谐响应分析
- 格式:docx
- 大小:13.24 KB
- 文档页数:2
一什么是谐响应分析?确定一个结构在已知频率的正弦(简谐)载荷作用下结构响应的技术。
谐响应分析的局限性1.所有载荷必须随时间按正弦变化2.所有载荷必须有相同的频率3.不允许有非线性特性4.不计算瞬态效应可以通过瞬态动力学分析来克服这些限制,即将简谐载荷表示为有时间历程的载荷函数。
二输入:1. 已知大小和频率的谐波载荷(力、压力和强迫位移);2. 同一频率的多种载荷,可以是同相或不同相的。
三输出:1. 每一个自由度上的谐位移,通常和施加的载荷不同相;2. 其它多种导出量,例如应力和应变等。
四谐响应分析用于设计:1. 旋转设备(如压缩机、发动机、泵、涡轮机械等)的支座、固定装置和部件;2. 受涡流(流体的漩涡运动)影响的结构,例如涡轮叶片、飞机机翼、桥和塔等五为什么要作谐响应分析?1. 确保一个给定的结构能经受住不同频率的各种正弦载荷(例如:以不同速度运行的发动机);2. 探测共振响应,并在必要时避免其发生(例如:借助于阻尼器来避免共振)。
六谐波载荷的本性1. 在已知频率下正弦变化;2. 相角y允许不同相的多个载荷同时作用,y缺省值为零;3. 施加的全部载荷都假设是简谐的,包括温度和重力。
七复位移在下列情况下计算出的位移将是复数1. 具有阻尼2. 施加载荷是复数载荷(例如:虚部为非零的载荷)3. 复位移滞后一个相位角y(相对于某一个基准而言)4. 可以用实部和虚部或振幅和相角的形式来查看八模型1. 只能用于线性单元和材料,忽略各种非线性;2. 记住要输入密度;3. 注意:如果ALPX(热膨胀系数)和DT均不为零,就有可能不经意地包含了简谐热载荷。
为了避免这种事情发生,请将ALPX设置为零。
如果参考温度[TREF]与均匀节点温度[TUNIF]不一致, 那么DT为非零值。
九施加谐波载荷并求解1. 所有施加的载荷以规定的频率(或频率范围)简谐地变化2. “载荷”包括:位移约束-零或非零的作用力压强注意:如果要施加重力和热载荷,它们也被当作简谐变化的载荷来考虑!十规定谐波载荷时要包括:振幅和相角频率1. 振幅和相角(1)载荷值(大小)代表振幅Fmax(2)相角 f 是在两个或两个以上谐波载荷间的相位差,单一载荷不需要相角f 。
谐响应分析谐响应分析是一种重要的心理学概念,用于描述人们在面对压力和挫折时的应对方式。
谐响应是指通过幽默和开心的态度来面对困难和负面情绪,从而减轻压力和提升心理健康。
本文将探讨谐响应分析的定义、原因、益处以及如何培养谐响应的技巧。
首先,谐响应分析是指在面对困难和负面情绪时,通过幽默和开心的方式来应对。
这种应对方式能够帮助个体积极应对挑战,并从中获得积极的情绪体验。
相比于消极的应对方式,谐响应可以减轻压力和降低焦虑,对个体的心理健康有着积极的影响。
其次,谐响应的出现通常有一定的原因。
个体可能选择谐响应的原因有很多,其中一种是认识到幽默和开心的态度可以帮助他们更好地应对困难。
此外,环境中的幽默氛围和他人的支持也是培养谐响应的重要因素。
个体可能会通过观察他人的谐响应行为,逐渐学会并培养自己的谐响应能力。
接下来,谐响应分析的益处是显而易见的。
首先,谐响应可以减轻压力和提升心理健康。
面对困难和挫折时,积极开心的态度可以改变个体的情绪状态,缓解负面情绪的影响。
其次,谐响应有助于改善人际关系。
通过幽默和开心的态度,个体可以更好地与他人进行沟通和互动,增强彼此之间的情感连接。
此外,谐响应还可以提升个体的创造力和解决问题的能力。
最后,培养谐响应的技巧是可以学习和实践的。
首先,个体可以通过关注正面的事物和幽默的媒体内容来培养自己的谐响应能力。
例如,观看幽默电影和喜剧演出,阅读幽默小说和漫画等。
其次,个体可以学会将困难的事物转化为幽默和开心的内容。
例如,通过以幽默的方式对待自己的失败和错误,将其变成笑料,并从中获得乐趣和教训。
此外,个体还可以学会寻找幽默和快乐的事物以及与快乐的人共度时光,以增加自己的幸福感和快乐感。
总之,谐响应分析是一种通过幽默和开心的态度来应对困难和负面情绪的方法。
谐响应可以减轻压力、提升心理健康、改善人际关系,同时还有助于提升创造力和解决问题的能力。
个体可以通过关注幽默的事物、将困难转化为幽默的内容以及寻找幽默和快乐的事物来培养谐响应的技巧。
ANSYS动力分析—谐响应分析(转载)谐响应分析1.谐响应分析的定义:谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。
分析的目的是计算结构在几种频率下的响应并得到一些响应值对频率的曲线。
该技术只计算结构的稳态受迫振动,不考虑结构发在激励开始时的瞬态振动。
谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计是否能够克服,疲劳,共振,及其他受迫振动应起的有害效果。
谐响应分析是一种线性分析,非线性特性被忽略。
2.谐响应分析的求解方法。
full(完全法)reduced(缩减法)mode superpos'n(模态叠加法)full(完全法)允许定义各种类型的荷载;预应力选项不可用;reduced(缩减法)可以考虑预应力;只能施加单元荷载(压力,温度等)mode superpos'n(模态叠加法)通过对模态分析的道德振型(特征向量)乘以因子并求和来计算出结果的响应。
可以包含预应力,可以考虑振型阻尼,不能施加非零位移谐响应分析的基本步骤:完全法分析过程有3个主要步骤:建模,加载求解,结果后处理1.建立模型同样非线性行为将被忽略2.加载求解*指定分析类型为:harmonic*指定分析选项:包括solution method和dof printout format (解的输出形式)及use lumped mass approx?(质量矩阵形成方式)*在模型上加载:谐响应分析所加的载荷随时间按正弦规律变化。
指定一个完整的简谐荷载需要输入3条信息。
幅值(amplitude)、相位角(phase angle)、强制频率范围(forcing frequency range) 注意:谐响应分析不能同时计算多个频率的荷载作用,但可以分别计算,后叠加。
*谐响应分析荷载步选项普通选项:number of substebs(谐响应节数目),选择加载方式stepped or ramped动力学选项:频率范围 frequence range ,阻尼(damping)输出控制选项:*开始求解3.观察结果缩减法谐响应分析步骤1.建模2.加载并得减缩解3.观察节缩解结果4.扩展解5.观察扩展的解结果与full法不同的是,要定义主自由度。
有限元分析丨谐响应分析谐响应(Harmonic Response)分析是有限元分析中使用频率较高的一个模块,下文是我在谐响应分析学习过程的一些积累,仅供参考学习使用,如有错误请指正!目录1 谐响应分析简介谐响应用于分析线性结构在随时间呈正弦或余弦变化的简谐载荷的稳态响应,验证设计结构能否克服共振、疲劳和其他强迫振动的影响。
谐响应分析中所有的荷载以及结构的响应在相同的频率下呈正弦变化。
谐响应分析只计算结构的稳态强迫振动。
在激励开始时发生的瞬态振动,在谐波分析中不考虑。
2 谐响应分析应用产品结构在初期、详细设计阶段及试验验证阶段,侧重点有所不同,应根据实际情况进行判定。
1、设计阶段①获取关键(敏感)部位的加速度响应,判定结构动态放大特性;②获取关键(敏感)部位应力、应变,进行结构强度校核;③获取安装处(约束孔位)的加速度响应,进行布局设计校核;④获取连接界面处的加速度响应,作为单段结构设计参考。
2、试验验证阶段在试验验证时,除了上述分析关注内容外,另外一个工作就是确定结构正弦振动下凹条件。
注:这部分我在工作中并没有接触过。
参考:《航天器结构设计》3 谐响应分析数学表达作为结构动力学分析中常见的特殊问题,当结构承受外载为简谐载荷时,可以进行谐响应分析。
注:谐响应数学理论,不展开说明。
参考:《ANSYS Workbench有限元分析实例详解(动力学)》当即激励频率远<固有频率时,可忽略阻尼影响。
相位差θ≈0,表示位移与激励力的相位几乎同相。
当激励频率远>固有频率时,可忽略阻尼影响。
相位差θ≈π,表示位移与激励力的相位几乎反相。
当激励频率约=固有频率时,产生共振,振动响应的幅值接近无穷大,此时阻尼对共振效果的影响极为明显,因此增大阻尼会导致振幅明显下降。
此时相位差θ≈π/2,相位差与阻尼无关。
4 Workbench中进行谐响应分析4.1 谐响应分析方法Workbench中谐响应分析的求解方法主要有两种:完全法和模态叠加法。
第二章谐响应分析§2.1谐响应分析的定义与应用任何持续的周期载荷将在结构系统中产生持续的周期响应(谐响应)。
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应的一种技术。
分析的目的是计算出结构在几种频率下的响应并得到一些响应值(通常是位移)对频率的曲线。
从这些曲线上可以找到“峰值”响应,并进一步观察峰值频率对应的应力。
该技术只计算结构的稳态受迫振动,而不考虑发生在激励开始时的瞬态振动。
(见图1)。
谐响应分析使设计人员能预测结构的持续动力特性,从而使设计人员能够验证其设计能否成功地克服共振、疲劳,及其它受迫振动引起的有害效果。
图1(a)典型谐响应系统。
F0及ω已知,u0和Φ未知。
(b)结构的瞬态和稳态动力学响应。
谐响应分析是一种线性分析。
任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。
分析中可以包含非对称系统矩阵,如分析在流体─结构相互作用中问题(参见<<ANSYS耦合场分析指南>>的第5章)。
谐响应分析也可以分析有预应力结构,如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)。
§2.2谐响应分析中用到的命令建模过程与执行谐响应分析可以使用其它类型分析相同的命令。
同样,无论进行何种类型的分析,均可以从用户图形界面(GUI)中选择等效的选项来建模和求解。
在后面的“谐响应分析实例(命令或批处理方式)”中,将会给出进行一个谐响应分析需要执行的命令(GUI方式或者批处理方式运行ANSYS时用到的)。
而“谐响应分析实例(GUI 方式)”则描述了如何用ANSYS用户图形界面的菜单执行同样实例分析的过程。
(要了解如何用命令和用户图形界面进行建模,请参阅《ANSYS建模与网格指南》)。
§2.3三种求解方法谐响应分析可采用三种方法:完全法(Full)、缩减法(Reduced)、模态叠加法(Mode Superposition)。
谐响应分析谐响应分析用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应,分析过程中只计算结构的稳态受迫振动,不考虑激振开始时的瞬态振动,谐响应分析的目的在于计算出结构在几种频率下的响应值(通常是位移)对频率的曲线,从而使设计人员能预测结构的持续性动力特性,验证设计是否能克服共振、疲劳以及其他受迫振动引起的有害效果。
计算方法谐响应分析的输入为:(i)已知大小和频率的谐波载荷(力、压力或强迫位移);(ii)同一频率的多种载荷,可以是同相或是不同相的。
谐响应分析的输出为:(i)每一个自由度上的谐位移,通常和施加的载荷不同相;(ii)其他多种导出量,例如应力和应变等。
谐响应分析可采用完全法,缩减法,模态叠加法求解。
当然,视谐响应分析为瞬态动力学分析的特例,将简谐载荷定义为时间历程的载荷函数,采用瞬态动力学分析的全套方法求解也是可以的,但需要花费较长的计算时间。
谐响应分析用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时的稳态响应,分析过程中只计算结构的稳态受迫振动,不考虑激振开始时的瞬态振动,谐响应分析的目的在于计算出结构在几种频率下的响应值(通常是位移)对频率的曲线,从而使设计人员能预测结构的持续性动力特性,验证设计是否能克服共振、疲劳以及其他受迫振动引起的有害效果。
谐响应分析是一种线性分析,若指定了非线性单元,作为线性单元处理,其输入材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的,但必须指定材料的弹性模量和密度(某种形式的刚度和质量)。
谐响应分析可以对有预应力结构进行分析。
谐响应分析施加必须是随时间按正弦规律变化,相同的频率的多种载荷可以是同相或不同相的,其输出为一个自由度上的谐位移和多种导出量,如:应力、应变、单元应力、反作用力等,在分析一个自由度上的谐位移和多种导出量,如:应力、应变、单元应力、反作用力等。
谐波响应分析
谐波响应分析是将一系列不同频率的周期正弦激励应用于线性系统,并分析周期激励下的周期响应(稳态响应),即不考虑将激励仅添加到系统中时的瞬态响应。
如果要调查整个过程(瞬态和稳态)系统的响应,则需要通过时域分析。
我们可以参考之前的时域分析。
同时,可以获得不同节点的幅度频率和相位频率特性。
通过谐波响应分析,可以得到系统在特定载荷下的固有频率和薄弱部分,还可以获得整个过程的结构响应。
扫频振动测试
扫频振动测试的主要目的如下:
与锤击法等模态试验相比,通过扫频振动试验可以有效地获得结构的频率响应特性,并找到结构的共振点。
模拟环境振动,以测试扫描频率激励下系统的承载能力;
通过扫描频率发现共振点,并进行共振电阻恒定频率测试。
扫频振动测试的控制方法有:低频控制位移幅度,高频控制加速度幅度。
实际上,扫频振动与谐波响应分析不可能完全对应,因为为了获得正弦激励下的稳态响应,同时满足激励频率的连续变化,这在测试中是不可能的。
实际扫描频率测试曲线如下图所示。
在这里,我们介绍八度的概念:
其中F1为当前频率,F0为参考频率,N为倍频程;因此,F1和F0之间的关系不是线性的,而是与2n呈线性关系,并且N可以是实数。
频率单调增加。
通常,频率增加的速度用八度/时间来描述。
例如,如果扫描速度是每分钟一个八度(1oct / min),则意味着每分钟的频率加倍。
可见频率不会随时间线性增加。