第四章导体的发热电动力及常用计算公式1汇总
- 格式:ppt
- 大小:1.65 MB
- 文档页数:15
第五章 电气设备的发热和电动力计算第4节 导体短路时的电动力计算众所周知,通过导体的电流产生磁场,因此,载流导体之间会受到电动力的作用。
正常工作情况下,导体通过的工作电流不大,因而电动力也不大,不会影响电气设备的正常工作。
短路时,导体通过很大的冲击电流,产生的电动力可达很大的数值,导体和电器可能因此而产生变形或损坏。
闸刀式隔离开关可能自动断开而产生误动作,造成严重事故.开关电器触头压力明显减少,可能造成触头熔化或熔焊,影响触头的正常工作或引起重大事故。
因此,必须计算电动力,以便正确地选择和校验电气设备,保证有足够的电动力稳定性,使配电装置可靠地工作。
一、两平行圆导体间的电动力如图所示,长度为l 的两根平行圆导体,分别通过电流i 1和i 2,并且i 1=i 2,两导体的中心距离为a,直径为d ,当导体的截面或直径d 比a 小得很多以及a 比导体长度l 小得很多时,可以认为导体中的电流i 1和i 2集中在各自的几何轴线上流过。
计算两导体间的电动力可以根据比奥—沙瓦定律。
计算导体2所受的电动力时,可以认为导体2处在导体1所产生的磁场里,其磁感应强度用B1表示,B1的方向与导体2垂直,其大小为)(22417171011010T aa i i H B --⨯=⨯==ππμ 式中H 1—导体1中的电流i 1所产生的磁场在导体2处的磁场强度μ0—空气的倒磁系数则导体2全长l 上所受的电动力为⎰--⨯=⨯=l N l adx a i i i i F 02172172)(221010 同样,计算导体1所受的电动力时,可认为导体1处在导体2所产生的磁场里,显然,导体1所受到的电动力与导体2相等。
有公式可知,两平行圆导体间的电动力大小与两导体通过的电流和导体长度成正比,与导体间中心距离成反比。
二、两平行矩形截面导体间的电动力如图为两条平行矩形截面导体,其宽度为h,厚度为b,长度为l,两导体中心的距离为a ,通过的电流为i1和i2,当b 与a 相比不能忽略或两导体之间布置比较近时,不能认为导体中的电流集中在几何轴线流过,因此,应用前述公式求这种导体间的电动力将引起较大的误差。
载流导体的发热和电动力一、发热和电动力对电气设备的影响电气设备在运行中有两种工作状态,即正常工作状态和短路时工作状态。
电气设备在工作中将产生各种损耗,如:①“铜损”,即电流在导体电阻中的损耗;②“铁损”,即在导体周围的金属构件中产生的磁滞和涡流损耗;③“介损”,即绝缘材料在电场作用下产生的损耗。
这些损耗都转换为热能,使电气设备的温度升高,进而受到各种影响:机械强度下降;接触电阻增加;绝缘性能下降。
当电气设备通过短路电流时,短路电流所产生的巨大电动力对电气设备具有很大的危害性。
如载流部分可能因为电动力而振动,或者因电动力所产生的应力大于其材料允许应力而变形,甚至使绝缘部件(如绝缘子)或载流部件损坏;电气设备的电磁绕组,受到巨大的电动力作用,可能使绕组变形或损坏;巨大的电动力可能使开关电器的触头瞬间解除接触压力,甚至发生斥开现象,导致设备故障。
二、导体的发热和散热1. 发热导体的发热主要来自导体电阻损耗的热量和太阳日照的热量。
2. 散热散热的过程实质是热量的传递过程,其形式一般由三种:导热;对流和辐射。
三、提高导体载流量的措施在工程实践中,为了保证配电装置的安全和提高经济效益,应采取措施提高导体的载流量。
常用的措施有:(1)减小导体的电阻。
因为导体的载流量与导体的电阻成反比,故减小导体的电阻可以有效的提高导体载流量。
减小导体电阻的方法:①采用电阻率ρ较小的材料作导体,如铜、铝、铝合金等;②减小导体的接触电阻(R j);③增大导体的截面积(S),但随着截面积的增加,往往集肤系数(K f)也跟着增加,所以单条导体的截面积不宜做得过大,如矩形截面铝导体,单条导体的最大截面积不超过1250mm2。
(2)增大有效散热面积。
导体的载流量与有效散热表面积(F)成正比,所以导体宜采用周边最大的截面形式,如矩形截面、槽形截面等,并采用有利于增大散热面积的方式布置,如矩形导体竖放。
(3)提高换热系数。
提高换热系数的方法主要有:①加强冷却。
人教高中物理必修一第四章知识点整理第四章知识点整理第一节物理量及其测量1. 物理量的概念物理量是可以用数量表示的,能够描述物体的性质和变化的量。
2. 国际单位制(SI制)SI制是一种国际通用的物理量单位制度。
3. 基本物理量基本物理量是SI制中不可再分解的物理量,包括长度、质量、时间、电流强度、热力学温度、物质的量和发光强度。
4. 密闭法建立单位制密闭法通过实验观测物理量之间的定量关系,建立基本单位和导出单位之间的关系式,从而建立单位制。
5. 导出单位导出单位是由基本物理量经过计算、推导得到的单位。
6. 物理量的测量物理量的测量包括直接测量和间接测量。
直接测量是直接用测量仪器进行测量,而间接测量则根据已知量和测量量之间的关系计算所求物理量的测量值。
7. 误差及其处理误差是指实际测量值与真值之间的差。
误差有系统误差和随机误差两种类型。
处理误差的方法包括平均值法、最大误差法和有效数字法。
第二节运动1. 运动的概念运动是物体在空间中变换位置的过程。
2. 位移与路径位移是指物体从初始位置到末位置的变化的位置矢量。
路径则是物体在运动过程中实际经过的轨迹。
3. 平均速度与瞬时速度平均速度是指物体在某一时间段内的位移与时间差的比值。
瞬时速度则是指物体在某一瞬间的速度值。
4. 合成与分解合成与分解是指将多个矢量合成为一个矢量,或将一个矢量分解为多个矢量的过程。
5. 速度与加速度速度是指单位时间内位移的倍数,而加速度则是指单位时间内速度变化的倍数。
6. 直线运动的图像与公式给定速度与初位移的直线运动,可以通过速度-时间图像和位移-时间图像推导出对应的公式。
7. 物体的自由落体运动自由落体运动是指物体只受重力作用的运动过程。
自由落体运动的特点是加速度恒定,大小为重力加速度。
第三节牛顿第一定律和牛顿第二定律1. 牛顿第一定律牛顿第一定律也称为惯性定律,指出物体在无外力作用时保持静止或匀速直线运动的状态。
2. 牛顿第二定律牛顿第二定律指出物体受到的力与物体的加速度成正比,与物体的质量成反比。
物理全部电学公式总结归纳物理是自然科学中的一门基础学科,而电学则是物理学中的重要分支之一。
电学研究电荷、电场、电流等与电有关的现象和规律。
在电学的学习过程中,掌握并理解各种电学公式是非常重要的。
本文将对常见的电学公式进行总结和归纳,以帮助读者更好地掌握电学知识。
1. 库仑定律库仑定律是描述电荷之间相互作用的定律,它表明两个电荷之间的电力与它们之间的距离的平方成反比,与电荷的大小成正比。
数学表达式如下:F = k * |q1 * q2| / r^2其中,F为电力,k为库仑常数,q1和q2分别为两个电荷的大小,r为两个电荷之间的距离。
2. 电场强度电场强度描述了电场对单位正电荷的作用力大小,可以通过下述公式计算:E =F / q其中,E为电场强度,F为电场对电荷的作用力,q为电荷的大小。
3. 电荷密度电荷密度是单位体积内所包含的电荷量,可以使用以下公式计算:其中,ρ为电荷密度,Q为电荷量,V为体积。
4. 电势差电势差用于描述电场中两点之间的电势能差异,可以通过下述公式计算:ΔV = W / q其中,ΔV为电势差,W为电场对电荷所做的功,q为电荷的大小。
5. 电流强度电流强度是单位时间内通过导体截面的电荷量,可以使用以下公式计算:I = ΔQ / Δt其中,I为电流强度,ΔQ为通过导体截面的电荷量,Δt为时间。
6. 电阻电阻用于描述电流在导体中遇到的阻力,可以通过下述公式计算:R = ρ * (L / A)其中,R为电阻,ρ为电阻率,L为导体长度,A为导体截面积。
7. 欧姆定律欧姆定律描述了电流、电阻和电压之间的关系,可以表示为:其中,U为电压,I为电流强度,R为电阻。
8. 等效电阻当电路中存在多个电阻时,可以将它们看作一个等效电阻,用以下公式计算:1 / R' = 1 / R1 + 1 / R2 + 1 / R3 + ...其中,R'为等效电阻,R1、R2、R3等为各个电阻的阻值。
9. 焦耳定律焦耳定律描述了电功率与电流、电阻之间的关系,可以表示为:P = I^2 * R其中,P为电功率,I为电流强度,R为电阻。
导线的发热量如何计算公式导线在输电过程中会产生一定的发热量,这是由于导线本身的电阻会使电流通过时产生热量。
因此,了解导线的发热量如何计算是非常重要的。
本文将介绍导线的发热量计算公式,并对其进行详细的解释和分析。
首先,我们来看一下导线的发热量计算公式。
导线的发热量可以通过以下公式来计算:Q = I^2 R t。
其中,Q表示导线的发热量,单位为焦耳(J);I表示导线的电流,单位为安培(A);R表示导线的电阻,单位为欧姆(Ω);t表示电流通过导线的时间,单位为秒(s)。
这个公式告诉我们,导线的发热量与电流的平方成正比,与电阻和通过时间成正比。
这也意味着,当电流增大时,导线的发热量也会增加;当电阻增大或者通过时间增长时,导线的发热量也会增加。
接下来,我们来详细解释一下这个公式。
首先,导线的电流是指单位时间内通过导线的电荷量,即电流越大,导线的发热量也会越大。
这是因为电流增大会使导线内的电子碰撞频率增加,从而产生更多的热量。
其次,导线的电阻是指导线对电流的阻碍程度,即电阻越大,导线的发热量也会越大。
这是因为电阻增大会使导线内的电子受到更大的阻力,从而产生更多的热量。
最后,通过时间是指电流通过导线的时间,即通过时间越长,导线的发热量也会越大。
这是因为电流通过导线的时间越长,导线内的电子碰撞次数也会增加,从而产生更多的热量。
除了上述公式外,我们还可以通过以下公式来计算导线的发热量:Q = I^2 ρ L t。
其中,ρ表示导线的电阻率,单位为欧姆·米(Ω·m);L表示导线的长度,单位为米(m)。
这个公式告诉我们,导线的发热量与电流的平方成正比,与电阻率、长度和通过时间成正比。
这也意味着,当电流增大时,导线的发热量也会增加;当电阻率增大、长度增长或者通过时间增长时,导线的发热量也会增加。
综上所述,导线的发热量可以通过以上两个公式来计算,这些公式告诉我们导线的发热量与电流的平方成正比,与电阻、电阻率、长度和通过时间成正比。