高电压技术第2章 液体和固体电介质的绝缘特性
- 格式:ppt
- 大小:1.43 MB
- 文档页数:86
1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。
这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。
其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至d e α个。
假设每次电离撞出一个正离子,故电极空间共有(d e α-1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(d e α-1)个正离子在到达阴极表面时可撞出γ(d e α-1)个新电子,则(d e α-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(d eα-1)=1或γde α=1。
1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。
随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。
当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。
于是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而略为加强了外部空间的电场。
这样,棒极附近的电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。
(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,造成电子崩。
当电子崩中的电子离开强电场区后,电子就不再能引起电离,而以越来越慢的速度向阳极运动。
重庆大学清华大学高电压技术习题高电压技术课程习题第一章气体的绝缘强度1-1空气主要由氧和氮组成,其中氧分子(O2)的电离电位较低,为12.5V。
(1)若由电子碰撞使其电离,求电子的最小速度;(2)若由光子碰撞使其电离,求光子的最大波长,它属于哪种性质的射线;(3)若由气体分子自身的平均动能产生热电离,求气体的最低温度。
1-2气体放电的汤森德机理与流注机理主要的区别在哪里?它们各自的使用范围如何?1-3长气隙火花放电与短气隙火花放电的本质区别在哪里?形成先导过程的条件是什么?为什么长气隙击穿的平均场强远小于短气隙的?1-4正先导过程与负先导过程的发展机理有何区别?1-5雷电的破坏性是由哪几种效应造成的?各种效应与雷电的哪些参数有关?雷电的后续分量与第一分量在发展机理上和参数上有哪些不同?1-6为什么SF6气体绝缘大多只在较均匀的电场下应用?最经济适宜的压强范围是多少?1-7盘形悬式绝缘子在使用中的优缺点是什么?1-8超高压输电线路绝缘子上的保护金具有哪些功用?设计保护金具时应考虑什么问题?第二章液体、固体介质的绝缘强度2-1试比较电介质中各种极化的性质和特点?2-2极性液体和极性固体电介质的相对介电常数与温度和电压频率的关系如何?为什么2-3电介质导电与金属导电的本质区别为什么?2-4正弦交变电场作用下,电介质的等效电路是什么?为什么测量高压电气设备的绝缘电阻时,需要按标准规范的时间下录取,并同时记录温度?2-5某些电容量较大的设备经直流高电压试验后,其接地放电时间要求长达5~10min,为什么?2-6试了解各国标准试油杯的结构,并比较和评价。
2-7高压电气设备在运行中发生绝缘破坏,从而引起跳闸或爆炸事故是很多的,请注意观察和分析原因。
第三章电气设备绝缘实验技术3-1总结比较各种检查性试验方法的功效(包括能检测出绝缘缺陷的种类、检测灵敏度、抗干扰能力等)。
3-2总结进行各种检查性试验时应注意的事项。
高电压技术课后习题答案【篇一:高电压技术课后复习思考题答案】ss=txt>仅供参考第一章1.1、气体放电的汤逊理论与流注理论的主要区别在哪里?他们各自的适用范围如何?答:区别:①汤逊理论没有考虑到正离子对空间电场的畸变作用和光游离的影响②放电时间不同③阴极材料的性质在放电过程中所起的作用不同④放电形式不同范围:1.3、在不均匀电场中气体间隙放电的极性效应是什么?答:带电体为正极性时,电晕放电形成的电场削弱了带电体附近的电场,而增强了带电体远处的电场使击穿电压减小而电晕电压增大;带电体为负极性时,与正极性的相反,正负极性的带电体不同叫极性效应。
1.4、什么是电晕放电?它有何效应?试例举工程上所采用的各种防晕措施答:(1)在极不均匀场中,随着间隙上所加电压的升高,在高场强电极附近很小范围的电场足以使空气发生游离,而间隙中大部分曲域电场仍然很小。
在高场强电极附近很薄的一层空气中将具有自持放电条件,而放电仅局限在高场强电极周围很小范围内,整个间隙尚未被击穿。
这种放电现象称为电晕放电。
(2)引起能量损耗电磁干扰,产生臭氧、氮氧化物对气体中的固体介质及金属电极造成损伤或腐蚀(3)加大导线直径、使用分裂导线、光洁导线表面1.9、什么是气隙的伏秒特性?它是如何制作的?答:伏秒特性:工程上用气隙上出现的电压最大值与放电时间的关系来表征气隙在冲击电压下的击穿特性,称为气隙的伏秒特性。
制作方法:实验求得以间隙上曾经出现的电压峰值为纵坐标,以击穿时间为横坐标得伏秒特性上一点,升高电压击穿时间较少,电压甚高可以在波头击穿,此时又可记一点,当每级电压下只有一个击穿时间时,可绘出伏秒特性的一条曲线,但击穿时间具有分散性,所以得到的伏秒特性是以上下包络线为界的一个带状区域。
1.13、试小结各种提高气隙击穿电压的方法,并提出适用于何种条件?答:(1)改进电极形状,增大电极曲率半径,以改善电场分布,如变压器套管端部加球型屏蔽罩等;(2)空间电荷对原电场的畸变作用,可以利用放电本身所产生的空间电荷来调整和改善空间的电场分布;(3)极不均匀场中屏障的作用,在极不均匀的气隙中放入薄片固体绝缘材料;(4)提高气体压力可以大大减小电子的自由行程长度,从而削弱和抑制游离过程;(5)采用高真空可以减弱气隙中的碰撞游离过程;(6)高电气强度气体sf6的采用。
第二章液体和固体电介质的绝缘特性电子式极化:电介质中的带电质点在电场作用下沿电场方向作有限位移。
夹层式极化:由两层或多层不同材料组成的不均匀电介质,叫做夹层电介质。
电介质的电导:介质在电场作用下,使其内部联系较弱的带电粒子作有规律的运动形成电流,即泄漏电流.这种物理现象称为电导。
“吸收现象”:固体电介质在直流电压作用下,观察到电路中的电流从大到小随时间衰减,最终稳定于某一数值,称为“吸收现象”。
吸收电流:有损极化所对应的电流,即夹层极化和偶极子极化时的电流,它随时间而衰减。
泄漏电流:绝缘介质中少量离子定向移动所形成的电导电流,它不随时间而变化.绝缘电阻:介质的电阻R=U/I是随时间而变化的。
通常以到达稳定的泄漏电流的电阻作为介质的绝缘电阻。
介质损耗角正切tgδ衡量材料本身在电场损耗能量并转变为热能的一个宏观的物理参数称之为介质损耗角正切。
绝缘的老化:固体和液体介质在长期运行过程中会发生一些物理和化学变化,导致其机械和电气性能的劣化。
1、提高液体电介质击穿电压的措施(1)过滤(2)防潮(3)脱气(4)覆盖层(5)绝缘层(6)屏障2、2.固体电介质的击穿影响因素(1).电压作用时间(2).电场均匀程度与介质厚度(3).电压种类(4).电压作用的累积效应(5).受潮3、提高固体电介质击穿电压的措施(1).改进制造工艺:尽可能清除介质中的杂质,可以通过精选材料、改善工艺、真空干燥、加强浸渍等方法。
(2).改进绝缘设计:尽可能使电场均匀(3).改善运行条件:注意防潮、尘污,加强散热冷却4、电介质绝缘老化的原因(1)局部放电老化 (2)热老化 (3)机械力的作用 (4)环境的影响5、为什么用介质损耗角的正切tgδ来表示介损答:由于:(1).P值与试验电压U的高低等因素有关;(2).tgδ是与电压、频率、绝缘尺寸无关的量,而仅取决于电介质的损耗特性。
(3)tgδ可以用高压电桥等仪器直接测量.所以表征介损用介质损失角的正切tgδ来表示,而不是用有功损耗P来表示.第3章电气设备绝缘试验耐压试验(破坏性试验):试验所加电压等价于或高于设备运行中可能受到的各种电压.1、西林电桥测量时的两种接线正接线适用:体积小,重量轻反接线适用:体积大,重量大,外壳接地2、西林电桥测量时防止外界电磁场对电桥的干扰措施有哪些?(1)加设屏蔽(消除电容的影响) (2)采用移相电源(3)倒相法3、西林电桥测量时注意事项有哪些(1)电桥本体必须加以屏蔽(2)被试品和标准无损电容器连到电桥本体的引线也要使用屏蔽导线(3)电桥本体接地良好(4)反接法时,三根引线处于高压,必须悬空(5)能分开测的试品尽量分开测(6)应保持试品表面干燥(7)试品设备有绕阻时,应首尾短接起来试验变压器得特点电压等级比电力变压器更高、容量不大,仅单相;工作在电容性负荷下;允许发生短时短路;工作时间短;漏磁通较大;温度比较低、无散热要求;绝缘裕度小工频高电压的测试方法有哪些用静电电压表测量工频电压的有效值用球隙进行测量工频电压的幅值用电容分压器配用低压仪表用电压互感器测量.直流高压的获得有:半波整流回路,倍压整流回路,串接直流发生器。
高电压技术重要知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高电压技术各章知识点第一篇电介质的电气强度第1章气体的绝缘特性与介质的电气强度1、气体中带电质点产生的方式热电离、光电离、碰撞电离、表面电离2、气体中带电质点消失的方式流入电极、逸出气体空间、复合3、电子崩与汤逊理论电子崩的形成、汤逊理论的基本过程及适用范围4、巴申定律及其适用范围击穿电压与气体相对密度和极间距离乘积之间的关系。
两者乘积大于时,不再适用5、流注理论考虑了空间电荷对原有电场的影响和空间光电离的作用,适用两者乘积大于时的情况6、均匀电场与不均匀电场的划分以最大场强与平均场强之比来划分。
7、极不均匀电场中的电晕放电电晕放电的过程、起始场强、放电的极性效应8、冲击电压作用下气隙的击穿特性雷电和操作过电压波的波形冲击电压作用下的放电延时与伏秒特性50%击穿电压的概念9、电场形式对放电电压的影响均匀电场无极性效应、各类电压形式放电电压基本相同、分散性小极不均匀电场中极间距离为主要影响因素、极性效应明显。
10、电压波形对放电电压的影响电压波形对均匀和稍不均匀电场影响不大对极不均匀电场影响相当大完全对称的极不均匀场:棒棒间隙极大不对称的极不均匀场:棒板间隙11、气体的状态对放电电压的影响湿度、密度、海拔高度的影响12、气体的性质对放电电压的影响在间隙中加入高电强度气体,可大大提高击穿电压,主要指一些含卤族元素的强电负性气体,如SF613、提高气体放电电压的措施电极形状的改进空间电荷对原电场的畸变作用极不均匀场中屏障的采用提高气体压力的作用高真空高电气强度气体SF6的采用第2章液体和固体介质的绝缘的电气强度1、电介质的极化极化:在电场的作用下,电荷质点会沿电场方向产生有限的位移现象,并产生电矩(偶极矩)。
介电常数:电介质极化的强弱可用介电常数的大小来表示,与电介质分子的极性强弱有关。
极性电介质和非极性电介质:具有极性分子的电介质称为极性电介质。
第一章电介质的电气强度1.1气体放电的基本物理过程1.高压电气设备中的绝缘介质有气体、液体、固体以及其他复合介质。
2.气体放电是对气体中流通电流的各种形式统称。
3.电离:指电子脱离原子核的束缚而形成自由电子和正离子的过程。
4.带电质点的方式可分热电离、光电离、碰撞电离、分级电离。
5.带电质点的能量来源可分正离子撞击阴极表面、光电子发射、强场发射、热电子发射。
6.带电质点的消失可分带电质点受电场力的作用流入电极、带电质点的扩散、带电质点的复合。
7.附着:电子与气体分子碰撞时,不但有可能引起碰撞电离而产生出正离子和新电子,也可能发生电子附着过程而形成负离子。
8.复合:当气体中带异号电荷的粒子相遇时,有可能发生电荷的传递与中和,这种现象称为复合。
(1)复合可能发生在电子和正离子之间,称为电子复合,其结果是产生一个中性分子;(2)复合也可能发生在正离子和负离子之间,称为离子复合,其结果是产生两个中性分子。
9.1、放电的电子崩阶段(1)非自持放电和自持放电的不同特点宇宙射线和放射性物质的射线会使气体发生微弱的电离而产生少量带电质点;另一方面、负带电质点又在不断复合,使气体空间存在一定浓度的带电质点。
因此,在气隙的电极间施加电压时,可检测到微小的电流。
由图1-3可知:(1)在I-U 曲线的OA 段: 气隙电流随外施电压的提高而增大,这是因为带电质点向电极运动的速度加快导致复合率减小。
当电压接近 时,电流趋于饱和,因为此时由外电离因素产生的带电质点全部进入电极,所以电流值仅取决于外电离因素的强弱而与电压无关。
(2)在I-U 曲线的B 、C 点:电压升高至 时,电流又开始增大,这是由于电子碰撞电离引起的,因为此时电子在电场作用下已积累起足以引起碰撞电离的动能。
电压继续升高至 时,电流急剧上升,说明放电过程又进入了一个新的阶段。
此时气隙转入良好的导电状态,即气体发生了击穿。
(3)在I-U 曲线的BC 段:虽然电流增长很快,但电流值仍很小,一般在微安级,且此时气体中的电流仍要靠外电离因素来维持,一旦去除外电离因素,气隙电流将消失。
第一章气体的绝缘特性1.电介质在电气设备中作为绝缘材料使用,按其物质形态,可分为三类:气体电介质液体电介质固体电介质在电气设备中又分为:外绝缘:一般由气体介质(空气)和固体介质(绝缘子)联合构成。
内绝缘:一般由固体介质和液体介质联合构成。
2、一些基本概念:①气体介质的击穿——当加在气体间隙上的电场强度达到某一临界值后,间隙中的电流会突然剧增,气体介质会失去绝缘性能而导致击穿的现象,也称为气体放电。
②放电电压UF——在间隙距离及其它相关条件一定的条件下,加在间隙两端刚好能使其击穿的电压。
由于相关条件的变化,这个值有一定的分散性。
③击穿场强——指均匀电场中击穿电压与间隙距离之比。
这个参数反映了某种气体介质耐受电场作用的能力,也即该气体的电气强度,或称气体的绝缘强度。
④平均击穿场强——指不均匀电场中击穿电压与间隙距离之比。
3.大气击穿的基本特点固体介质中的击穿将使介质强度永久丧失;而气体和液体击穿发生击穿时,一般只引起介质强度的暂时降低,当外加电压去掉后,绝缘性能又可以恢复,故称为自恢复绝缘。
§1.1 气体介质中带电质点的产生和消失一、气体原子的激发与游离产生带电质点的物理过程称为游离,是气体放电的首要前提。
1、几个基本概念①激发—-原子在外界因素(如电场、温度等)的作用下,吸收外界能量使其内部能量增加,从而使核外电子从离原子核较近的轨道跃迁到离原子核较远的轨道上去的过程(也称为激励)。
②游离—-中性原子由外界获得足够的能量,以致使原子中的一个或几个电子完全脱离原子核的束缚而成为自由电子和正离子(即带正电的质点)的过程(也称为电离)。
2、游离的基本形式①碰撞游离a 、当带电质点具有的动能积累到一定数值后,在与气体原子(或分子)发生碰撞时,可以使后者产生游离,这种由碰撞而引起的游离称为碰撞游离。
b 、发生条件:——气体分子(或原子)的游离能c 、碰撞游离的特点碰撞游离是气体放电过程中产生带电质点的极重要的来源。