非线性弹性力学有限元
- 格式:ppt
- 大小:115.00 KB
- 文档页数:7
第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。
2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。
实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。
根据这个假设所得的结果与实验结果是符合的。
(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。
这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。
钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。
木材不是各向同性的。
(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。
同时还假定材料服从胡克定律,即应力与形变成正比。
(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。
在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。
在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。
(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。
也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。
物体中初应力的性质及数值与物体形成的历史有关。
若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。
上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。
非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。
但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。
对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。
这类问题的解决通常有两种途径。
一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。
但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。
因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。
特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。
已经发展的数值分析方法可以分为两大类。
一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。
其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。
但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。
另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。
如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。
诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。
但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。
1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。
弹性力学的有限元分析教案
弹性力学的有限元分析教案
一、教学目标
1.掌握弹性力学的基本理论及有限元分析方法;
2.能够应用有限元软件进行简单的弹性力学分析;
3.培养学生的科学思维能力和解决实际问题的能力。
二、教学内容
1.弹性力学的基本理论
2.有限元方法的基本原理
3.有限元软件的应用与实践
4.弹性力学问题的有限元分析案例
三、教学步骤
1.导入课程,介绍弹性力学与有限元方法的重要性,以及在本课程中将要学
习的内容。
2.讲解弹性力学的基本理论,包括弹性力学的基本假设、平衡方程、几何方
程和物理方程等。
3.介绍有限元方法的基本原理,包括单元划分、节点位移、单元应力和整体
平衡等。
4.讲解有限元软件的应用与实践,包括模型的建立、材料的属性、边界条件
和载荷的施加等。
5.通过具体的案例讲解如何进行弹性力学问题的有限元分析,包括前处理、
求解和后处理等步骤。
6.组织学生进行实践活动,自己动手进行一次简单的弹性力学有限元分析,
并讲解自己的分析过程和结果。
7.对本次课程进行总结,并对学生实践活动进行点评与指导。
四、教学重点与难点
1.重点:掌握弹性力学的基本理论和有限元方法的基本原理,能够熟练应用
有限元软件进行简单的弹性力学分析。
2.难点:理解有限元方法的基本原理,掌握有限元软件的应用技巧,能够对
弹性力学问题进行正确的建模和求解。
五、教学评价与反馈
1.对学生进行考核评价,包括理论知识的掌握程度和实践能力的表现等;
2.根据学生的表现和反馈,对教学内容和方法进行改进和优化。
总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤,指出其异同点航天航空学院1334班艾松学号:4113006012线性关系,这类问题称为几何非线性问题。
③物理非线性问题。
在这类问题中,材料内的变形和内力之间〔如应变和应力之间〕不满足线性关系,即材料不服从胡克定律。
在几何非线性问题和物理非线性问题中,叠加原理失效。
解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法等。
在许多工程构造中,杆件往往在复杂载荷的作用或复杂环境的影响下发生破坏。
例如,杆件在交变载荷作用下发生疲劳破坏,在高温恒载条件下因蠕变而破坏,或受高速动载荷的冲击而破坏等。
这些破坏是使机械和工程构造丧失工作能力的主要原因。
所以,材料力学还研究材料的疲劳性能、蠕变性能和冲击性能。
材料力学根本公式〔解决问题方法〕: 一、应力与强度条件 拉压:[]σσ≤=maxmax AN平衡微分方程〔1〕几何方程〔2〕物理方程〔3〕成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于构造力学,后来随着计算机的开展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个剪切:[]ττ≤=AQ max挤压:[]挤压挤压挤压σσ≤=AP圆轴扭转:[]ττ≤=W tTmax 平面弯曲: ①[]σσ≤=maxzmax W M②[]max t max t maxmax σσ≤=y I M z t max c max maxy I Mzc =σ[]cnax σ≤ ③[]ττ≤⋅=bI S Q z *max z max max斜弯曲:[]σσ≤+=maxyyz z max W M W M拉〔压〕弯组合:[]σσ≤+=maxmax zW MA N[]t max t z max t σσ≤+=y I M A N z []c max c z z max c σσ≤-=ANy I M 圆轴弯扭组合: ① 第三强度理论[]στσσ≤+=+=z2n2w2n 2w r34W M M(1)式中的σx 、σy 、σz 、τyz=τzy 、τxz=τzx 、τxy=τyx 为应力分量,X 、Y 、Z 为单位体积的体力在三个坐标方向的分量;(2)式中的u 、v 、w 为位移矢量的三个分量〔简称位移分量〕,εx 、εy 、εz 、γyz 、γxz 、γxy 为应变分量;(3)式中的E 和v 分别表示杨氏弹性模量和泊松比。
工程中的力学模型引言在工程领域中,力学模型是研究和分析物体运动和变形的基础。
通过建立合适的力学模型,可以帮助工程师更好地理解和预测结构的行为,为工程设计和优化提供指导。
本文将介绍几种常见的力学模型及其应用。
一、刚体模型刚体模型是最简单的力学模型之一。
在刚体模型中,物体被假设为不可变形且没有内部应力的理想化物体。
刚体模型常用于分析和设计静力学系统,如桥梁、机械零件等。
通过对刚体模型的力学分析,可以确定结构的受力情况,从而确保结构的稳定性和安全性。
二、弹性模型弹性模型是一种用于描述物体弹性变形的力学模型。
在弹性模型中,物体被假设为能够恢复其原始形状和尺寸的理想化物体。
弹性模型常用于研究和设计需要考虑物体变形的系统,如弹簧、悬挂系统等。
通过对弹性模型的力学分析,可以确定物体的变形程度、应力分布及其对结构性能的影响,为结构设计提供依据。
三、塑性模型塑性模型用于描述物体在受力作用下发生塑性变形的力学模型。
在塑性模型中,物体被假设为能够永久性变形的理想化物体。
塑性模型常用于研究和设计需要考虑物体塑性变形的系统,如金属材料、塑料构件等。
通过对塑性模型的力学分析,可以确定物体在超过其弹性极限时的行为,为结构的强度和可靠性评估提供依据。
四、流体力学模型流体力学模型是研究和分析流体运动和变形的力学模型。
在流体力学模型中,流体被假设为连续可变形的理想化介质。
流体力学模型常用于研究和设计与液体和气体流动相关的系统,如管道、泵站、风力发电机组等。
通过对流体力学模型的力学分析,可以确定流体的速度、压力分布及其对系统性能的影响,为流体系统的设计和优化提供依据。
五、有限元模型有限元模型是一种近似解决复杂力学问题的数值方法。
在有限元模型中,物体被划分为有限个小区域,每个小区域被称为有限元。
通过对每个有限元的力学行为进行分析和计算,可以得到整个结构的力学行为。
有限元模型广泛应用于工程领域中的结构分析、热传导、流体流动等问题。
有限元模型的优点在于能够处理各种非线性和复杂边界条件,为工程设计和优化提供了强大的工具。
弹性力学与有限元法分析弹性力学是固体力学的一个重要分支,是研究弹性固体在受外力作用、温度改变、边界约束或其他外界因素作用下而发生的应力、形变和位移状态的科学。
有限单元法是力学、数学、物理学、计算方法、计算机技术等多种学科综合发展和结合的产物,是随着计算机技术的广泛应用而迅速发展起来的一种数值分析方法。
有限元法的基本思想就是化整为零,分散分析,再集零为整。
即用结构力学方法求解弹性力学问题,实质是将复杂的连续体划分为有限多个简单的单元体,单元体之间仅仅通过结点相连,实现化无限自由度问题为有限稀有度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。
有限元方法经过近半个世纪的发展,目前已经成为各种工程问题特别是结构分析问题的标准分析方法,而有限元软件也已成为现代结构设计中不可缺少的工具。
有限元软件是有限元理论通向实际工程应用的桥梁,它的应用极大地提高了力学学科解决自然科学和工程实际问题的能力,进一步促进了有限元方法的发展。
ANSYS 软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,广泛用于机械制造、石油化工、航空航天、汽车交通、土木工程、造船、水利等一般工业及科学研究。
ANSYS 软件的组成:(一)前处理模块该模块为用户提供了一个强大的实体建模及网格划分工具,可以方便的构造有限元模型,软件提高了100种以上的单元类型,用来模拟工程中的各种结构和材料。
包括:1.实体建模:参数化建模,布尔运算及体素库,拖拉、旋转、拷贝、蒙皮、倒角等。
2.自动网格划分,自动进行单元形态、求解精度检查及修正。
3.在集合模型上加载:点加载、分布载荷、体载荷、函数载荷。
4.可扩展的标准梁截面形状库。
(二)分析计算模块该模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。
总结材料力学、弹性力学、有限元三门课程解决问题的思路和步骤,指出其异同点航天航空学院1334班艾松学号:4113006012杆件在多种外力共同作用下的变形(或力),可先分别求出各外力单独作用下杆件的变形(或力),然后将这些变形(或力)叠加,从而得到最终结果。
②几何非线性问题。
若杆件变形较大,就不能在原有几何形状的基础上分析力的平衡,而应在变形后的几何形状的基础上进行分析。
这样,力和变形之间就会出现非线性关系,这类问题称为几何非线性问题。
③物理非线性问题。
在这类问题中,材料的变形和力之间(如应变和应力之间)不满足线性关系,即材料不服从胡克定律。
在几何非线性问题和物理非线性问题中,叠加原理失效。
解决这类问题可利用卡氏第一定理、克罗蒂-恩盖塞定理或采用单位载荷法解。
直角坐标系下的弹性力学的基本方程为:平衡微分方程(1)几何方程(2)物理方程(3)(1)式中的σx、σy、σz、τyz=τzy、τxz=τzx、τxy=τyx为应力分量,X、Y、函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单二、变形及刚度条件 拉压:∑⎰===∆LEAxx N EAL N EANLL d )(ii 扭转:()⎰=∑==Φpp i i p GI dx x T GI L T GI TLπφ0180⋅=Φ=p GI T L弯曲:(1)积分法:)()(''x M x EIy =C x x M x EI x EIy +==⎰d )()()('θD Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…()21,P P θ=()()++21P P θθ…三、应力状态与强度理论 二向应力状态斜截面应力:ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=二向应力状态极值正应力及所在截面方位角:到。