高中生必备实用三角函数公式总表
- 格式:doc
- 大小:657.50 KB
- 文档页数:9
三角函数公式大全高中一、同角三角函数的基本关系。
1. 平方关系。
- sin^2α+cos^2α = 1- 1+tan^2α=sec^2α(secα=(1)/(cosα))- 1+cot^2α=csc^2α(cscα=(1)/(sinα))2. 商数关系。
- tanα=(sinα)/(cosα)- cotα=(cosα)/(sinα)二、诱导公式。
1. 终边相同的角的三角函数值相等。
- sin(α + 2kπ)=sinα,k∈ Z- cos(α+ 2kπ)=cosα,k∈ Z- tan(α + 2kπ)=tanα,k∈ Z2. 关于x轴对称的角的三角函数值关系。
- sin(-α)=-sinα- cos(-α)=cosα- tan(-α)=-tanα3. 关于y = x对称的角的三角函数值关系(α与(π)/(2)-α)- sin((π)/(2)-α)=cosα- cos((π)/(2)-α)=sinα- tan((π)/(2)-α)=cotα4. 关于y轴对称的角的三角函数值关系(α与π-α) - sin(π-α)=sinα- cos(π - α)=-cosα- tan(π-α)=-tanα5. 关于原点对称的角的三角函数值关系(α与π+α) - sin(π+α)=-sinα- cos(π+α)=-cosα- tan(π+α)=tanα6. α与(3π)/(2)-α的三角函数关系。
- sin((3π)/(2)-α)=-cosα- cos((3π)/(2)-α)=-sinα- tan((3π)/(2)-α)=cotα7. α与(3π)/(2)+α的三角函数关系。
- sin((3π)/(2)+α)=-cosα- cos((3π)/(2)+α)=sinα- tan((3π)/(2)+α)=-cotα三、两角和与差的三角函数公式。
- sin(A + B)=sin Acos B+cos Asin B2. 两角和的余弦公式。
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
高中生必备实用三角函数公式总表高中数学中,三角函数是一个非常重要的概念。
通过掌握三角函数的相关公式和性质,可以解决许多与角度和三角形相关的问题。
本文将为高中生提供一个实用的三角函数公式总表,以帮助他们更好地学习和理解这一领域。
一、基本三角函数公式:1. 正弦函数(Sine function):sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinB2. 余弦函数(Cosine function):cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinB3. 正切函数(Tangent function):tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)二、和差公式:1. 正弦函数公式:sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinBsin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinBcos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB) tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)三、倍角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan2A = (2 · tanA) / (1 - tan2A)四、半角公式:1. 正弦函数公式:sin(A/2) = ±√((1 - cosA) / 2)2. 余弦函数公式:cos(A/2) = ±√((1 + cosA) / 2)3. 正切函数公式:tan(A/2) = ±√((1 - cosA) / (1 + cosA))五、和角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosA2. 余弦函数公式:cos2A = cos2A - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)六、其他常见公式:1. 正切与余切的关系:tanA = 1 / cotAcotA = 1 / tanA2. 正弦与余弦的关系:sin2A + cos2A = 13. 正切与正弦、余弦的关系:tanA = sinA / cosA通过掌握这些三角函数的公式,高中生可以更好地解决与角度和三角形相关的问题。
高中三角函数公式大全sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinbcos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/(1-tan^2a)sin2a=2sina•cosacos2a=cos^2asin^2a=2cos^2a—1=1—2sin^2a三倍角公式sin3a=3sina-4(sina)^3;cos3a=4(cosa)^3-3cosatan3a=tana•tan(π/3+a)•tan(π/3-a)半角公式sin(a/2)=√{(1cosa)/2}cos(a/2)=√{(1+cosa)/2}tan(a/2)=√{(1c osa)/(1+cosa)}cot(a/2)=√{(1+cosa)/(1-cosa)}tan(a/2)=(1cosa)/sina=sina/(1+cosa)和差化积sin(a)+sin(b)=2sin[(a+b)/2]cos[(a-b)/2]sin(a)-sin(b)=2cos[(a+b)/2]sin[(a-b)/2]cos(a)+cos(b)=2cos[(a+b)/2]cos[(a-b)/2]cos(a)-cos(b)=-2sin[(a+b)/2]sin[(a-b)/2]tana+tanb=sin(a+b)/cosacosb积化和差sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π/2-a)=cos(a)cos(π/2-a)=sin(a)sin(π/2+a)=cos(a)cos(π/2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)tga=tana=sina/cosa万能公式sin(a)=[2tan(a/2)]/{1+[tan(a/2)]^2}cos(a)={1-[tan(a/2)]^2}/{1+[tan(a/2)]^2}tan(a)=[2tan(a/2)]/{1-[tan(a/2)]^2} 其它公式a•sin(a)+b•cos(a)=[√(a^2+b^2)]*sin(a+c)[其中,tan(c)=b/a]a•sin(a)-b•cos(a)=[√(a^2+b^2)]*cos(a-c)[其中,tan(c)=a/b]1+sin(a)=[sin(a/2)+cos(a/2)]^2;1-sin(a)=[sin(a/2)-cos(a/2)]^2;;其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=[e^a-e^(-a)]/2cosh(a)=[e^a+e^(-a)]/2tgh(a)=sinh(a)/cosh(a)sin30°=1/2sin37°=0。
高中三角函数公式大全高中三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA •CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=AA cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin +和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)]诱导公式sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a -其它公式 a •sina+b •cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a •sin(a)-b •cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =acos 1双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)= sin αcos (2k π+α)= cos αtan (2k π+α)= tan αcot (2k π+α)= cot α公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sin αcos (π+α)= -cos αtan (π+α)= tan αcot (π+α)= cot α公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sin αcos (-α)= cos αtan (-α)= -tan αcot (-α)= -cot α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sin αcos (π-α)= -cos αtan (π-α)= -tan αcot (π-α)= -cot α公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sin αcos (2π-α)= cos αtan (2π-α)= -tan αcot (2π-α)= -cot α公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cos α cos (2π+α)= -sin α tan (2π+α)= -cot α cot (2π+α)= -tan αsin (2π-α)= cos α cos (2π-α)= sin α tan (2π-α)= cot α cot (2π-α)= tan α sin (23π+α)= -cos α cos (23π+α)= sin α tan (23π+α)= -cot α cot (23π+α)= -tan α sin (23π-α)= -cos α cos (23π-α)= -sin α tan (23π-α)= cot α cot (23π-α)= tan α (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A •sin(ωt+θ)+ B •sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin)cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式V=s*h 圆柱体 V=pi*r2h积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................部分证明已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβsin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
高中三角函数公式大全整理版(可编辑修改word版)高中三角函数公式大全sin30°=1/2sin45°=√2/2 sin60°=√3/2 cos30°=√3/2cos45°=√2/2 cos60°=1/2 tan30°=√3/3tan45°=1 tan60°=√3 cot30°=√3cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4cos75°=(√6-√2)/4(这四个可根据sin (45°±30°)=sin45°cos30°±cos45°sin30°得出)sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半)正弦定理:在△ABC 中,a / sin A = b / sin B = c / sin C = 2R (其中,R 为△ABC 的外接圆的半径。
)两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanA + tanB 1- tanAtanBtan(A-B) = tanA - tanB 1+ tanAtanBcot(A+B) = cotAcotB-1 cotB + c otAcot(A-B) = cotAcotB +1 cotB - cotA 倍角公式 tan2A =2tanA1- tan 2ASin2A=2SinA?CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosATan3A= 3 t an 3A - (tan A )3 1- (tan A )2tan A t an( 3 A ) tan( 3 + A ) 半角公式= -sin( A )= 2 cos( A )= 2 tan( A )= 2 cot( A )= 2 tan( A )= 1- cos A =sin A2 sin A 和差化积 1+ cos Asina+sinb=2sin a + b cos a - b2 2 sina-sinb=2cos a + b sin a - b22cosa+cosb = 2cos a + b cos a - b2 2cosa-cosb = -2sin a + b sin a - b2 2tana+tanb= sin(a + b )cos a cos b积化和差1sinasinb = - [cos(a+b)-cos(a-b)]2 cosacosb = sinacosb = cosasinb = 诱导公式1 [cos(a+b)+cos(a-b)]21 [sin(a+b)+sin(a-b)]21 [sin(a+b)-sin(a-b)]2sin(-a) = -sinacos(-a) = cosasin( -a) = cosa2cos( -a) = sina2sin( +a) = cosa2 1- cos A 2 1+ cos A 2 1- cos A 1+ cos A 1+ cos A1- cos A(a 2 + b 2 ) (a 2 + b 2 ) cos( +a) = -sina 2sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA = sin acos a万能公式 2 tan a sina=2 1+ (tan a )2 21- (tan a )2cosa=2 1+ (tan a )2 2 2 tan a tana=2 1- (tan a )2 2其它公式a?sina+b?cosa= ×sin(a+c) [其中b tanc= ] aa?sin(a)-b?cos(a) = ×cos(a-c) [其中 a tan(c)= ] b a a 2 1+sin(a) =(sin +cos )2 2 a a 2 1-sin(a) = (sin -cos ) 2 2其他非重点三角函数csc(a) = sec(a) = 1 sin a 1 cos a公式一:设α 为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α 为任意角,π+α 的三角函数值与α 的三角函数值之间的关系: sin (π+α)= -sinαA 2 +B 2 + 2A B c os(?) t + arcsin[(Asin + Bsin ) A 2 + B 2 + 2 A B c os(?)cos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α 与 -α 的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α 与α 的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α 与α 的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotαA?sin(ωt+θ)+ B?sin(ωt+φ) = ×sin。
三角函数公式大全(表格分
类)
本页仅作为文档页封面,使用时可以删除
This document is for reference only-rar21year.March
sin sin 2sin
cos
22sin sin 2cos sin
22
cos cos 2cos cos
22cos cos 2sin sin
22
αβ
αβ
αβαβαβ
αβαβαβ
αβαβαβ
αβ+-+=⋅+--=⋅+-+=⋅+--=-⋅
[][]
[]
[]
1
sin cos sin()sin()21
cos sin sin()sin()2
1
cos cos cos()cos()21
sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=
++-⋅=+--⋅=++-⋅=-+--
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)
22sin cos sin()a x b x a b x φ±=+±
其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b
a
φ
=
确定
六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”。
三角公式总表
⒈L 弧长=αR=nπR 180 S 扇=21L R=21R 2α=3602
R n ⋅π ⒉正弦定理:A a sin =B b sin =C
c sin = 2R (R 为三角形外接圆半径) ⒊余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos
bc
a c
b A 2cos 2
22-+= ⒋S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R
abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C
B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2
1c b a p ++=, r 为三角形内切圆半径) ⒌同角关系: ⑴商的关系:①θtg =
x y =θθcos sin =θθsec sin ⋅ ②θθθθθcsc cos sin cos ⋅===y x ctg ③θθθtg r
y ⋅==cos sin ④θθθθcsc cos 1sec ⋅===tg x r ⑤θθθctg r x ⋅==
sin cos ⑥θθθθsec sin 1csc ⋅===ctg y r ⑵倒数关系:1sec cos csc sin =⋅=⋅=⋅θθθθθθctg tg
⑶平方关系:1csc sec cos sin 222222=-=-=+θθθθθθctg tg ⑷)sin(cos sin 22ϕθθθ++=+b a b a (其中辅助角ϕ与点(a,b )在同一象限,且a
b tg =ϕ) ⒍函数y=++⋅)sin(ϕωx A k 的图象及性质:(0,0>>A ω)
振幅A ,周期T=ωπ2, 频率f=
T
1, 相位ϕω+⋅x ,初相ϕ ⒎五点作图法:令ϕω+x 依次为ππππ2,23,,20 求出x 与y , 依点()y x ,作图
三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限
三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限 ⒐和差角公式
①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos(μ=± ③β
αβαβαtg tg tg tg tg ⋅±=±μ1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±μ ⑤γβγαβαγβαγβαγβαtg tg tg tg tg tg tg tg tg tg tg tg tg ⋅-⋅-⋅-⋅⋅-++=
++1)( 其中当A+B+C=π时,有: i).tgC tgB tgA tgC tgB tgA ⋅⋅=++ ii).1
2
22222=++C tg B tg C tg A tg B tg A tg
⒑二倍角公式:(含万能公式)。