用以及数轴,解题的关键是找准等量关系,正确列出一元一次方程.三、解答题1、(1)1;(2)﹣136【解析】【分析】(1)原式除去第一项,以及后二项,两两结合,利用化为相反数两数之和为0计算,即可得到结果.(2)根据有理数的加减计算解答即可.【详解】解:(1)原式=1+(2﹣3)+(﹣4+5)+(6﹣7)+(﹣8+9)+…+(2014﹣2015)+(﹣2016+2017)+(2018﹣2019)﹣2020+2021=1﹣1﹣2020+2021=1.(2)原式=15732 1()2021()(4040+)1013()1005() 261243⎡⎤⎡⎤⎡⎤⎡⎤-+-+-+-++-+-+-+-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦=[﹣1+(﹣2021)+4040+(﹣1013)+(﹣1005)]+15732()()() 261243⎡⎤-+-++-+-⎢⎥⎣⎦=610798 1212121212 --+--=﹣136.【考点】本题考查了有理数的加减混合运算,熟练掌握加法的交换律和结合律是解答本题的关键.2、m=3,n=4或m=-5,n=0【解析】【分析】根据题意得:AB=6.再由AM=23AB,可得AM=4.然后分两种情况讨论,即可求解.【详解】解:∵数轴上,点A,B表示的数分别为-1,5,∴AB=6.∵AM=23AB,∴AM=4.①当点M在点A右侧时,∵点A表示的数为-1,AM=4,∴点M表示的数为3,即m=3.∵点B表示的数为5,点N是线段BM的中点,∴点N 表示的数为4,即n =4.② 当点M 在点A 左侧时,∵点A 表示的数为-1,AM =4,∴点M 表示的数为-5,即m =-5.∵点B 表示的数为5,点N 是线段BM 的中点,∴点N 表示的数为0,即n =0.综上,m =3,n =4,或m =-5,n =0.【考点】本题主要考查了数轴上两点间的距离,熟练掌握数轴上两点间的距离,并利用分类讨论思想解答是解题的关键.3、(1)原点在第③部分;(2)-3;(3)5【解析】【分析】(1)根据0bc <可得原点在B 与C 之间;(2)根据数轴上的点的距离求解即可得出答案;(3)设点B 到表示1的点的距离为(0)m m >,分别用m 的代数式表示出b 与c ,进而得出b+c 与a 的值,再代入所求式子计算即可得出答案.【详解】解:(1)∵0bc <,∴b,c 异号,∴原点在第③部分;(2)若AC=5,BC=3,则532AB =-=,∴2123a b =-=--=-;(3)设点B 到表示1的点的距离为(0)m m >,则1b m =-,1c m =+,∴b+c=2,∵3a b c --=-,即()3a b c -+=-,∴1a =-,3(2)32222()(1)22145a b b c a b b ca b ca b c ∴-+--=-+-+=-++=-++=--+⨯=+=.【考点】本题主要考查了数轴,解题的关键是需要灵活运用数形结合的思想.4、163. 【解析】【分析】先根据题意确定a 、b 的符号,再根据a 、b 的绝对值确定a 、b 的值,然后把a 、b 的值代入所求式子计算即可.【详解】解:由ab 2<0可知a <0.因为a +b >0,所以b >0. 又因为2=a ,3b =,所以a =-2,b =3. 所以()2113a b -+- =()212313--+- =743+ =163.【考点】本题考查了有理数的绝对值、有理数的加法法则和有理数的乘法法则以及有理数的乘方运算等知识,属于基本题型,正确确定a、b的值、熟练进行有理数的运算是解题关键.5、(1)超过1千克;(2)51千克【解析】【分析】(1)由题意可知每袋大米的标准重量为10千克,超过标准重量的记为正数,不足的记为负数,然后相加即可;(2)由题(1)可知5袋大米总计超过1千克,列出算式5×10+1计算即可求解.【详解】解:(1)0.4-0.2-0.3+0.6+0.5=1千克,∴这5袋大米总计超过1千克;(2)10×5+1=51千克,故这5袋大米总重量51千克.【考点】本题主要考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.。
七年级数学上册——绝对值化简强化训练1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b-a|+|c-a|-|c-b|。
解:由图可知c<0<a<b,故而b-a>0,c-a<0,c-b<0∴ |b-a|+|c-a|-|c-b|=(b-a)+(a-c)-(b-c)=b-a+a-c-b+c=02.已知有理数a、b、c在数轴上的位置如图所示,化简|b-c|-|c-a|+|b-a|。
解:由图可知c<b<0<a,故而b-c>0,c-a<0,b-a<0∴ |b-c|-|c-a|+|b-a|=(b-c)-(a-c)+(a-b)=b-c-a+c+a-b=03.有理数a、b、c在数轴上的位置如图所示,化简|a-b|+2|a+c|-|b-2c|。
解:由图可知c<a<0<b,故而a-b<0,a+c<0,b-2c>0∴ |a-b|+2|a+c|-|b-2c|=(b-a)+2[-(a+c)]-(b-2c)=b-a-2a-2c-b+2c =-3a4.有理数a、b、c在数轴上的位置如图所示,化简|b+a|-|b-c|+|a-c|。
解:由图可知c<a<0<b且|b|<|a|<|c|,故而b+a<0,b-c>0,a-c>0 ∴ |b+a|-|b-c|+|a-c|=-(b+a)-(b-c)+(a-c)=-b-a-b+c+a-c=2b5.有理数a、b、c在数轴上的位置如图所示,化简|a-c|-|c-2b|+|a+c|-|a+b|。
解:由图可知c<a<0<b,故而a-c>0,c-2b<0,a+c<0,a+b>0∴ |a-c|-|c-2b|+|a+c|-|a+b|=(a-c)-(2b-c)+[-(a+c)]-(a+b)=-a-3b-c 6.若有理数a、b、c在数轴上的位置如图所示,化简|a+c|+|2a+b|-|c-b|。
4.2线段长短的计算一.选择题1.如图,C是线段AB的中点,D是CB上一点,下列说法中错误的是()A.CD=AC﹣BD B.CD=BC C.CD=AB﹣BD D.CD=AD﹣BC 2.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB中点的是()A.AM=BM B.AB=2AM C.BM=AB D.AM+BM=AB 3.如图,AB=CD,那么AC与BD的大小关系是()A.AC=BD B.AC<BD C.AC>BD D.不能确定4.如图,下列关系式中与图不符合的式子是()A.AD﹣CD=AB+BC B.AC﹣BC=AD﹣BDC.AC﹣BC=AC+BD D.AD﹣AC=BD﹣BC5.如图,C为线段AB上一点,D为线段BC的中点,AB=20,AD=14,则AC的长为()A.10B.8C.7D.66.如图,已知线段AB=10cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm7.已知线段AB和点P,如果P A+PB=AB,那么()A.点P为AB中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上8.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A.7B.3C.3或7D.以上都不对9.已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm 二.填空题10.如图,点C在线段AB上,E是AC中点,D是BC中点,若ED=6,则线段AB的长为.11.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC 的长度为.12.如图,点C、D在线段AB上,点C为AB中点,若AC=5cm,BD=2cm,则CD=cm.13.已知线段AB,延长AB至点C,使BC=AB,反向延长AB至点D,使AD=AB,若AB=12cm,则CD=cm.14.线段AB上有P、Q两点,AB=26,AP=14,PQ=11,那么BQ=.三.解答题15.如图,A、B、C三点在一条直线上,根据右边的图形填空:(1)AC=++;(2)AB=AC﹣;(3)DB+BC=﹣AD(4)若AC=8cm,D是线段AC中点,B是线段DC中点,求线段AB的长.16.如图,点M为AB中点,BN=AN,MB=3cm,求AB和MN的长.17.如图,已知线段AB上有一点C,点D、点E分别为AC、AB的中点,如果AB=10,BC=3,求线段DE的长.18.如图已知点C为AB上一点,AC=18cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.19.如图,C是线段AB上一点,M是AC的中点,N是BC的中点(1)若AM=1,BC=4,求MN的长度.(2)若AB=6,求MN的长度.20.如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.参考答案一.选择题1.解:∵C是线段AB的中点,∴AC=BC=AB,A、CD=BC﹣BD=AC﹣BD,故本选项正确;B、D不一定是BC的中点,故CD=BC不一定成立;C、CD=AD﹣AC=AD﹣BC,故本选项正确;D、CD=BC﹣BD=AB﹣BD,故本选项正确.故选:B.2.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确;C、由BM=AB可以判定点M是线段AB中点,所以此结论正确;D、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确;因为本题选择不能判定点M是线段AB中点的说法,故选:D.3.解:根据题意和图示可知AB=CD,而CB为AB和CD共有线段,故AC=BD.故选:A.4.解:A、AD﹣CD=AB+BC,正确,B、AC﹣BC=AD﹣BD,正确;C、AC﹣BC=AB,而AC+BD≠AB,故本选项错误;D、AD﹣AC=BD﹣BC,正确.故选:C.5.解:∵AB=20,AD=14,∴BD=AB﹣AD=20﹣14=6,∵D为线段BC的中点,∴BC=2BD=12,∴AC=AB﹣BC=20﹣12=8.故选:B.6.解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.7.解:如图:∵P A+PB=AB,∴点P在线段AB上.故选:B.8.解:当点C在线段AB上时:AC=5﹣2=3;当C在AB的延长线上时:AC=5+2=7.故选:C.9.解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选:C.二.填空题10.解:∵E是AC中点,D是BC中点,AC+BC=AB∴ED=AB∴AB=12.∴线段AB的长为12.11.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.12.解:∵点C为AB中点,∴BC=AC=5cm,∴CD=BC﹣BD=3cm.13.解:如图∵AB=12cm,∴BC=AB=8cm,AD=AB=3cm,∴CD=DA+AB+BC=3+12+8=23cm.14.解:本题有两种情形:(1)当点Q在线段AP上时,如图,BQ=BP+PQ=AB﹣AP+PQ=26﹣14+11=23;(2)当点Q在线段BP上时,如图,BQ=BP﹣PQ=AB﹣AP+PQ=26﹣14﹣11=1.故答案为:23或1.三.解答题15.解:(1)AC=AD+DB+BC;(2)AB=AC﹣BC;(3)DB+BC=AC﹣AD(4)∵D是AC的中点,AC=8,∴AD=DC=4,∵B是DC的中点,∴DB==2,∴AB=AD+DB,=4+2,=6(cm).∴线段AB的长为6cm.故答案为:AD,DB,BC;BC;AC.16.解:∵点M为AB中点,∴AB=2MB=6cm,∴AN+NB=6cm,∵BN=AN,∴2BN+NB=6cm∴NB=2cm∴MN=MB﹣NB=1cm.17.解:因为D是AC的中点,所以,因为点E是AB的中点,所以AE=AB,所以.因为AB=10,BC=3,所以AC=AB﹣BC=7.所以=.答:线段DE的长为.18.解:∵AC=18cm,CB=AC,∴BC=×18=12cm,则AB=AC+BC=30cm,∵D、E分别为AC、AB的中点,∴AD=AC=9cm,AE=AB=15cm,∴DE=AE﹣AD=15﹣9=6cm,答:DE的长是6cm.19.解:(1)∵N是BC的中点,M是AC的中点,AM=1,BC=4∴CN=2,AM=CM=1∴MN=MC+CN=3;(2)∵M是AC的中点,N是BC的中点,AB=6∴NM=MC+CN=AB=3.20.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.。
第二章整式的加减第23课时2.1.1列代数式用字母表示数应注意:①在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写,例如100×t 可以写成__100t__.②当数字与字母相乘时,数字在前,字母在后,例如0.5×t或0.5t.③数字和字母相除时,或字母和字母相除时,可以写成分数形式,如x÷3应写成__x3__.④1乘字母时,1可以省略不写,如1×a可写成__a__;-1乘字母时,只要在那个字母前加上“-”号,如-1×a 可写成__-a__.⑤用含有字母的式子表示某种量时,若结果是加、减关系,有单位的必须把式子用括号括起来后再写单位名称,如(x+3)千米.(1)(2020·长春中考)我市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费__(30m +15n)__元.(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量是__mn件__.(1)某钢铁厂每天生产钢铁m吨,现在每天比原来增加20%,现在每天钢铁的产量是__1.2m__吨.(2)用式子表示数a 的相反数是__-a__.甲、乙两人的年龄和等于甲、乙两人年龄差的3倍,设甲为x 岁,乙为 y 岁,则他们的年龄和用年龄差表示为( C ) A .(x +y )岁 B .(x -y )岁 C .3(x -y )岁 D .3(x +y )岁用含字母的式子表示下面各题的数量关系:①一个数加上m 后得3,这个数是3-m ;②一个数减去x 后得15,这个数是15-x ;③一个数乘x 得36,这个数是36÷x ;④一个数除以5得k ,这个数是5k ,其中正确的有( C )A .1个B .2个C .3个D .4个下列式子符合代数式书写格式的是( B ) A .215 xy B .12 a C .2÷mD .mn ·7(2021·唐山期中)下列各式:ab ·2,m ÷2n ,53 xy ,113 a ,a -b4 其中符合代数式书写规范的有__2__个.1.式子x -y2 的意义为( B ) A .x 与y 的一半的差 B .x 与y 的差的一半C .x 减去y 除以2的差D .x 与y 的12 的差2.“比t 的13 大4的数”用式子表示是( B )A .t ⎝ ⎛⎭⎪⎫13+4 B .13 t +4 C .53 tD .t 13 +43.某商店举办促销活动,促销的方法是将原价为x 元的衣服以⎝ ⎛⎭⎪⎫45x -10 元出售,则下列说法中,能正确表达该商店促销方法的是( B ) A .原价减去10元后再打8折 B .原价打8折后再减去10元 C .原价减去10元后再打2折 D .原价打2折后再减去10元4.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( A )A .10-xB .10-yC .10-x +yD .10-x -y5.用含字母的式子表示下面各题的数量关系. (1)a 与4的和的7倍__7(a +4)__;(2)比m 的8倍少n 的一半的数__8m -12 n __; (3)比x 的5倍少8的数__5x -8__;(4)一台电视机原价 t 元,现按原价的8.5折出售,这台电视机现在的售价是__0.85t __元;(5)一个两位数,十位数字是 a ,个位数字是b ,则这个两位数是__10a +b __; (6)电影院里座位的总排数是m ,若第一排的座位数是a ,并且后一排总比前一排的座位数多1个,则电影院里最后一排有__(a +m -1)__个座位.6.如图为园子一角,正方形边长为x ,里面有两个半圆形花池,阴影部分是草坪,则草坪的面积是__x 2-14 πx 2__.1.某企业今年2月份产值为a 万元,3月份比2月份增加了15%,4月份比3月份减少了5%,则4月份的产值为( C ) A .(a +15%)(a -15%)万元 B .a (1+85%)(1-95%)万元 C .a (1+15%)(1-5%)万元 D .a (1+15%-5%)万元2.(2020·聊城中考改编)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图○n 表示,那么图○50 中的白色小正方形地砖的块数是__355__.3.(2020·抚宁期中)如图,是小明用火柴搭的1条、2条、3条“金鱼”……,分别用去火柴棒8根、14根、20根、…,则搭n条“金鱼”需要火柴棒__(6n+2)__根(含n的代数式表示).第24课时 2.1.2 单 项 式1.表示__数或字母__的积组成的式子叫做单项式.单独的一个__数__或一个__字母__也是单项式.注意:数与字母之间是乘积关系.2.单项式的系数是指单项式中的__数字因数__,如果一个单项式只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为-1.3.一个单项式中,所有字母的__指数的和__叫做这个单项式的次数.在式子1x ,2x +5y ,0.9,-2a ,-3x 2y ,x +13 中,单项式是__0.9,-2a ,-3x 2y__.下列各代数式:(1)x +12 ;(2)abc ;(3)b 2;(4)-5ab 2;(5)y +x ; (6)-xy 2;(7)-5,是单项式的有(填序号):__(2)(3)(4)(6)(7)__.(2020·日照中考)单项式-3ab 的系数是( B ) A .3 B .-3 C .3a D .-3a说出单项式13 a 2h ,2πr ,abc ,-m 的系数与次数. 【解析】单项式13 a 2h2πr abc -m系数 13 2π 1 -1 次数3131写出所有系数是-12 ,且都只含字母x ,y 的五次单项式. 【解析】-12 xy 4,-12 x 2y 3,-12 x 3y 2,-12 x 4y .下面各题的判断是否正确? ①-7xy 2的系数是7;( × ) ②-x 2y 3与x 3没有系数;( × ) ③-ab 3c 2的次数是5;( × ) ④-a 3的系数是-1;( √ ) ⑤-32x 2y 3的次数是7;( × ) ⑥13 πr 2h 2的系数是13 .( × )1.下列各式中,为四次单项式的是( C ) A .3 B .-2πxy C .xyz 2 D .x 3+1 2.(2021·酒泉期末)下列说法中错误的是( C ) A .-23 x 2y 的系数是-23 B .0是单项式 C .23 xy 的次数是1D .-x 是一次单项式3.下列各式:-n ,a +b ,-12 ,x -1,3ab ,1x ,其中单项式有__3__个.4.(1)系数为-3,只含有字母x ,y 的四次单项式有__3__个,它们是__-3xy 3,-3x 2y 2,-3x 3y __.(2)(2021·北京期末)一个单项式满足下列两个条件:①含有两个字母;②次数是3.请写出一个同时满足上述两个条件的单项式__-2ab 2(答案不唯一)__. 5.填表6.用单项式填空,并指出它们的系数和次数:(1)圆的半径为r ,则它的面积为__πr 2__,它的系数是__π__,次数是__2__; (2)每包书有12册,n 包书有12n 册,它的系数是__12__,次数是__1__; (3)a 的相反数是__-a __,它的系数是__-1__,次数是__1__;(4)底边长为a ,高为h 的三角形的面积为12 ah ,它的系数是__12 __,次数是__2__; (5)一台电视机原价a 元,现按原价的9折出售,这台电视机现在的售价为0.9a 元,它的系数是__0.9__,次数是__1__;(6)一个长方形的长是0.5,宽是a ,这个长方形的面积是0.5a ,它的系数是__0.5__,次数是__1__.7.观察下面的三行单项式: x 、2x 2、4x 3、8x 4、16x 5、32x 6……① -2x 、4x 2、-8x 3、16x 4、-32x 5、64x 6……②2x 2、-3x 3、5x 4、-9x 5、17x 6、-33x 7……③(1)根据你发现的规律,第①行第8个单项式为__128x 8__;(2)第②行第8个单项式为__256x 8__,第③行第8个单项式为__-129x 9__. 8.(1)写出系数是-1,含有字母a ,b 的所有四次单项式; (2)写出系数是-12 ,含有字母a ,b ,c 的所有五次单项式. 【解析】(1)-a 3b ,-a 2b 2,-ab 3.(2)-12 ab 2c 2,-12 ab 3c ,-12 a 2bc 2,-12 a 2b 2c ,-12 abc 3,-12 a 3bc .9.刘明家前年收入a 元,去年比前年收入增加x %,求去年收入多少元?今年又比去年收入增加x %,求今年收入多少元? 【解析】去年收入为a +a ×x %=a (1+x %)(元).今年收入为a (1+x %)+ a (1+x %)×x %=a (1+x %)(1+x %)=a ⎝⎛⎭⎫1+x % 2(元).若3x m y n 是含有字母x 和y 的5次单项式,求m n 的最大值.【解析】根据题意得,m =1,n =4 或m =2,n =3 或 m =3,n =2 或m =4,n =1,m n 的最大值是9.第25课时 2.1.3 多 项 式1.__几个单项式的和__叫做多项式.在多项式中,每个单项式叫做多项式的__项__,其中不含字母的项叫做__常数项__.一个多项式有几项就叫做几项式. 2.多项式里,__次数最高项__的次数,叫做这个多项式的次数. 3.__单项式__与__多项式__统称整式.下列各式:2+x 2,2x ,xy 2,3x 2+2x -1,abc ,1-2y ,x -y 3 中,多项式有__4__个.(2021·上海期末)下列说法正确的是( D ) A .a 2+2a +32是三次三项式 B .xy 24 的系数是4 C .x -32 的常数项是-3 D .0是单项式多项式x 2-2xy 3-12 y -1是( C ) A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 ,如果多项式(a -2)x 5-23 x b+x -9是关于x 的四次三项式,那么ab 的值为__8__.多项式2-xy 2-4x 3y 的各项为__2,-xy 2,-4x 3y __,次数为__4__. a 2b -ab +1是__三__次__三__项式,写出所有的项:__a 2b ,-ab ,1__,其中三次项的系数是__1__,二次项的系数为__-1__,常数项为__1__.代数式3x 2y -4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( D ) A .-4x 3y 2+3x 2y -5xy 3-1 B .-5xy 3+3x 2y -4x 3y 2-1 C .-1+3x 2y -4x 3y 2-5xy 3 D .-1-5xy 3+3x 2y -4x 3y 2(2021·上海期末)将多项式2-3xy 2+5x 3y -13 x 2y 3按字母y 降幂排列是__-13x 2y 3-3xy 2+5x 3y +2__.1.组成多项式2x 2-x -3的单项式是下列几组中的( B ) A. 2x 2,x ,3 B. 2x 2,-x ,-3 C. 2x 2,x ,-3 D. 2x 2,-x ,32.(2020·绵阳中考)若多项式xy |m -n |+(n -2)x 2y 2+1是关于x ,y 的三次多项式,则mn =__0或8__.3.若多项式(k +1)x 2-3x +1中不含 x 2项,则k 的值为__-1__.4.(2021·辽阳期末)多项式5a m b 4-2a 2b +3与单项式6a 4b 3c 的次数相同,则m 的值为__4__.5.已知多项式(m -1)x 4-x n +2x -5是三次三项式,则(m +1)n =__8__. 6.多项式2x 3-x 2y 2-3xy +x -1是__四__次__五__项式.7.将多项式5x 2y +y 3-3xy 2-x 3按x 的升幂排列为__y 3-3xy 2+5x 2y -x 3__. 8.写出一个只含有字母x ,y 的二次三项式__x 2+xy +y 2(答案不唯一)__. 9.如图,用式子表示圆环的面积.当R =15 cm ,r =10 cm 时,求圆环的面积(结果保留π).【解析】圆环面积为πR 2-πr 2, 当R =15 cm ,r =10 cm , 圆环的面积=πR 2-πr 2=125π cm 2.10.(2021·北京质检)已知多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同. (1)求m ,n 的值;(2)把这个多项式按x 的降幂排列.【解析】(1)因为多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同,所以m +1=3,2n +3-m =5,解得:m =2,n =2;(2)按x 的降幂排列为-3x 4+x 3y -3x 2y 3-1.11.(2021·长春期末)已知下面5个式子:①x 2-x +1,②m 2n +mn -1,③x 4+1x+2,④5-x 2,⑤-x 2. 回答下列问题:(1)上面5个式子中有________个多项式,次数最高的多项式为________(填序号),整式有________个.(2)选择2个二次多项式,并进行加法运算.【解析】(1)上面5个式子中有3个多项式,分别是:①②④, 次数最高的多项式为②, 整式有4个,分别是①②④⑤. 答案:3 ② 4(2)选择2个二次多项式:①+④=-x +6.(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的多项式. (1)当m ,n 满足什么条件时,该多项式是关于x 的二次多项式; (2)当m ,n 满足什么条件时,该多项式是关于x 的三次二项式.【解析】(1)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的二次多项式, 所以3m -4=0,2n -3≠0,解得m =43 ,n ≠32 .(2)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的三次二项式, 所以3m -4≠0,2n -3=0,2m +5n =0, 解得n =1.5,m =-3.75.第26课时2.2 整式的加减(1)【合并同类项】1.所含字母相同,并且相同字母的__指数__也相同的项叫同类项.所有的常数项都是同类项.2.把多项式中的同类项合并成一项,叫做__合并同类项__.3.合并同类项后,所得项的系数是合并前各同类项的系数的__和__,且字母连同它的指数__不变__.下列各组中属于同类项的是( D ) A .2a 与2a 2 B .x 2y 3z 与2x 2y 3 C .2x 2与2y 2 D .-52 yx 2与5x 2y下列各组式子中,是同类项的是( B ) A .3x 2y 与-3xy 2 B .3xy 与-2yx C .2x 与2x 3 D .5xy 与5yz(2020·湘潭中考)已知2x n +1y 3与13 x 4y 3是同类项,则n 的值是( B ) A .2 B .3 C .4 D .5(1)若5a 2x -3b 与-3a 5b 4y +5是同类项,则x =__4__,y =__-1__. (2)写出-12 xy 3的一个同类项:xy 3(答案不唯一).下列各式合并同类项结果正确的是( B ) A .3x 3-x 3=3 B .3a 2-a 2=2a 2 C .3a 2-a 2=a D .3x 2+5x 3=8x 5化简:(1)3x 2+x 2-3x 2=__x 2__; (2)2a 2b -3a 2b =__-a 2b __.已知-3x m y 与-5y n x 3是同类项,则m =__3__,n =__1__.1.下面是小明同学做的四道题:①3m +2m =5m ;②5x -4x =1;③-p 2-2p 2=-3p 2;④3+x =3x . 他做正确了( B )A .1道B .2道C .3道D .4道2.(2020·黔西南州中考)若7a x b 2与-a 3b y 的和为单项式,则y x =__8__.1.在下列各组式子中,不是同类项的一组是( B ) A .2,-5B .-0.5xy 2, 3x 2yC .-3t ,200πtD .ab 2,-b 2 a2.把2x 2-5x +x 2+4x +3x 2合并同类项后,所得的多项式是( A ) A .二次二项式 B .二次三项式 C .一次二项式 D. 三次二项式3.把(x +y )看成整体,将(x +y )+2(x +y )-4(x +y )合并同类项得( B ) A. x +yB. -(x +y )C. -x +yD. x -y4.(2020·天津中考)计算x +7x -5x 的结果等于__3x __.5.(2020·广东中考)如果单项式3x m y 与-5x 3y n 是同类项,那么m +n =__4__. 6.求k 为多少时,代数式2x 2-kxy -3y 2+13 xy -8中不含xy 项.【解析】k =137.先化简,再求值:7x 2-3x 2-2x -2x 2+5+6x ,其中x =-2. 【解析】原式=2x 2+4x +5, 当x =-2时,原式=8-8+5=5.8.已知-2a m bc 2与4a 3b n c 2是同类项,求多项式3m 2n -2mn 2-m 2n +mn 2的值. 【解析】由同类项定义得m =3,n =1, 3m 2n -2mn 2-m 2n +mn 2=⎝⎛⎭⎫3-1 m 2n +⎝⎛⎭⎫-2+1 mn 2=2m 2n -mn 2,当m =3,n =1时,原式=2×32×1-3×12 =18-3=15.对于多项式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题是:当k为何值时,多项式中不含xy项,第二个问题是:在第一问的前提下,如果x=2,y=-1,多项式的值是多少?(1)王明同学很快就完成了第一个问题,也请你把你的解答写在下面吧.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,可是他得到的最后结果却是正确的,你知道这是为什么吗?【解析】(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy.所以只要7-k=0,这个多项式就不含xy项.即k=7时,多项式中不含xy项.(2)因为在第一问的前提下原多项式为3x2+8y2.当x=2,y=-1时,原式=3x2+8y2=3×22+8×(-1)2=12+8=20.当x=2,y=1时,原式=3x2+8y2=3×22+8×12=12+8=20.所以马小虎的最后结果是正确的.第27课时2.2整式的加减(2)【去括号】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__相同__;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__相反__.下列去括号正确的是(B)A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+cD.-(a-b-c)=-a+b-c(2019·黄石中考)化简13(9x-3)-2(x+1)的结果是(D)A.2x-2 B.x+1 C.5x+3 D.x-3化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b). 【解析】(1)原式=13a+b;(2)原式=5a+3b-3a2.化简:(1)m -(5m -3n )+2(n -m ); (2)3a 2-[2a 2-(2ab -a 2)+4ab ].【解析】(1)原式=m -5m +3n +2n -2m =-6m +5n ; (2)原式=3a 2-[2a 2-2ab +a 2+4ab ] =3a 2-2a 2+2ab -a 2-4ab =-2ab .(1)a +b -c =a +(__b -c __); (2)a -b -c =a -(__b +c __); (3)-(x +y )=(__-x -y __).(1)-a +b +c =-(__a -b __)+c; (2)-a +b +c -d =-(__a -b __)+c -d ; (3)-(x -y )=(__-x +y __).先化简,再求值:2(3x 2-y )-(x 2+y ),其中x =-1,y =2. 【解析】原式=5x 2-3y ,当x =-1,y =2时,原式=5-6=-1.2a +[a 2-(3a 2+2a -1)],其中a =12 .【解析】原式=2a +[a 2-3a 2-2a +1]=-2a 2+1, 当a =12 时,原式=-12 +1=12 .1.下列计算中,正确的是(C)A.-2(a+b)=-2a+bB.-2(a+b)=-2a-b2C.-2(a+b)=-2a-2bD.-2(a+b)=-2a+2b2.把a-2(b-c)去括号正确的是(D)A.a-2b-c B.a-2b-2cC.a+2b-2c D.a-2b+2c3.不改变多项式3b3-2ab2+4a2b-a3的值,把后三项放在前面是“-”号的括号中,以下正确的是(D)A.3b3-(2ab2+4a2b-a3)B.3b3-(2ab2+4a2b+a3)C.3b3-(-2ab2+4a2b-a3)D.3b3-(2ab2-4a2b+a3)4.化简x-y-(x-y) 的最后结果是(B)A.2x B.0 C.-2y D.2x-2y5.-a+b-c的相反数是(B)A.a-b-c B.a-b+cC.a+b-c D.a+b+c6.化简下列各式:(1)3(2a+b);(2) -2(m+2n);(3)3(2xy-y)-2xy;(4)(-3a+5b)-(-5a+7b);(5)2(6a-10b)+(-4a+5b);(6)(3x+5y)-3(2x-3y).【解析】(1)原式=6a+3b;(2)原式=-2m-4n;(3)原式=4xy-3y;(4)原式=2a-2b;(5)原式=8a-15b;(6)原式=-3x+14y.7.当k为何值时,多项式2(2x2-3xy-2y2)-(2x2+2kxy+y2)中不含xy项?【解析】原式=4x2-6xy-4y2-2x2-2kxy-y2=2x2-5y2+(-6-2k)xy,因为不含xy项,所以-6-2k=0,k=-3.阅读下面材料:计算:1+2+3+4+…+99+100如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5 050 根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)【解析】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m +…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m) =101a+101m×50=101a+5 050m.第28课时2.2整式的加减(3)【求代数式的值】1.整式加减的实质是合并同类项,若有括号,就要先用去括号法则去掉括号,然后再合并同类项.2.应用整式加减解决实际问题,就是把实际问题中的数量关系数学化,把题目中的量用整式表示出来,然后进行整式的加减运算.x-y的相反数是__y-x__,x+y的相反数是__-x-y__.如果a-b=12,那么-3(b-a)的值是(C)A.-35B.23C.32D.16一个整式减去a2-2b2等于a2+2b2,则这个整式是(C)A.2b2B.-2b2C.2a2D.-2a2一个多项式与x2-2x+1的和是3x-2,则这个多项式为(B)A.x2-5x+3 B.-x2+5x-3C.-x2+x-1 D.x2-5x-13某位同学做一道题:已知两个多项式A,B,求A-B的值,他误将A-B看成A+B,求得的结果是3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求A-B的正确答案.【解析】(1)由已知,A+B=3x2-3x+5,则A=3x2-3x+5-(x2-x-1)=3x2-3x+5-x2+x+1=2x2-2x+6;(2)A-B=2x2-2x+6-(x2-x-1)=2x2-2x+6-x2+x+1=x2-x+7.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支,买这些笔记本和圆珠笔,小红和小明共花费多少钱?【解析】根据题意列得:(3x+2y)+(4x+3y)=7x+5y,则小红与小明一共花费(7x+5y)元.1.(2020·无锡中考)若x+y=2,z-y=-3,则x+z的值等于(C)A.5 B.1 C.-1 D.-52.化简下列各式:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)8m2-[4m2-2m-(2m2-5m)];(4) (8xy-x2+y2)-3(-x2+y2+5xy).【解析】(1)原式=7x+y;(2)原式=4a-2b;(3)原式=6m 2-3m ;(4)原式=8xy -x 2+y 2+3x 2-3y 2-15xy =2x 2-2y 2-7xy . 3.先化简,再求值.3a 2+(4a 2-2a -1)-2(3a 2-a +1),其中a =-12 . 【解析】原式=a 2-3 当a =-12 时,原式=-114 .4.(2021·武汉期末)先化简,再求值: 3a 2b -2ab 2-2⎝ ⎛⎭⎪⎫ab -32a 2b +ab +3ab 2,其中a =-3,b =-2.【解析】原式=3a 2b -2ab 2-2ab +3a 2b +ab +3ab 2 =6a 2b +ab 2-ab ;当a =-3,b =-2时,原式=6×9×(-2)+(-3)×4-6=-108-12-6=-126. 5.若A =9a 3b 2-5b 3-1,B =-7a 3b 2+8b 3+2. 求(A +2B )-(B -A )的值. 【解析】(A +2B )-(B -A ) =A +2B -B +A =2A +B . 因为A =9a 3b 2-5b 3-1, B =-7a 3b 2+8b 3+2,所以原式=2(9a 3b 2-5b 3-1)+(-7a 3b 2+8b 3+2) =18a 3b 2-10b 3-2-7a 3b 2+8b 3+2 =11a 3b 2-2b 3.6.(2021·泉州期末)化简求值:(1)化简:(3a2-b2)-3(a2-2b2);(2)先化简,再求值:2(a2b+ab)-3(a2b-1)-2ab-4,其中a=2019,b=12 019. 【解析】(1)原式=3a2-b2-3a2+6b2=5b2;(2)原式=2a2b+2ab-3a2b+3-2ab-4=-a2b-1,当a=2019,b=12 019时,原式=-20192×12 019-1=-2 019-1=-2 020.7.做大小两个长方体纸盒,尺寸如下(单位:厘米).(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?长宽高小纸盒 a b c大纸盒 1.5a 2b 2c【解析】(1)2(1.5a×2b+2b×2c+1.5a×2c)+2(ab+bc+ac)=6ab+8bc+6ac+2ab +2bc+2ac=8ab+10bc+8ac(平方厘米).答:做这两个纸盒共用料(8ab+10bc+8ac)平方厘米.(2)2 (1.5a×2b+2b×2c+1.5a×2c)-2(ab+bc+ac)=6ab+8bc+6ac-(2ab+2bc+2ac)=4ab+6bc+4ac(平方厘米).答:做大纸盒比做小纸盒多用料(4ab+6bc+4ac)平方厘米.已知a+b=6,ab=3,求(5ab-4a-7b)-(6a+3ab)-(4ab+3b)的值.【解析】原式=5ab-4a-7b-6a-3ab-4ab-3b=-2ab-10a-10b=-2ab-10(a+b).当a+b=6,ab=3时,原式=-6-60=-66.第29课时2.2 整式的加减(4)【综合练习】1.计算:(1)(2x -2)-(3x +5); (2)-(2a 2-2a)+3(3a -a 2); (3)2(4x 2y -5xy 2)-3(x 2y -4xy 2); (4)3(2x 2-2x -1)-2(2x 2-x -7); (5)2a -[-3b -3(3a -b)];(6)⎝ ⎛⎭⎪⎫13a 3-2a -6 -12 ⎝ ⎛⎭⎪⎫12a 3-a -7 . 【解析】(1)原式=-x -7; (2)原式=-5a 2+11a ; (3)原式=5x 2y +2xy 2; (4)原式=2x 2-4x +11; (5)原式=11a ;(6)原式=112 a 3-32 a -52 .2.(2021·西安期末)先化简,再求值:2(x 2y +xy 2)-2(x 2y -x)-2xy 2-2y ,其中x =2,y =-2. 【解析】原式=2x 2y +2xy 2-2x 2y +2x -2xy 2-2y =2x -2y ,当x =2,y =-2时,原式=2×2-2×(-2)=4+4=8.3.三个队植树,第一队植树a棵,第二队植的树比第一队的2倍还多8棵,第三队植的树比第二队的一半少6棵,问三队共植树多少棵?并求当a=100时,三个队共植树的棵数.【解析】因为第一队植树a棵,第二队植的树比第一队的2倍还多8棵,所以第二队植的树的棵数为2a+8,第三队植的树的棵数为(2a+8)÷2-6=a-2.所以三个队共植树的棵数=a+(2a+8)+(a-2)=4a+6,当a=100时,4a+6=406(棵).答:三个队共植树(4a+6)棵,当a=100时,三个队共植树406棵.4.小船在静水中的速度是50千米/时,水流速度是a千米/时,顺水航行4小时的行程与逆水航行3小时的行程相差多少千米?【解析】顺水速度为(50+a)千米/时,逆水速度为(50-a)千米/时,故顺水航行4小时比逆水航行3小时多:4(50+a)-3(50-a)=(7a+50)千米.5.已知(2x2+ax-y+b)-(2bx2-3x+5y-1)的值与字母x的取值无关,求3(a2-ab-b2)-(4b2+ab+b2)的值.【解析】原式=2x2+ax-y+b-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+1+b,因为与字母x的取值无关,所以b=1,a=-3,3(a2-ab-b2)-(4b2+ab+b2)=3a2-3ab-3b2-4b2-ab-b2=3a2-4ab-8b2,将b=1,a=-3代入,得3a2-4ab-8b2=3×(-3)2-4×(-3)×1-8×12=31.6.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12 还多1岁,求这三名同学的年龄之和是多少. 【解析】因为小红的年龄比小明的年龄的2倍少4岁, 所以小红的年龄为(2m -4)岁.又因为小华的年龄比小红的年龄的12 还多1岁, 所以小华的年龄为12 (2m -4)+1(岁), 则这三名同学的年龄的和为m +(2m -4)+⎣⎢⎡⎦⎥⎤12(2m -4)+1 =m +2m -4+[m -2+1]=4m -5. 答:这三名同学的年龄的和是(4m -5)岁. 7.已知□,★,△分别代表1~9中的三个自然数.(1)若□+□+□=15,★+★+★=12,△+△+△=18,那么□+★+△=________;(2)如果用★△表示一个两位数,将它的个位和十位上的数字交换后得到一个新的两位数△★,若★△与△★的和恰好为某自然数的平方,则该自然数是________;和是________;(3)①如果在一个两位数★△前插入一个数□后得到一个三位数□★△,设★△代表的两位数为x ,□代表的数为y ,则三位数□★△用含x ,y 的式子可表示为________;②设a 表示一个两位数,b 表示一个三位数,把a 放在b 的左边组成一个五位数m ,再把b 放在a 的左边,组成一个新五位数n.试探索:m -n 能否被9整除?并说明你的理由.【解析】(1)若□+□+□=15,★+★+★=12,△+△+△=18,则□=5,★=4,△=6,则□+★+△=15.答案:15(2)根据题意,得★△+△★=(★+△)×10+(△+★)=(★+△)×11由于★△与△★之和恰为某自然数的平方,故★+△=11,★△+△★=121.答案:11121(3)①根据题意,得三位数□★△用含x,y的式子可表示为100y+x.答案:100y+x②m-n能被9整除.理由如下:根据题意,得m=1 000a+b,n=100b+a,所以m-n=9(111a-11b)所以m-n能被9整除.第30课时单元复习课——整式的加减①__次数__ ②__同类项__ ③__括号__ ④__合并__用字母表示数1.(2018·常州中考)已知苹果每千克m 元,则2千克苹果共需要的费用是( D ) A .(m -2)元 B .(m +2)元 C .m2 元D .2m 元2.(2018·大庆中考)某商品打七折后价格为a 元,则原价为( B ) A .a 元B .107 a 元 C .30%a 元D .710 a 元【特别提醒】用字母表示数的三个“注意事项”1.注意把握问题中的关键词,如,多、少、倍、分、折等. 2.注意问题中的字母所表示的含义.3.在同一个问题中,相同字母所表示的数是同一个数,不同的数应该用不同的字母来表示.求代数式的值1.(2017·海南中考)已知a =-2,则代数式a +1的值为( C ) A .-3 B .-2 C .-1 D .12.(2017·重庆中考A 卷)若x =-13 ,y =4,则代数式3x +y -3的值为( B ) A .-6 B .0 C .2D .63.(2018·徐州中考)若2m +n =4,则代数式6-2m -n 的值为__2__. 4.(2018·岳阳中考)已知a 2+2a =1,则3(a 2+2a )+2的值为__5__. 【特别提醒】代数式求值的三个“注意事项” 1.求代数式的值时,一定不要改变原来的运算. 2.在代入数值之前,必须把代数式进行化简. 3.在求代数式的值时,经常用到整体思想.整式的有关概念1.(2018·淄博中考)若单项式a m -1b 2与12 a 2b n 的和仍是单项式,则n m 的值 是( C )A .3B .6C .8D .92.(2017·西宁中考)13 x 2y 是__3__次单项式.3.(2017·玉林崇左中考)若4a 2b 2n +1与a m b 3是同类项,则m +n =__3__. 【特别提醒】理解同类项的两“相同”和两“无关”两相同:一是所含字母相同,二是相同字母的指数也相同. 两无关:与字母的顺序无关,与系数无关.整式的加减1.(2017·无锡中考)若a -b =2,b -c =-3,则a -c 等于( B ) A .1 B .-1 C .5 D .-52.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( A )A .3a +2bB .3a +4bC .6a +2bD .6a +4b3.代数式2a 2+b -2c 与-4b +c -a 2的和为a 2-3b -c . 4.下面是徐颖化简整式的过程,仔细阅读后解答所提出的问题. 解:x (x +2y )-(x +1)2+2x=x2+2xy-x2+2x+1+2x第一步=2xy+4x+1第二步(1)徐颖的化简过程从第________步开始出现错误;(2)对此整式进行化简.【解析】(1)括号前面是负号,去掉括号应变号,故第一步出错.答案:一(2)x(x+2y)-(x+1)2+2x=x2+2xy-x2-2x-1+2x=2xy-1.【特别提醒】整式的加减的两个注意事项1.准确熟练应用去括号法则和合并同类项法则.2.如果括号外面有数字,在去括号时,可以分为两个步骤:第一,利用乘法分配律把数字与括号内各项相乘,第二,用去括号法则去掉括号.规律探索1.(2018·烟台中考)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第○n个图形中有120朵玫瑰花,则n的值为(C)A.28 B.29 C.30 D.312.如图表示的是用火柴棒搭成的图形,第一个图形用了5根火柴,第二个图形用了8根火柴,…,则用281根火柴棒搭成了第________个图形.(C)A.93 B.94C.80 D.813.(2017·娄底中考)刘莎同学用火柴棒依图的规律摆成六边形图案,用10 086根火柴棒摆出的图案应该是第__2__017__个.【特别提醒】解决探索规律题的一般步骤1.利用已知条件猜测隐含的规律.2.对猜测的规律进行验证.3.依次进行猜测——验证……猜测——验证,直到验证成功为止.。
牢记方法规则:1.判断绝对值里面量的正负2. 去掉绝对值产生括号3. 去掉括号合并同类项第 1 天1.在数轴上有示a、b、c 三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.2.己知有理数a,b,c 在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.3.有理数a、b、c 在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.4.有理数a,b,c 在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.5.有理数a、b、c 在数轴上的位置如图所示,化简|a﹣c|﹣|c ﹣2b|+|a+c|﹣|a+b|.第 2 天6.若有理数a,b,c 在数轴上的位置如图所示,化简|a+c |+|2a+b|﹣|c﹣b|.7.有理数a、b、c 的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.8.有理数a、b、c 在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.9.有理数a、b、c 在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.10.己知有理数a,b,c 在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.第 3 天11.有理数a、b、c 在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.12.数a,b,c 在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.13.己知有理数a,b,c 在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b |.14.己知有理数a,b,c 在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.15.己知有理数a,b,c 在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.第 4 天16.有理数a、b、c 在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.17.己知有理数a、b、c 在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|18.己知有理数a,b,c 在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.19.有理数a、b、c 在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.20.有理数a,b,c 在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.参考答案1.在数轴上有示a、b、c 三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c﹣b|.解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.2.己知有理数a,b,c 在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.解:由图可得,c<b<0<a,则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.3.有理数a、b、c 在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c)=b﹣a﹣2a﹣2c﹣b+2c=﹣3a.4.有理数a,b,c 在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.解:根据题意得:c<a<0<b,且|b|<|a|<|c |,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.5.有理数a、b、c 在数轴上的位置如图所示,化简|a﹣c|﹣|c ﹣2b|+|a+c|﹣|a+b|.解:∵由图可知,c<a<b,∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)=a﹣c﹣2b+c﹣a﹣c﹣a﹣b=﹣a﹣3b﹣c.6.若有理数a,b,c 在数轴上的位置如图所示,化简|a+c |+|2a+b|﹣|c﹣b|.解:根据图示,可得c<b<0<a,且a<|c|,∴a+c<0,2a+b>0,c﹣b<0,∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b+c﹣b=a.7.有理数a、b、c 的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)=b.8.有理数a、b、c 在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴ |b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.9.有理数a、b、c 在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.解:根据数轴上点的位置得:﹣1<c<0<a<b,∴c﹣1<0,a﹣c>0,a﹣b<0,则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.10.己知有理数a,b,c 在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,∴a﹣c<0,a+b>0,b﹣c<0,2b<0原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)=c﹣a﹣a﹣b﹣c+b﹣2b=﹣2a﹣2b.11.有理数a、b、c 在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.解:∵由数轴上a、b、c 的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b=﹣c.12.数a,b,c 在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.13.己知有理数a,b,c 在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b |.解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.14.己知有理数a,b,c 在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.解:∵由图可知,c<a<0<b,∴2b﹣c>0,c-a<0,a﹣b<0,∴原式=2b﹣c+2(c-a)+3(b﹣a)=2b﹣c+2c﹣2a+3b-3a=-5a+b+c.15.己知有理数a,b,c 在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b+c|.解:∵由数轴上a、b、c 的位置可知,a<b<0<c,∴a﹣b<0,c﹣a>0,b+c>0,∴原式=﹣a﹣[﹣(a﹣b)] +(c﹣a)+(b+c)=﹣a+a﹣b+c﹣a+b+c=﹣a+2c.16.有理数a、b、c 在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.17.己知有理数a、b、c 在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b﹣c|解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则|2a﹣b|+3|c﹣a|﹣2|b﹣c|,=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),=﹣2a+b+3c﹣3a+2b﹣2c,=﹣5a+3b+c.18.己知有理数a,b,c 在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,则|a﹣b|+3|c﹣a|﹣|b﹣c|=b﹣a+3(c﹣a)﹣(c﹣b)=b﹣a+3c﹣3a﹣c+b=2b﹣4a+2c.19.有理数a、b、c 在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c |,=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,=﹣3a﹣c+b.20.有理数a,b,c 在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|.解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.。
培优强化训练101、(10分)在研究运算(+8)-(+10)时,一学生进行了如下探索:因为(-2)+(+10)=+8,所以(+8)-(+10)=-2;另一方面(+8)+(-10)=-2,于是(+8)-(+10)=(+8)+(-10),由此概括出有理数的一个运算法则,这个法则是 ,用字母可以表示成__________.2、(10分)小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉刷面积是150m 2,最后结算时,有以下几种方案:方案一:按工计算,每个工30元(1个人干一天是1个工); 方案二:按涂料费用算,涂料费用的30%作为工钱; 方案三:按粉刷面积算,每平方米付工钱12元; 请你帮小红家出主意,选择方案_____付钱最合算.3、(10分)如图,是一个正方体纸盒的表面展开图,请在其余三个正方形内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数.4、(10分)两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是( ) A. 相等 B. 互补 C. 互余 D. 无法确定5、(10分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为 ( )6、(16分)我国宋朝数学家杨辉在他的著作《详解九章 算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n 为非负整数)展开式的项数及各项系数的有关规律.例如:0()1a b +=,它只有一项,系数为1;1()a b a b +=+,它有两项,系数分别为1,1,系数和为2;222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;……根据以上规律......,解答下列问题: 21-51 1 1 1 1 1 12 3 3 …1 2 1 2 4 3 第5题A .B . C.(1)4()a b +展开式共有 项,系数分别为 ; (2)()n a b +展开式共有 项,系数和...为 .7、计算:(每小题10分,共20分)(1) 1914726235|263131959|-+- (2) ⎥⎦⎤⎢⎣⎡-+-⨯-⨯-522)2()32(3238、(14分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50k m 的记为“0”.第一天 第二天 第三天 第四天 第五天 第六天 第七天 路程(km )-8-11-14-16+41+8(1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?(2)若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?数学培优强化训练(十)(答案)1、(10分)在研究运算(+8)-(+10)时,一学生进行了如下探索:因为(-2)+(+10)=+8,所以(+8)-(+10)=-2;另一方面(+8)+(-10)=-2,于是(+8)-(+10)=(+8)+(-10),由此概括出有理数的一个运算法则,这个法则是 ,用字母可以表示成__________. 1、有理数减法法则 a -b=a+(-b)2、(10分)小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉刷面积是150m 2,最后结算时,有以下几种方案:方案一:按工计算,每个工30元(1个人干一天是1个工); 方案二:按涂料费用算,涂料费用的30%作为工钱; 方案三:按粉刷面积算,每平方米付工钱12元; 请你帮小红家出主意,选择方案_____付钱最合算. 2、 方案二 3、(10分)如图,是一个正方体纸盒的表面展开图,请在其余三个正方形内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数.3、第二行依次填0和5 ,第三行填-0.54、(10分)两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是( B ) A. 相等 B. 互补 C. 互余 D. 无法确定5、(10分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为(C )6、(16分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b)n(n 为非负整数)展开式的项数及各项系数的有关规律. 例如: 0()1a b +=,它只有一项,系数为1;1()a b a b +=+,它有两项,系数分别为1,1,系数和为2;222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;…… 根据以上规律......,解答下列问题: (1)4()a b +展开式共有 项,系数分别为 ; (2)()n a b +展开式共有 项,系数和...为 . 21 -5 0121 2 4 3第18A . B . C.11 1 1 1 1 123 3……4. (1)5;1,4,6,4,1; (2)1n +,2n.7、计算:(每小题10分,共20分)(1) 1914726235|263131959|-+- (2) ⎥⎦⎤⎢⎣⎡-+-⨯-⨯-522)2()32(323 =21914726235195926313=-+- =-23⨯[])32(4-+-=548、(14分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”.第一天 第二天 第三天 第四天 第五天 第六天 第七天 路程(km )-8-11-14-16+41+8(1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?(2)若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?5. (1)1500米;(2)6825.6元如何学好初中数学经典介绍浅谈如何学好初中数学数学是必考科目之一,故从初一开始就要认真地学习数学。
培优强化训练91.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.2.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?3.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?4.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG ” 改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的52.问: (1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?5.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案: 方案一:将蔬菜全部进行粗加工; 方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成. 你认为哪种方案获利最多?为什么?数学培优强化训练(九)答案1、 解:(1)分三种情况讨论:方案一:甲乙组合:设买甲种电视机x 台,则买乙种电视机(50-x )台,由题意得25502590000)50(21001500=-==-+x x x x方案二:乙丙组合:设买乙种电视机y 台,则买丙种电视机(50-y )台,由题意得)(5.8790000)50(25002100舍去不合题意,y y y ==-+方案三:甲丙组合:设买甲种电视机z 台,则买丙种电视机(50-z )台,由题意得15503590000)50(25001500=-==-+z z z z综上可以买甲乙两种电视机各25台或甲种电视机35台和丙种电视机15台. (2)方案一:)(100002525025150元=⨯+⨯方案三:)(90001525035150元=⨯+⨯为了获得最大利润应该买进甲乙两种型号的电视机各25台.(3)设买甲种型号的电视机x 台,甲种型号的电视机y 台,甲种型号的电视机(50-x-y)台,由题意得y x y x y x y x 523535041090000)50(250021001500-==+=--++易知y 为5的倍数 0,25,253,27,206,29,159,31,1012,33,515,35,0==================z x y z x y z x y z x y z x y z x y因此有以上六种符合条件的方案.2、 解:设每小时雨水增加量为a ,每台水泵每小时的排水量为b ,则根据积水量相同得a b ab a b 473321010=-⨯=-设用三台水泵需要x 小时将积水排尽,由题意得173010471047310103=-⨯=-⨯-=-x a a ax ax ab ax bx 答:用三台水泵需要1730小时将积水排尽. 3、 解:设人前进的速度为am/min ,公共汽车的速度为xm/min ,由题意得)(8.42501200503002501200)300(66120066300120044分===-===--=--==+t x a x x x a x xa x a答:人前进的速度为50m/min ,公共汽车的速度为250m/min ,公共汽车每隔4.8分发一班.4、 解:(1)出租车公司每次改装x 辆出租车,改装后每辆的燃料费为y 元,由题意得,%40804880)(4840220)2100(8052)100(802032)2100(80522)100(80203=-===-⨯=-⨯⨯⎪⎩⎪⎨⎧-⨯=-⨯=元用整体代换得y x x x x x xy x xy (2)设全部改装需要z 天收回成本,由题意得 1251004000100)4880(=⨯=⨯-z z 答:公司共改装了40辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%.全部改装需要125天收回成本.5、解:方案一:)(1400001000140元=⨯方案二:)(725000)615140(10007500615元=⨯-+⨯⨯方案三:设这批蔬菜中有 x 吨进行精加工,则有(140-x )吨进行粗加工,由题意得)(810000450080750060)(801406015161406元吨=⨯+⨯=-==-+x x x x 答:由此可以看出,方案三获利最多.。
强化训练10
1、(10分)在研究运算(+8)-(+10)时,一学生进行了如下探索:因为(-2)+(+10)=+8,所以(+8)-(+10)=-2;另一方面(+8)+(-10)=-2,于是(+8)-(+10)=(+8)+(-10),由此概括出有理数的一个运算法则,这个法则是 ,用字母可以表示成__________.
2、(10分)小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉刷面积是150m 2
,最后结算时,有以下几种方案: 方案一:按工计算,每个工30元(1个人干一天是1个工); 方案二:按涂料费用算,涂料费用的30%作为工钱; 方案三:按粉刷面积算,每平方米付工钱12元; 请你帮小红家出主意,选择方案_____付钱最合算.
3、(10分)如图,是一个正方体纸盒的表面展开图,请在其余三个正方形 内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数.
4、(10分)两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是( ) A. 相等 B. 互补 C. 互余 D. 无法确定
5、(10分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为 ( )
2
1
-5
第5题
A .
B . C. D.
6、(16分)我国宋朝数学家杨辉在他的著作《详解九章
算法》中提出“杨辉三角”(如下图),此图揭示了 (a+b)n
(n 为非负整数)展开式的项数及各项系数的 有关规律.例如:
0()1a b +=,它只有一项,系数为1;
1()a b a b +=+,它有两项,系数分别为1,1,系数和为2;
222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;
33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;……
根据以上规律......
,解答下列问题: (1)4
()a b +展开式共有 项,系数分别为 ; (2)()n a b +展开式共有 项,系数和...为 .
7、计算:(每小题10分,共20分)
(1) 19
14
726235|263131959
|-+- (2) ⎥⎦
⎤
⎢⎣⎡-+-⨯-⨯-
522)2()32(323
8、(14分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km 的记为“+”,不足50km的记为“-”,刚好50k m的记为“0”.
(1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?
(2)若每行驶100km需用汽油8L,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?
数学培优强化训练(十)(答案)
1、(10分)在研究运算(+8)-(+10)时,一学生进行了如下探索:因为(-2)+(+10)=+8,所以(+8)-(+10)=-2;另一方面(+8)+(-10)=-2,于是(+8)-(+10)=(+8)+(-10),由此概括出有理数的一个运算法则,这个法则是 ,用字母可以表示成__________.
1、有理数减法法则 a -b=a+(-b)
2、(10分)小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉刷面积是150m 2
,最后结算时,有以下几种方案: 方案一:按工计算,每个工30元(1个人干一天是1个工); 方案二:按涂料费用算,涂料费用的30%作为工钱; 方案三:按粉刷面积算,每平方米付工钱12元; 请你帮小红家出主意,选择方案_____付钱最合算. 2、 方案二
3、(10分)如图,是一个正方体纸盒的表面展开图,请在其余三个正方形内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数. 3、第二行依次填0和5 ,第三行填-0.5
4、(10分)两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是( B ) A. 相等 B. 互补 C. 互余 D. 无法确定
2
1
-5
5、(10分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为( C )
6、(16分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了 (a+b)n
(n 为非
负整数)展开式的项数及各项系数的有关规律.
例如:
0()1a b +=,它只有一项,系数为1;
1()a b a b +=+,它有两项,系数分别为1,1,系数和为2;
222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;
33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;……
根据以上规律......
,解答下列问题: (1)4
()a b +展开式共有 项,系数分别为 ; (2)()n
a b +展开式共有 项,系数和...为 . 4. (1)5;1,4,6,4,1; (2)1n +,2n
.
第18题
A .
B . C. D.
7、计算:(每小题10分,共20分)
(1) 19
14
726235|263131959
|-+- (2) ⎥⎦
⎤
⎢⎣⎡-+-⨯-⨯-
522)2()32(323
=54
8、(14分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”.
(1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?
(2)若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?
5. (1)1500米;(2)6825.6元。