编译原理课后答案
- 格式:doc
- 大小:3.01 MB
- 文档页数:20
第二章 词法分析2.1 完成下列选择题: (1) 词法分析器的输出结果是 。
a. 单词的种别编码 b. 单词在符号表中的位置 c. 单词的种别编码和自身值 d. 单词自身值 (2) 正规式M1和M2等价是指 。
a. M1和M2的状态数相等 b. M1和M2的有向边条数相等 c. M1和M2所识别的语言集相等 d. M1和M2状态数和有向边条数相等 (3) DFA M(见图2-1)接受的字集为 。
a. 以0开头的二进制数组成的集合 b. 以0结尾的二进制数组成的集合 c. 含奇数个0的二进制数组成的集合 d. 含偶数个0的二进制数组成的集合 【解答】 (1) c (2) c (3) d图2-1 习题的DFA M2.2 什么是扫描器?扫描器的功能是什么? 【解答】 扫描器就是词法分析器,它接受输入的源程序,对源程序进行词法分析并识别出一个个单词符号,其输出结果是单词符号,供语法分析器使用。
通常是把词法分析器作为一个子程序,每当词法分析器需要一个单词符号时就调用这个子程序。
每次调用时,词法分析器就从输入串中识别出一个单词符号交给语法分析器。
2.3 设M=({x,y}, {a,b}, f, x, {y})为一非确定的有限自动机,其中f 定义如下: f(x,a)={x,y} f {x,b}={y} f(y,a)=Φ f{y,b}={x,y} 试构造相应的确定有限自动机M ′。
【解答】 对照自动机的定义M=(S,Σ,f,So,Z),由f 的定义可知f(x,a)、f(y,b)均为多值函数,因此M 是一非确定有限自动机。
先画出NFA M 相应的状态图,如图2-2所示。
图2-2 习题的NFA M用子集法构造状态转换矩阵,如表表2-1 状态转换矩阵1b将转换矩阵中的所有子集重新命名,形成表2-2所示的状态转换矩阵,即得到 M ′=({0,1,2},{a,b},f,0,{1,2}),其状态转换图如图2-3所示。
编译原理第三版课后答案清华大学出版社
一、单项选择题
1.每一个解释器必须完成运行程序所需的基本功能是什么?
A.翻译代码
B.执行代码
C.优化代码
D.分析代码
答案:B.执行代码
2.下列哪个不是一种程序设计语言?
A.C
B. Lisp
C. Java
D.汇编语言
答案:D.汇编语言
3.哪一种语言可以编译成多种机器语言?
A.动态语言
B.汇编语言
C.静态语言
D.高级语言
答案:D.高级语言
4.什么类型的编译器可以将源代码转换为机器可以识别的字节码?
A.汇编器
B.解释器
C.直译器
D.编译器
答案:D.编译器
二、填空题
5.编译器用于将高级语言(________)翻译成机器语言(________)。
答案:源代码,目标代码
6.编译器通过不同的(________)实现程序翻译的过程。
第7 题证明下述文法G[〈表达式〉]是二义的。
〈表达式〉∷=a|(〈表达式〉)|〈表达式〉〈运算符〉〈表达式〉〈运算符〉∷=+|-|*|/答案:可为句子a+a*a 构造两个不同的最右推导:最右推导1 〈表达式〉=>〈表达式〉〈运算符〉〈表达式〉=>〈表达式〉〈运算符〉a=>〈表达式〉* a=>〈表达式〉〈运算符〉〈表达式〉* a=>〈表达式〉〈运算符〉a * a=>〈表达式〉+ a * a=>a + a * a最右推导2 〈表达式〉=>〈表达式〉〈运算符〉〈表达式〉=>〈表达式〉〈运算符〉〈表达式〉〈运算符〉〈表达式〉=>〈表达式〉〈运算符〉〈表达式〉〈运算符〉a=>〈表达式〉〈运算符〉〈表达式〉* a=>〈表达式〉〈运算符〉a * a=>〈表达式〉+ a * a=>a + a * a第8 题文法G[S]为:S→Ac|aB A→ab B→bc该文法是否为二义的?为什么?答案:对于串abc(1)S=>Ac=>abc (2)S=>aB=>abc即存在两不同的最右推导。
所以,该文法是二义的。
或者:对输入字符串abc,能构造两棵不同的语法树,所以它是二义的。
第9 题考虑下面上下文无关文法:S→SS*|SS+|a(1)表明通过此文法如何生成串aa+a*,并为该串构造语法树。
(2)G[S]的语言是什么?答案:(1)此文法生成串aa+a*的最右推导如下S=>SS*=>SS*=>Sa*=>SS+a*=>Sa+a*=>aa+a*(2)该文法生成的语言是:*和+的后缀表达式,即逆波兰式。
第10 题文法S→S(S)S|ε(1) 生成的语言是什么?(2) 该文法是二义的吗?说明理由。
答案:(1)嵌套的括号(2)是二义的,因为对于()()可以构造两棵不同的语法树。
第11 题令文法G[E]为:E→T|E+T|E-T T→F|T*F|T/F F→(E)|i证明E+T*F 是它的一个句型,指出这个句型的所有短语、直接短语和句柄。
第二章 高级语言及其语法描述4.令+、*和↑代表加,乘和乘幂,按如下的非标准优先级和结合性质的约定,计算1+1*2↑2*1↑2的值:(1) 优先顺序(从高至低)为+,*和↑,同级优先采用左结合。
(2) 优先顺序为↑,+,*,同级优先采用右结合。
解:(1)1+1*2↑2*1↑2=2*2↑1*1↑2=4↑1↑2=4↑2=16 (2)1+1*2↑2*1↑2=1+1*2*1=2*2*1=2*2=46.令文法G6为 N →D|NDD →0|1|2|3|4|5|6|7|8|9 (1) G6 的语言L (G6)是什么?(2) 给出句子0127、34和568的最左推导和最右推导。
解:(1)L (G6)={a|a ∈∑+,∑=﹛0,1,2,3,4,5,6,7,8,9}}(2)N =>ND => NDD => NDDD => DDDD => 0DDD => 01DD => 012D => 0127 N => ND => N7=> ND7=> N27=> ND27=> N127=> D127=> 0127 N => ND => DD => 3D => 34 N => ND => N4=> D4 =>34N => ND => NDD => DDD => 5DD => 56D => 568 N => ND => N8=> ND8=> N68=> D68=> 5687.写一个文法,使其语言是奇数集,且每个奇数不以0开头。
解:A →SN, S →+|-|∑, N →D|MDD →1|3|5|7|9, M →MB|1|2|3|4|5|6|7|8|9 B →0|1|2|3|4|5|6|7|8|9 8. 文法:E T E T E T TF T F T F F E i→+-→→|||*|/()| 最左推导:E E T T TF T i T i T F i F F i i F i i i E T T F F F i F i E i E T i T T i F T i i T i i F i i i ⇒+⇒+⇒+⇒+⇒+⇒+⇒+⇒+⇒⇒⇒⇒⇒⇒+⇒+⇒+⇒+⇒+⇒+********()*()*()*()*()*()*()最右推导:E E T E TF E T i E F i E i i T i i F i i i i i E T F T F F F E F E T F E F F E i F T i F F i F i i i i i ⇒+⇒+⇒+⇒+⇒+⇒+⇒+⇒+⇒⇒⇒⇒⇒+⇒+⇒+⇒+⇒+⇒+⇒+**********()*()*()*()*()*()*()*()语法树:/********************************EE FTE +T F F T +iiiEEFTE-T F F T -iiiEEFT+T F FTiii*i+i+ii-i-ii+i*i*****************/9.证明下面的文法是二义的:S → iSeS|iS|I解:因为iiiiei 有两种最左推导,所以此文法是二义的。
编译原理(龙书)课后习题解答(详细)编译原理(龙书)课后题解答第一章1.1.1 :翻译和编译的区别?答:翻译通常指自然语言的翻译,将一种自然语言的表述翻译成另一种自然语言的表述,而编译指的是将一种高级语言翻译为机器语言(或汇编语言)的过程。
1.1.2 :简述编译器的工作过程?答:编译器的工作过程包括以下三个阶段:(1) 词法分析:将输入的字符流分解成一个个的单词符号,构成一个单词符号序列;(2) 语法分析:根据语法规则分析单词符号序列中各个单词之间的关系,确定它们的语法结构,并生成抽象语法树;(3) 代码生成:根据抽象语法树生成目标程序(机器语言或汇编语言),并输出执行文件。
1.2.1 :解释器和编译器的区别?答:解释器和编译器的主要区别在于执行方式。
编译器将源程序编译成机器语言或汇编语言等,在运行时无需重新编译,程序会一次性运行完毕;而解释器则是边翻译边执行,每次执行都需要进行一次翻译,一次只执行一部分。
1.2.2 :Java语言采用的是解释执行还是编译执行?答:Java一般是编译成字节码的形式,然后由Java虚拟机(JVM)进行解释执行。
但是,Java也有JIT(即时编译器)的存在,当某一段代码被多次执行时,JIT会将其编译成机器语言,提升代码的执行效率。
第二章2.1.1 :使用BNF范式定义简单的加法表达式和乘法表达式答:<加法表达式> ::= <加法表达式> "+" <乘法表达式> | <乘法表达式><乘法表达式> ::= <乘法表达式> "*" <单项式> | <单项式><单项式> ::= <数字> | "(" <加法表达式> ")"2.2.3 :什么是自下而上分析?答:自下而上分析是指从输入字符串出发,自底向上构造推导过程,直到推导出起始符号。
编译原理课后习题答案编译原理习题答案习题11.1翻译程序:把⽤某种程序设计语⾔(源语⾔)编写的程序(源程序)翻译成与之等价的另⼀种语⾔(⽬标语⾔)的程序(⽬标程序)。
编译程序:⼀种翻译程序,将⾼级语⾔编写的源程序翻译成等价的机器语⾔或汇编语⾔的⽬标程序。
1.2词法分析、语法分析、语义分析和中间代码⽣成、代码优化、⽬标代码⽣成1.3词法分析:根据语⾔的词法规则对构成源程序的符号进⾏扫描和分解,识别出⼀个个的单词。
语法分析:根据语⾔的语法规则,把单词符号串分解成各类语法单位。
语义分析及中间代码⽣成:对语法分析识别出的语法单位分析其含义,并进⾏初步翻译。
代码优化:对中间代码进⾏加⼯变换,以产⽣更⾼效的⽬标代码。
⽬标代码⽣成:将中间代码变换成特定机器上的绝对指令代码、可重定位的指令代码或会变指令代码。
以上5个阶段依次执⾏。
习题22.1 (1)有穷⾮空的符号集合(2)利⽤产⽣是规则A->v将A替换为v时与A的上下⽂⽆关。
(3)略(4)推导是把句型中的⾮终结符⽤⼀个产⽣是规则的右部开替代的过程;直接推导是将⾮终结符的替代结果只⽤了⼀次产⽣式规则。
(5)略(6)⼀个句型的最左直接短语(7)如果⼀个⽂法存在某个句⼦对应两棵不同的语法树或有两个不同的最左(右)推导,则称这个⽂法是⼆义的。
2.2(1)VN ={Z,A,B} VT ={a,b,c,d,e}(2)abbcde,abbbcde是,acde不是。
2.3 (1)L[G]={d|n≥1,m≥0}(2)2.4 (1) A=>B=>c=>fAg=>fBg=>fCg=>feg(2)A=>AaB=>AaC=>Aae=>Bae=>BcCae=>Bceae=>Cceae=>eceae(3)A=>B=>BcC=>BcfAg=>BcfAaBg=>BcfAaCg=>BcfAaeg=>BcfBaeg =>BcfCaeg=>Bcfeaeg=>Ccfeaeg=>ecfeaeg(3)中题⽬有错应为C fCg|e2.5L[G]={a?b?c?|aab,n≥2}2.6 (1)Z→AB A→Aa|ε B→Bb|ε(2)Z→aZb|ab(3)Z→aAb A→aAb|b(4)Z→AB A→aAb|ab B→cB|ε(5)Z→aaAb|ab Z→aaBb|bb A→aaAb|ab B→aaBb|bb2.7 ⼀位数:Z→2|4|6|8两位数:Z→AB A→1|2|3|4|5|6|7|8|9 B→0|2|4|6|8三位以上:Z→ACB A→1|2|3|4|5|6|7|8|9 B→0|2|4|6|8 C→CDD→0|1|2|3|4|5|6|7|8|92.8证明:E=>E+T=>E+T*F短语:T*F E+T*F 直接短语:T*F 句柄:T*F2.9 语法树: E 短语:E*T , (E*T) , F↑(E*T) ,F ,E* F↑(E*T)E *F 直接短语:E*T , FT ↑ F 句柄:FF ( E )E * T2.10(1)语法树(2)直接短语:a , ZZ 句柄:Z( L )L , ZZ ( L )Za2.11最左推导:Z=>ZaB=>BaB=>B+AaB=>A+AaB=>(+)Z*aB=>(+)ZaB*aB =>(+)+aB*aB=>(+)+aA*aB=>(+)+a(*aB=>(+)+a(*aA=>(+)+a(*a(直接短语:(,+句柄:(2.12(1) S=>iSeS=>iiSeS=>iiIeS=>iiIeIS=>iS=>iiSeS=>iiIeS=>iiIeI(2) S=>SaS=>cSaS=>cfaS=>cfafS=>cS=>cSaS=>cfaS=>cfaf(3) E=>EOE=>EOEOE=>iOEOE=>i+EOE=>i+iOE=>i+i-E=>i+i-iE=>EOE=>iOE=>i+E=>i+EOE=>i+iOE=>i+i-E=>i+i-i2.13 Z→aABZ|cCACdA→bAB|aZA|cCCB→bAB|CzbC→cZ|c习题33.1(1)确定的有限⾃动机(2)不确定的有限⾃动机(3)正规集是⼀类特殊的单词集合,正规式是正规集的描述⼯具 3.2 (1) (1|2|3|4|5|6|7|8|9|0)*(1|3|5|7|9) (2) 11(0|1)*00 3.3 证明:b *(a|b)+={a,b,ab,ba,aa,bb …} (a|b)+={a,b,ab,ba,aa,bb …} 3.4 (1)(2)DDDD3.5(1) (2)(3)3.6(1) (01|10) *(01|10)(2) (0(1|00)*)|003.7(1) Z →1AB (2)Z →ABA →(0|1)A A →0A|εA →0|1B →(0|1)B|ε B →0B B →ε3.8 r=a(a|b )*bb3.9 Z →1BB →0Z|0 Z →0Z|ε3.10 3.11DDD习题44.1 (1)若⽂法G[Z]满⾜①⽂法不含左递归②③(2)4.2(1) First(S)={a,d} First(B)={a,d,c,ε}First(A)={a,d,e,c} First(D)={a,d,ε}Follow(S)={#,a,b,d,e} Follow(B)={a,d}Follow(A)={b} Follow(D)={e,a,d,b}(2) 不是4.3 (1) 证明: First(Z)={a,b,c} Follow(S)={#,a,b,c,d} First(A)={a,b,c,d} Follow(A)={ #,a,b,c,d }First(B)={a,d,c} Follow(B)={ a,b,c,d } 是LL(1)⽂法。
编译原理课后答案问题一计算机程序的执行是一个多阶段的过程,其中编译是其中的一环。
请问编译的三个主要阶段分别是什么?答:编译过程一般可以分为三个主要阶段,分别是词法分析、语法分析和代码生成。
下面分别对这三个阶段进行介绍。
1. 词法分析词法分析是编译过程的第一步,也是最基础的一步。
它的任务是将源代码中的字符序列分解成一个个具有独立含义的单词,这些单词被称为“记号”或“词法单元”。
词法分析器根据程序中每一个字符的组合规则,将其转化为一个个词法单元,并记录下词法单元的类型标记。
词法分析器的工作一般通过有限状态自动机来实现,它根据一定的词法规则进行扫描和分析。
2. 语法分析语法分析是编译过程的第二步,它接收词法分析器生成的词法单元流,根据语法规则进行分析,并生成一棵语法树。
语法分析的主要任务是确定输入程序的结构,检查程序的语法正确性,并生成用于后续处理的输入形式。
语法分析器一般采用的是自顶向下或自底向上的分析方法,常用的方法有递归下降法和LR(1)分析法。
3. 代码生成代码生成是编译过程的最后一步,它将语法分析生成的语法树转化为目标机器的可执行代码。
代码生成器通过遍历语法树,将每个语法树节点转化为相应的目标机器代码。
代码生成过程中需要考虑到目标机器的特性和限制,以及优化代码的效率和性能。
问题二请解释一下编译原理中的词法规则是什么?答:编译原理中的词法规则指的是一组规定词法单元模式的规则。
它描述了如何将输入字符序列转换为词法单元,并为每个词法单元定义了一个标记。
词法规则一般使用正则表达式来描述词法单元的模式。
编译器根据词法规则构建词法分析器,用于将源代码分割成一系列的词法单元。
词法规则的灵活性和准确性对编译过程的性能和结果都有较大的影响。
一个完整的词法规则一般包含以下几个部分:1.正则表达式:描述了词法单元的模式,使用特定的正则表达式语法来表示。
2.动作:描述了当词法单元匹配到模式时,需要执行的动作或处理过程。
第一章编译程序概述1.1什么是编译程序编译程序是现代计算机系统的基本组成部分之一,而且多 数计算机系统都含有不止一个高级语言的编译程序。
对有些高 级语言甚至配置了几个不同性能的编译程序。
1.2编译过程概述和编译程序的结构编译程序完成从源程序到目标程序的翻译工作,是一个复 杂的整体的过程。
从概念上来讲,一个编译程序的整个工作过 程是划分成阶段进行的,每个阶段将源程序的一种表示形式转 换成另一种表示形式,各个阶段进行的操作在逻辑上是紧密连 接在一起的。
一般一个编译过程划分成词法分析、语法分析、 语义分析、中间代码生成,代码优化和目标代码生成六个阶段,这是一种典型的划分方法。
事实上,某些阶段可能组合在一起, 这些阶段间的源程序的中间表示形式就没必要构造岀来了。
我 们将分别介绍各阶段的任务。
另外两个重要的工作:表格管理 和岀错处理与上述六个阶段都有联系。
编译过程中源程序的各 种信息被保留在种种不同的表格里,编译各阶段的工作都涉及 到构造、查找或更新有关的表格,因此需要有表格管理的工作; 如果编译过程中发现源程序有错误,编译程序应报告错误的性 质和错误发生的地点,并且将错误所造成的影响限制在尽可能 小的范围内,使得源程序的其余部分能继续被编译下去,有些 编译程序还能自动校正错误, 这些工作称之为岀错处理。
图1.3表示了编译的各个阶段。
图1.3编译的各个阶段它不生成目标代码,它每遇到一个语句,就要对这个语句进行 分析以决定语句的含义,执行相应的动作。
右面的图示意了它 的工作机理第二章:PL/O 编译程序问答第1题 PL/0语言允许过程嵌套定义和递归调用,试问 它的编译程序如何解决运行时的存储管理。
答:PL/0语言允许过程嵌套定义和递归调用,它的编译程序在运行时采用了栈式动态存储管理。
(数组CODE 存放的只读目 标程序,它在运行时不改变。
)运行时的数据区S 是由解释程序 定义的一维整型数组,解释执行时对数据空间S 的管理遵循后进先岀规则,当每个过程(包括主程序)被调用时,才分配数据 空间,退出过程时,则所分配的数据空间被释放。
第二章2.3叙述由下列正规式描述的语言(a) 0(0|1)*0在字母表{0, 1}上,以0开头和结尾的长度至少是2的01串(b) ((ε|0)1*)*在字母表{0, 1}上,所有的01串,包括空串(c) (0|1)*0(0|1)(0|1) 在字母表{0, 1}上,倒数第三位是0的01串(d) 0*10*10*10*在字母表{0, 1}上,含有3个1的01串(e) (00|11)*((01|10)(00|11)*(01|10)(00|11)*)*在字母表{0, 1}上,含有偶数个0和偶数个1的01串2.4为下列语言写正规定义C语言的注释,即以/* 开始和以*/ 结束的任意字符串,但它的任何前缀(本身除外)不以*/ 结尾。
[解答]other → a | b | …other指除了*以外C语言中的其它字符other1 → a | b | …other1指除了*和/以外C语言中的其它字符comment →/* other* (* ** other1 other*)* ** */(f) 由偶数个0和偶数个1构成的所有0和1的串。
[解答]由题目分析可知,一个符号串由0和1组成,则0和1的个数只能有四种情况:x 偶数个0和偶数个1(用状态0表示);x 偶数个0和奇数个1(用状态1表示);x 奇数个0和偶数个1(用状态2表示);x 奇数个0和奇数个1(用状态3表示);所以,x 状态0(偶数个0和偶数个1)读入1,则0和1的数目变为:偶数个0和奇数个1(状态1)x 状态0(偶数个0和偶数个1)读入0,则0和1的数目变为:奇数个0和偶数个1(状态2)x 状态1(偶数个0和奇数个1)读入1,则0和1的数目变为:偶数个0和偶数个1(状态0)x 状态1(偶数个0和奇数个1)读入0,则0和1的数目变为:奇数个0和奇数个1(状态3)x 状态2(奇数个0和偶数个1)读入1,则0和1的数目变为:奇数个0和奇数个1(状态3)x 状态2(奇数个0和偶数个1)读入0,则0和1的数目变为:偶数个0和偶数个1(状态0)x 状态3(奇数个0和奇数个1)读入1,则0和1的数目变为:奇数个0和偶数个1(状态2)x 状态3(奇数个0和奇数个1)读入0,则0和1的数目变为:偶数个0和奇数个1(状态1)因为,所求为由偶数个0和偶数个1构成的所有0和1的串,故状态0既为初始状态又为终结状态,其状态转换图:由此可以写出其正规文法为:S0 →1S1 | 0S2 | εS1 →1S0 | 0S3 | 1 S2 →1S3 | 0S0 | 0 S3 →1S2 | 0S1在不考虑S0 →ε产生式的情况下,可以将文法变形为:S0 = 1S1 + 0S2 S1 = 1S0 + 0S3 + 1 S2 = 1S3 + 0S0 + 0S3 = 1S2 + 0S1 所以:S0 = (00|11) S0 + (01|10) S3 + 11 + 00(1) S3 = (00|11) S3 + (01|10) S0 + 01 + 10(2) 解(2)式得:S3 = (00|11)* ((01|10) S0 + (01|10)) 代入(1)式得:S0 = (00|11) S0 + (01|10) (00|11)*((01|10) S0 + (01|10)) + (00|11) => S0 = ((00|11) + (01|10) (00|11)*(01|10))S0 + (01|10) (00|11)*(01|10) + (00|11) => S0 = ((00|11)|(01|10) (00|11)*(01|10))*((00|11) + (01|10) (00|11)* (01|10)) => S0 = ((00|11)|(01|10) (00|11)* (01|10))+因为S0→ε所以由偶数个0和偶数个1构成的所有0和1的串的正规定义为: S0 → ((00|11)|(01|10) (00|11)* (01|10))*(g) 由偶数个0和奇数个1构成的所有0和1的串。
[解答] 此题目我们可以借鉴上题的结论来进行处理。
对于由偶数个0和奇数个1构成的所有0和1的串,我们分情况讨论:(1) 若符号串首字符为0,则剩余字符串必然是奇数个0和奇数个1,因此我们必须在上题偶数个0和偶数个1的符号串基础上再读入10(红色轨迹)或01(蓝色轨迹),又因为在0→1和1→3的过程中可以进行多次循环(红色虚线轨迹),同理0→2和2→3(蓝色虚线轨迹),所以还必须增加符号串(00|11)*,我们用S0表示偶数个0和偶数个1, 用S 表示偶数个0和奇数个1则其正规定义为:S → 0(00|11)*(01|10) S0 S0 → ((00|11)|(01|10) (00|11)* (01|10))*(2) 若符号串首字符为1,则剩余字符串必然是偶数个0和偶数个1,其正规定义为: S → 1S0S0 → ((00|11)|(01|10) (00|11)* (01|10))* 综合(1)和(2)可得,偶数个0和奇数个1构成的所有0和1串其正规定义为: S → 0(00|11)*(01|10) S0|1S0 S0 → ((00|11)|(01|10) (00|11)* (01|10))*2.7(c) ((ε|a)b*)*ababbab:s->4->0->1->5->6->7->8->4->0->1->5->6->7->6->7->8->4->0->1->5->6->7->8->f ε εa ε ε ε ε εb ε ε ε ε start2.12 为下列正规式构造最简的DFA(b) (a|b)* a (a|b) (a|b)(1) 根据算法2.4构造该正规式所对应的NFA,如图所示。
(2) 根据算法2.2(子集法)将NFA转换成与之等价的DFA(确定化过程)初始状态S0 = ε-closure(0) = {0, 1, 2, 4, 7} 标记状态S0S1 = ε-closure(move(S0, a)) = ε-closure({5, 8}) = {1, 2, 4, 5, 6, 7, 8, 9, 11} S2 = ε-closure(move(S0, b)) = ε-closure({3}) = {1, 2, 3, 4, 6, 7} 标记状态S1S3 = ε-closure(move(S1, a)) = ε-closure({5, 8, 12}) = {1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16}S4 = ε-closure(move(S1, b)) = ε-closure({3, 10}) = {1, 2, 4, 5, 6, 7, 10, 13, 14, 1 6} 标记状态S2S1 = ε-closure(move(S2, a)) = ε-closure({5, 8}) = {1, 2, 4, 5, 6, 7, 8, 9, 11} S2 = ε-closure(move(S2, b)) = ε-closure({3}) = {1, 2, 3, 4, 6, 7} 标记状态S3S5 = ε-closure(move(S3, a)) = ε-closure({5, 8, 12, 17}) = {1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18}S6 = ε-closure(move(S3, b)) = ε-closure({3, 10, 15}) = {1, 2, 4, 5, 6, 7, 10, 13, 14, 15, 16, 18} 标记状态S4S7 = ε-closure(move(S4, a)) = ε-closure({5, 8, 17}) = {1, 2, 4, 5, 6, 7, 8, 9, 11, 17, 18}S8 = ε-closure(move(S4, b)) = ε-closure({3, 15}) = {1, 2, 3, 4, 6, 7, 15, 18} 标记状态S5S5 = ε-closure(move(S5, a)) = ε-closure({5, 8, 12, 17}) = {1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18}S6 = ε-closure(move(S5, b)) = ε-closure({3, 10, 15}) = {1, 2, 4, 5, 6, 7, 10, 13, 14, 15, 16, 18} 标记状态S6S7 = ε-closure(move(S6, a)) = ε-closure({5, 8, 17}) = {1, 2, 4, 5, 6, 7, 8, 9, 11, 17, 18}S8 = ε-closure(move(S6, b)) = ε-closure({3, 15}) = {1, 2, 3, 4, 6, 7, 15, 18} 标记状态S7S3 = ε-closure(move(S7, a)) = ε-closure({5, 8, 12}) = {1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16}S4 = ε-closure(move(S7, b)) = ε-closure({3, 10}) = {1, 2, 4, 5, 6, 7, 10, 13, 14, 16} 标记状态S8S1 = ε-closure(move(S8, a)) = ε-closure({5, 8}) = {1, 2, 4, 5, 6, 7, 8, 9, 11} S2= ε-closure(move(S8, b)) = ε-closure({3}) = {1, 2, 3, 4, 6, 7}由以上可知,确定化后的DFA的状态集合S = {S0, S1, S2, S3, S4, S5, S6, S7, S8},输入符号集合Σ= {a, b},状态转换函数move如上,S0为开始状态,接收状态集合F = {S5, S6, S7, S8},其状态转换图如下所示:(3) 根据算法2.3过将DFA最小化第一次划分:{S0, S1, S2, S3, S4} {S5, S6, S7, S8} {S0, S1, S2, S3, S4}a = {S1, S3, S1 , S5, S7}第二次划分:{S0, S1, S2} {S3, S4} {S5, S6, S7, S8} {S0, S1, S2}a = {S1, S3, S1}第三次划分:{S0, S2} {S1} {S3, S4} {S5, S6, S7, S8}{S0, S2}a = {S1} {S0, S2}b = {S2} S0, S2不可区分,即等价。