大学物理相对论习题
- 格式:pptx
- 大小:392.80 KB
- 文档页数:22
狭义相对论一、根本要求1.理解爱因斯坦狭义相对论的两个根本假没。
2.理解洛仑兹坐标变换。
了解狭义相对论中同时性的相对性,以及长度收缩和时问膨胀的概念。
了解牛顿力学中的时空观和狭义相对论中的时空观以及二者的差异。
3.理解狭义相对论中质量和速度的关系、质量和能量的关系,并能用以分析、计算有关的简单问题。
二、内容提要1.经典力学的绝对时空观伽里略相对性原理 一切彼此相对作匀速直线运动的诸惯性系中的力学规律都是一样的。
即力学规律的数学形式都是一样的。
伽里略变换设想两个作相对匀速运动的惯性系〔参照系〕,各以直角坐标系),,,(z y x O K 和),,,(/////z y x O K 表示,两者的坐标轴分别相互平行,而且x 轴和/x 轴重合在一起。
/K 坐标系相对于K 坐标系沿x 轴方向以速度i u u=运动。
设想在/K 坐标系和K 坐标系,当原点重合时,两个坐标系内的时钟校准为零,即0/==x x 时,0/==t t 。
同一点P 在/K 坐标系和K 坐标系中的坐标),,,(////t z y x 和),,,(t z y x 有如下的关系:⎪⎪⎩⎪⎪⎨⎧==-==z z y y utx x t t //// 或 ⎪⎪⎩⎪⎪⎨⎧==+==////z z y y ut x x t t这就是伽利略坐标变换公式。
它完全表达了绝对时空观,是绝对时空观的数学表述。
经典力学的绝对时空观 经典力学的时空观认为,时间和空间是相互独立的,对时间间隔和空间间隔的测量不会因为参考系的运动而改变。
根据上述位置变换关系及速度的定义,可导出质点运动速度在二惯性系之间的变换关系u v v -=/ 〔u v v x x -=/、y y v v =/、z z v v =/〕 加速度变换关系a a =/ 〔x x a a =/、y ya a =/、z z a a =/〕 因此,在诸惯性系中,牛顿第二定律可表示为a m F =,///a m F =牛顿第二定律相对于伽里略变换是不变的。
§14.1 ~14. 314.1 狭义相对论的两条基本原理为相对性原理;光速不变原理。
14.2 s ′系相对s 系以速率v=0.8c ( c 为真空中的光速)作匀速直线运动,在S 中观测一事件发生在m x s t 8103,1×==处,在s ′系中测得该事件的时空坐标分别为t =′x 1×108 m 。
分析:洛伦兹变换公式:)t x (x v −=′γ,)x ct (t 2v −=′γ其中γ=,v =β。
14.3 两个电子沿相反方向飞离一个放射性样品,每个电子相对于样品的速度大小为0.67c , 则两个电子的相对速度大小为:【C 】(A )0.67c (B )1.34c (C )0.92c (D )c分析:设两电子分别为a 、b ,如图所示:令样品为相对静止参考系S , 则电子a 相对于S 系的速度为v a = -0.67c (注意负号)。
令电子b 的参考系为动系S '(电子b 相对于参考系S '静止),则S '系相对于S 系的速度v =0.67c 。
求两个电子的相对速度即为求S '系中观察电子a 的速度v'a 的大小。
根据洛伦兹速度变换公式可以得到:a a a v cv v 21v v −−=′,代入已知量可求v'a ,取|v'a |得答案C 。
本题主要考察两个惯性系的选取,并注意速度的方向(正负)。
本题还可选择电子a 为相对静止参考系S ,令样品为动系S '(此时,电子b 相对于参考系S '的速度为v'b = 0.67c )。
那么S '系相对于S 系的速度v =0.67c ,求两个电子的相对速度即为求S 系中观察电子b 的速度v b 的大小。
14.4 两个惯性系存在接近光速的相对运动,相对速率为u (其中u 为正值),根据狭义相对论,在相对运动方向上的坐标满足洛仑兹变换,下列不可能的是:【D 】(A )221c u/)ut x (x −−=′; (B )221cu/)ut x (x −+=′ (C )221c u /)t u x (x −′+′=; (D )ut x x +=′ 分析:既然坐标满足洛仑兹变换(接近光速的运动),则公式中必然含有2211cv −=γ,很明显答案A 、B 、C 均为洛仑兹坐标变换的公式,答案D 为伽利略变换的公式。
大学物理相对论练习题及答案一、选择题1. 相对论的基本假设是:A. 电磁场是有质量的B. 速度光速不变C. 空间和时间是绝对的D. 物体的质量是不变的答案:B2. 相对论中,当物体的速度接近光速时,它的质量会:A. 减小B. 增大C. 不变D. 可能增大或减小答案:B3. 太阳半径为6.96×10^8米,光速为3×10^8米/秒。
如果一个人以0.99光速的速度环绕太阳一圈,他大约需要多长时间(取π≈3.14):A. 37分钟B. 1小时24分钟C. 8小时10分钟D. 24小时答案:B4. 相对论中的洛伦兹收缩效应指的是:A. 时间在运动方向上变慢B. 物体的长度在运动方向上缩短C. 质量增加D. 光速不变答案:B5. 相对论中的时间膨胀指的是:A. 时间在运动方向上变慢B. 物体的长度在运动方向上缩短C. 质量增加D. 光速不变答案:A二、填空题1. 物体的质量与运动速度之间的关系可以用___公式来表示。
答案:爱因斯坦的质能方程 E=mc^2.2. 相对论中,时间膨胀和洛伦兹收缩的效应与___有关。
答案:物体的运动速度.3. 光速在真空中的数值约为___,通常记作c。
答案:3×10^8米/秒.4. 相对论中,当物体的速度超过光速时,其相对质量会无限___。
答案:增大.5. 狭义相对论是由___发展起来的。
答案:爱因斯坦.三、简答题1. 请简要解释狭义相对论的基本原理及其对物理学的影响。
狭义相对论的基本原理是光速不变原理,即光速在任何参考系中都保持不变。
它推翻了经典牛顿力学中对于时间和空间的绝对性假设,提出了时间膨胀和洛伦兹收缩的效应。
狭义相对论在物理学中的影响非常深远,它解释了电磁现象、粒子物理现象等方面的问题,为后续的广义相对论和量子力学提供了理论基础。
2. 请解释相对论中的时间膨胀和洛伦兹收缩效应。
时间膨胀效应指的是当物体具有运动速度时,其所经历的时间相对于静止状态下的时间会变得更长。
14. 相对论班级 学号 姓名 成绩一、选择题1.⑴某惯性系中一观察者,测得两事件同时刻、同地点发生, 则在其它惯性系中,它们不同时发生。
⑵在惯性系中同时刻、不同地点发生的事件,在其它惯性系中必不同时发生;⑶在某惯性系中不同时、不同地发生的两事件,在其它惯性系中必不同时,而同地发生;⑷在不同惯性系中对同一物体的长度、体积、质量、寿命的测量结果都相同;⑸某惯性系中观察者将发现,相对他静止的时钟比相对他匀速运动的时钟走得快。
正确说法是:(A) ⑴、⑶、⑷、⑸; (B) ⑴、⑵、⑶; (C) ⑵、⑸; (D) ⑴、⑶。
( C )解:根据洛伦兹坐标变换式22222/1,/1c v x c v t t c v t v x x -∆-∆='∆-∆-∆='∆, (1)当0,0=∆=∆t x 时,应有0',0'=∆=∆t x ,错误。
(2)当0,0=∆≠∆t x 时,应有0',0'≠∆≠∆t x ,正确。
(3)当0,0≠∆≠∆t x 时,应有0',0'≠∆≠∆t x ,错误。
(4)长度、体积、质量、寿命的测量结果都具有相对性,相对于不同惯性系,错误。
(5)根据运动时钟延缓效应,相对观察者静止的时钟总比相对他匀速运动的时钟走得快,正确。
2.相对地球的速度为υ的一飞船,要到离地球为5光年的星球去。
若飞船上的宇航员测得该旅程为3光年,则υ应是: (A)c 21; (B) c 53; (C) c 109; (D) c 54。
( D ) 解:原长为l 0=5光年,运动长度为l =3光年,根据运动长度收缩公式l l =解得45c υ=。
3.坐标轴相互平行的两个惯性系S 、S′,S ′相对S 沿OX 轴正方向以 υ匀速运动,在S ′中有一根静止的刚性尺,测得它与OX ˊ轴成30º角,与OX 轴成45º角,则υ应为: (A) c 32; (B) c 31; (C) c 21)32(; (D) c 31)31(。
练习二十 相对论力学基础一、选择题1. 一匀质矩形薄板,当它静止时,测得其长度为a ,宽度为b ,质量为m 0。
由此可算出其质量面密度为 σ = m 0/(ab )。
假定该薄板沿长度方向以接近光速的速度v 作匀速直线运动,此种情况下,测算该薄板的质量面密度为 (A ) ()[]2201c v ab m −。
(B ) ⎟⎠⎞⎜⎝⎛−2201c v ab m 。
(C ) ()⎥⎦⎤⎢⎣⎡−232201c v ab m 。
(D ) ()ab c v m 2201−。
2. 一个电子的运动速度v =0.99c ,它的动能是(A ) 3.5MeV 。
(B ) 4.0MeV 。
(C ) 3.1MeV 。
(D ) 2.5MeV 。
3. 某核电站年发电量为100亿度,它等于3.6×1016J 。
如果这些能量是由核材料的全部静止能转化产生的,则需要消耗的核材料的质量为 (A ) 0.4kg 。
(B ) 0.8kg 。
(C ) 12×107kg 。
(D ) (1/12)×107kg 。
4. 把一个静止质量为m 0的粒子,由静止加速到v =0.6c (c 为真空中的光速)需做功为 (A ) 0.18m 0c 2。
(B ) 0.25m 0c 2。
(C ) 0.36m 0c 2。
(D ) 1.25m 0c 2。
5. 在惯性系S 中一粒子具有动量(p x , p y , p z )=(5,3,2)MeV /c ,总能量E =10 MeV (c 为真空中的光速),则在S 系中测得粒子的速度v 最接近于 (A ) 3c /8。
(B ) 2c /5。
(C ) 3c /5。
(D ) 4c /5。
6. 圆柱形均匀棒静止时的密度为ρ0,当它以速率u 沿其长度方向运动时,测得它的密度为ρ,则两测量结果的比ρ:ρ0是 (A )221c u −。
(B )2211c u −。
(C )221c u −。
一、选择题1.在某地发生两件事,静止位于该地的甲测得时间间隔为4s,若相对甲作匀速直线运动的乙测得时间间隔为5s,则乙相对于甲的运动速度是(c表示真空中光速)[ ]A 、(4/5)cB 、(3/5)cC 、(1/5)cD 、(2/5)c2.一宇宙飞船相对地球以 0.8c(c表示真空中光速)的速度飞行.一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为 90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为[ ]A 、90mB 、54mC 、270mD 、150m3.K系与K'系是坐标轴相互平行的两个惯性系,K'系相对于K系沿OX轴正方向匀速运动.一根刚性尺静止在K'系中,与O'X'轴成 30°角.今在K系中观测得该尺与OX轴成 45°角,则K'系相对于K系的速度是[ ]A 、(2/3)cB 、(1/3)cC D4.某宇宙飞船以0.8c 的速度离开地球,若地球上接收到它发出的两个信号之间的时间间隔为10s ,则宇航员测出的相应的时间间隔为[ ]A 、6sB 、8sC 、10sD 、3.33s5.一个电子的运动速度为v =0.99c ,则该电子的动能k E 等于(电子的静止能量为0.51MeV )[ ]A 、3.5MeVB 、4.0MeVC 、3.1MeVD 、2.5MeV6.宇宙飞船以速度v 相对地面作匀速直线飞行,某一时刻,飞船头部的宇航员想飞船尾部发出一光讯号,光速为c,经t ∆时间(飞船上的钟测量)后,被尾部接收器收到,由此可知飞船固有长度为[ ]A 、c t ∆B 、v t ∆C 、c t ∆ [1-(v/c)2]1/2D 、c t ∆/[1-(v/c)2]1/2二、填空题1.惯性系S 和S ',S '相对S 的速率为0.6c ,在S 系中观测,一件事情发生在43210,510t s x m -=⨯=⨯处,则在S '系中观测,该事件发生在 处。
2.惯性系S 和S ',S '相对S 的速率为0.8c ,在S '系中观测,一事件发生在110,0t s x m ''==处,第二个事件发生在722510,120t s x m -''=⨯=-处,则在S 系中测得两事件的时空坐标为 。
(1)相对于任何惯性系,一切运动物体的速度都不可能达到真空中的光速。
(2)质量、长度、时间的测量结果都是随物体与观测者的相对运动状态而改变的。
(3)在一惯性系中发生于同一时刻、不同地点的两个事件,在其他相对此惯性系运动的任何惯性系中一定不是同时发生的。
(4)在一惯性系中发生于同一时刻、不同地点的两个事件,在其他相对此惯性系运动的惯性系中,可能不是同时发生。
2.如图所示,在地面上同时发生的两个事件A 、B ,在相对地面以u 的速度运动的火箭参考系上测得【 】。
A .A 先于B 发生B .B 先于A 发生C .A 、B 同时发生D .不同时发生,但不能确定哪个在先3.宇宙飞船相对地面以速度u 作匀速直线运动。
某时刻位于飞船头部的光信号发生器向飞船尾部发出一光脉冲,宇航员测得经过t ∆时间尾部接收器收到此信号,则可知飞船的固有长度为[ ]。
A .t c ∆B .t u ∆C .()2/1c u t c -∆D .()2/1/c u t c -∆ 4.高速列车以u 速驶过车站,固定在站台上的激光打孔机,两激光束间距为m 1,在地面参考系测量它在车厢上同时打出两个小孔。
(1)求在列车参考系测得的两孔间距;(2)在地面参考系测得两孔间距。
5.在惯性系K 中同一地点发生的两事件A 和B ,测得A 、B 两事件发生的时间间隔为s 4,在另一惯性系/K 中测得B 事件迟于A 事件s 5。
求:两惯性系的相对速度。
6.在惯性系K 中测得A 、B 两事件发生于同一地点,且时间间隔s t t t A B 2=-=∆;在另一惯性系/K 中测得这两事件的时间间隔s t t t A B 3///=-=∆。
问:在/K 中测得两事件的空间距离是多少?7.在地球上测得半人马星座的α星距离地球m 16103.4⨯。
一宇宙飞船以c u 999.0=的速率通过地球与α星之间的距离。
问:(1)地球参考系测得此行程需要多少时间?(2)飞船上时钟记录了多少时间?8.伽利略相对原理与狭义相对论的相对性原理有何相同之处?有何不同之处?9.“同时性”的相对性是针对任意两个事件而言的吗?5光年,宇航员欲将此距离缩为3光年,他乘的飞船相对地球的速度应是[ ]A. c 21B. c 53C. c 54D. c 1092.火箭的固有长度为L ,其相对地面以1ν作匀速直线运动。
物理例题例6-1如图设坐标系s、s’在起始时刻坐标原点重合,两坐标系各坐标轴平行,坐标系s’相对于坐标系s以速度u=0.8c向x轴的正向运动。
在t=0时,由o点发射一列光波。
经过1秒后,在坐标系s中观察光波同时到达P1,P2两点求:(1).在s’系中观察光波到达P1,P2两点的坐标。
(2).在两坐标系中观测到的P1,P2两点间的空间、时间间隔分别是多少?,解:(1).P1在s坐标系的坐标为:(-c,0,0,1),由洛仑兹变换,它在s’系中的坐标应为:3x c'===-,220.81()3u ct x ct---'===y y'==0Z Z'==于是,p1在S’系中的坐标为(-3c,0,0,3)。
同理,p2在S’系中的坐标为(c/3,0,0,1/3)。
(2). 在S坐标系中观测到的P1、P2两点间的距离为2c。
时间间隔为0。
在S’系中观测到的P1、P2两点间的距离为10c/3。
时间间隔为-8/3秒。
讨论:经洛仑兹变换后,两参考系观察到的空间间隔、时间间隔都发生了变化,在一个坐标系中观察到的同时发生的事件,在另一参考系中则不是同时发生的。
可见,在相对论时空观里,时间、空间、物质运动是互相联系的整体。
相对论的时间、距离、同时性等概念都是相对的。
例6-2如图一根长度为0l的米尺,静止在s’系中,与x’轴的夹角为300,在s系中观测时,与x轴的夹角为450。
求:s’相对于s系的运动速度。
解:由于长度只在运动方向上发生收缩效应,在s’系中30coslx='30sinly='在S系中,由长度收缩公式:cos30x l=30sinly=例6-1图例6-2图由题意:4530y tg tg x ==解得:u =0l例6-3 观察者A 看到空间距离为4m 的两个事件同时发生,观察者B 量出这两个事件的空间距离为5m 。
问:(1)两观察者的相对速度是多大 (2)两个事件是否同时发生解:设观察者A 在s 系,观察者B 在s ’系。
第十四章 相对论一 选择题(共10题)1.(180401101)狭义相对论反映了 [ ](A )微观粒子的运动规律 (B )电磁场的变化规律(C )引力场的时空结构 (D )高速运动物体的运动规律2.(180501202)在某地发生两事件,与该处相对静止的甲测得时间间隔为4s ,若相对甲作匀速直线运动的乙测得时间间隔为5s ,则乙相对于甲的运动速度是[ ](A )c 54 (B )c 53 (C )c 51 (D )c 52 3.(180601201)在狭义相对论中,下列说法哪些是正确的? [ ](1)一切运动物体相对于观察者的速度都不能大于真空中的光速;(2)质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的; (3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的; (4)惯性系中的观察者观察一个相对他作匀速运动的时钟时,会看到这个时钟比与他相对静止的相同时钟走得慢些。
(A )(1),(3),(4) (B )(1),(2),(4) (C )(1),(2),(3) (D )(2),(3),(4)4.(180601202)关于同时性,有人得出以下一些结论,其中哪个是正确的? [ ] (A )在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生;(B )在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生; (C )在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生;(D )在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生。
5.(180501103)边长为L 的正方形,沿着一棱边方向以高速v 运动,则地面观测者测得该运动正方形的面积为 [ ](A )2L (B )22)(1c v L- (C )221)c v (L - (D ))(221)cv (v L -6.(180501201)一根米尺静止在S '系中,与X O ''轴成 30角。
一、选择题1.0018:某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向(B) 匀加速直线运动,加速度沿x 轴负方向(C) 变加速直线运动,加速度沿x 轴正方向(D) 变加速直线运动,加速度沿x 轴负方向 [ ] 2.5003:一质点在平面上运动,已知质点位置矢量的表示式为(其中a 、b 为常量),则该质点作(A) 匀速直线运动 (B) 变速直线运动(C) 抛物线运动 (D)一般曲线运动 [ ] 3.0015:一运动质点在某瞬时位于矢径的端点处, 其速度大小为 (A) (B) (C) (D) 4.0508:质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈。
在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2p R /T , 2p R/T (B) 0 , 2πR /T (C) 0 , 0 (D) 2πR /T , 0. [ ] 5.0518:以下五种运动形式中,保持不变的运动是(A) 单摆的运动 (B) 匀速率圆周运动(C) 行星的椭圆轨道运动 (D) 抛体运动 (E) 圆锥摆运动 [ ]6.0519:对于沿曲线运动的物体,以下几种说法中哪一种是正确的:(A) 切向加速度必不为零(B) 法向加速度必不为零(拐点处除外)(C) 由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零(D) 若物体作匀速率运动,其总加速度必为零(E) 若物体的加速度为恒矢量,它一定作匀变速率运动 [ ] 7.0602:质点作曲线运动,表示位置矢量,表示速度,表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) , (2) , (3) , (4)(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的 [ ]8.0604:某物体的运动规律为,式中的k 为大于零的常量。
1.狭义相对论的两个基本假设分别是——————————————和——————————————。
2.在S系中观察到两个事件同时发生在x轴上,其间距离是1m。
在S´系中观察这两个事件之间的距离是2m。
则在S´系中这两个事件的时间间隔是—————。
—————————3.宇宙飞船相对于地面以速度v做匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过Δt(飞船上的钟)时间后,被尾部的接受器收到,真空中光速用c表示,则飞船的固有长度为。
——————————————4.一宇航员要到离地球为5 光年的星球去旅行,如果宇航员希望把这路程缩短为 3 光年,真空中光速用c表示,则他所乘的火箭相对地球的速度应是———。
———————————5.在某地发生两件事,静止位于该地的甲测得时间间隔为4s,若相对甲做匀速直线运动的乙测得时间间隔为5s,真空中光速用c表示,则乙相对于甲的运。
动速度是———————————6.一宇宙飞船相对地球以0.8c(c表示真空中光速)的速度飞行。
一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90m,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为。
——————————————7.两个惯性系中的观察者O 和O´以0.6c(c为真空中光速)的相对速度互相接近,如果O测得两者的初距离是20m , 则O´测得两者经过时间间隔Δt´=后相遇。
——————————————8.π+介子是不稳定的粒子,在它自己的参照系中测得平均寿命是 2.6×10-8s,如果它相对实验室以0.8c(c为真空中光速)的速度运动,那么实验室坐标。
系中测得的π+介子的寿命是——————————————9.c表示真空中光速,电子的静能m o c2 = 0.5 MeV,则根据相对论动力学,动。
能为1/4 Mev的电子,其运动速度约等于——————————————10.α粒子在加速器中被加速,当其质量为静止质量的5倍时,其动能为静止能倍量的——————————————= 11. 在S系中观察到两个事件同时发生在x轴上,其间距是1000 m。
1.在惯性系S 中观察到有两个事件发生在同一地点,其时间间隔为4.0 s ,从另一惯性系S '中观察到这两个事件的时间间隔为6.0 s ,试问从S ′系测量到这两个事件的空间间隔是多少?设S ′系以恒定速率相对S 系沿x x '轴运动。
解:由题意知在 S 系中的时间间隔为固有时,即Δt = 4.0 s ,而Δt ′ = 6.0 s 。
根据时间延缓效应的关系式22/1'c v tt -∆=∆可得S′系相对S 系的速度为c c t t v 35'1212=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∆∆-= 两事件在S′系中的空间间隔为m 1034.1''9⨯=∆=∆t v x2.若从一惯性系中测得宇宙飞船的长度为其固有长度的一半,试问宇宙飞船相对此惯性系的速度为多少?(以光速c 表示)解:设宇宙飞船的固有长度为0l ,它相对于惯性系的速率为v ,而从此惯性系测得宇宙飞船的长度为20l ,根据洛伦兹长度收缩公式,有200121⎪⎭⎫ ⎝⎛-=c v l l可解得c c v 866.023==3.半人马星座α星是离太阳系最近的恒星,它距地球为4.3×1016 m 。
设有一宇宙飞船自地球往返于半人马星座α星之间。
(1)若宇宙飞船的速率为0.999C ,按地球上时钟计算,飞船往返一次需多少时间?(2)如以飞船上时钟计算,往返一次的时间又为多少?解:(1)以地球上的时钟计算,飞船往返一次的时间间隔为a 0.91087.228≈⨯==∆s v s t(2)以飞船上的时钟计算,飞船往返一次的时间间隔为a 0.40s 1028.11'722≈⨯=-∆=∆c v t t4.若一电子的总能量为5.0 MeV ,求该电子的静能、动能、动量和速率。
解:电子静能为)kg 101.9(,MeV 512.0310200-⨯===m c m E 电子动能为MeV488.40K =-=E E E由20222E c p E +=,得电子动量为 12121202s m kg 1066.2)(1--⋅⋅⨯=-=E E c p由 21220)-(1-=c v E E 得电子速率为cE E E c v 995.0212202=⎪⎪⎭⎫ ⎝⎛-=5.如果将电子由静止加速到速率为0.10c ,需对它作多少功?如将电子由速率为0.80 c 加速到0.90c ,又需对它作多少功?解:由相对论性的动能表达式和质速关系可得当电子速率从 v 1增加到v 2时,电子动能的增量为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-==-=--2121212220202120221211)-(-)-()c v ()c v (c m c m c m c m c m E E E Δk k k根据动能定理,当v 1 = 0, v 2 = 0.10c 时,外力所作的功为eV 1058.23k ⨯=∆=E W当v 1 = 0.80c ,v 2 = 0.90c 时,外力所作的功为eV 1021.35k ⨯='∆='E W由计算结果可知,虽然同样将速率提高0.1c ,但后者所作的功比前者要大得多,这是因为随着速率的增大,电子的质量也增大。