变化的电场产生磁场
- 格式:ppt
- 大小:2.48 MB
- 文档页数:35
高中物理磁场和电场的知识点1.磁场1磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.2磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.3磁现象的电本质:一切磁现象都可归结为运动电荷或电流之间通过磁场而发生的相互作用.4安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.5磁场的方向:规定在磁场中任一点小磁针N极受力的方向或者小磁针静止时N极的指向就是那一点的磁场方向.2.磁感线1在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.2磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.3几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度1定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/A?m.2磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.3磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.4磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:1地磁场的N极在地球南极附近,S极在地球北极附近.2地磁场B的水平分量Bx总是从地球南极指向北极,而竖直分量By则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.3在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5.安培力1安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.2安培力的方向由左手定则判定.3安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.洛伦兹力1洛伦兹力的大小f=qvB,条件:v⊥B.当v∥B时,f=0.2洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.3洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.4在磁场中静止的电荷不受洛伦兹力作用.7.带电粒子在磁场中的运动规律在带电粒子只受洛伦兹力作用的条件下电子、质子、α粒子等微观粒子的重力通常忽略不计,1若带电粒子的速度方向与磁场方向平行相同或相反,带电粒子以入射速度v做匀速直线运动.2若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动.①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB8.带电粒子在复合场中运动1带电粒子在复合场中做直线运动①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解.②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解.2带电粒子在复合场中做曲线运动①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动.处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解.②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解.③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出辅助方程,再与其他方程联立求解.1.两种电荷1自然界中存在两种电荷:正电荷与负电荷.2电荷守恒定律2.库仑定律1内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上.2适用条件:真空中的点电荷.点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少.3.电场强度、电场线1电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性.2电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式:E=F/q方向:正电荷在该点受力方向.3电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷或无穷远处,终止于负电荷或无穷远处;②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹.4匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.5电场强度的叠加:电场强度是矢量,当空间的电场是由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和.4.电势差U:电荷在电场中由一点A移动到另一点B时,电场力所做的功WAB与电荷量q的比值WAB/q叫做AB两点间的电势差.公式:UAB=WAB/q电势差有正负:UAB=-UBA,一般常取绝对值,写成U.5.电势φ:电场中某点的电势等于该点相对零电势点的电势差.1电势是个相对的量,某点的电势与零电势点的选取有关通常取离电场无穷远处或大地的电势为零电势.因此电势有正、负,电势的正负表示该点电势比零电势点高还是低.2沿着电场线的方向,电势越来越低.6.电势能:电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电势为零处电场力所做的功ε=qU7.等势面:电场中电势相等的点构成的面叫做等势面.1等势面上各点电势相等,在等势面上移动电荷电场力不做功.2等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面.3画等势面线时,一般相邻两等势面或线间的电势差相等.这样,在等势面线密处场强大,等势面线疏处场强小.8.电场中的功能关系1电场力做功与路径无关,只与初、末位置有关.计算方法有:由公式W=qEcosθ计算此公式只适合于匀强电场中,或由动能定理计算.2只有电场力做功,电势能和电荷的动能之和保持不变.3只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变.9.静电屏蔽:处于电场中的空腔导体或金属网罩,其空腔部分的场强处处为零,即能把外电场遮住,使内部不受外电场的影响,这就是静电屏蔽.10.带电粒子在电场中的运动1带电粒子在电场中加速带电粒子在电场中加速,若不计粒子的重力,则电场力对带电粒子做功等于带电粒子动能的增量.2带电粒子在电场中的偏转带电粒子以垂直匀强电场的场强方向进入电场后,做类平抛运动.垂直于场强方向做匀速直线运动3是否考虑带电粒子的重力要根据具体情况而定.一般说来:①基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示以外,一般都不考虑重力但不能忽略质量.②带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力.4带电粒子在匀强电场与重力场的复合场中运动由于带电粒子在匀强电场中所受电场力与重力都是恒力,因此可以用两种方法处理:①正交分解法;②等效“重力”法.11.示波管的原理:示波管由电子枪,偏转电极和荧光屏组成,管内抽成真空.如果在偏转电极XX′上加扫描电压,同时加在偏转电极YY′上所要研究的信号电压,其周期与扫描电压的周期相同,在荧光屏上就显示出信号电压随时间变化的图线.12.电容定义:电容器的带电荷量跟它的两板间的电势差的比值[注意]电容器的电容是反映电容本身贮电特性的物理量,由电容器本身的介质特性与几何尺寸决定,与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。
・物理实验・“变化的电场产生磁场”的演示实验设计郑曙辉(宁波市第二中学,浙江宁波 315010) 在高中物理(试验修订本・必修加选修)第二册教材第19章“电磁场和电磁波”第三节“电磁场”这节内容中,学生对麦克斯韦电磁理论的两条核心内容:(1)变化的磁场产生电场;(2)变化的电场产生磁场,都能接受,但缺乏感性、直观的认识.而通常教师在教学中也只对“变化的磁场产生电场”这个结论用实验验证.对“变化的电场产生磁场”大多数采用理论分析说明,灌输给学生.教材及教参中也没有演示实验介绍,学生无法看到直观的演示现象,这样,不利于学生能力的培养.笔者分析原因认为:教材及教参对“变化的电场产生磁场”没有实验介绍是因为一般的变化电场产生的磁场比较弱,不足以使磁针发生偏转.也就是说,找不到一个较理想的变化电场来产生较强的磁场.笔者在教学中发现,用感应圈的放电柱与平行板电容器的两极板相连,通过平行板电容器内的电场变化可产生较强的磁场,从而使得处于其中的磁针发生偏转.[做法]用导线将感应圈的两个放电柱分别与平行板电容器的两块极板相连,感应圈接6~8V 的直流电,通过感应圈的通、断电使电容器极板上的电场发生变化,从而产生一个较强的磁场.是否产生新磁场可用小磁针来检验:将一枚小磁针事先放在电容器的两个极板间,在感应圈通、断电的瞬间小磁针由于受到新磁场的作用而偏离了原来的位置.在此实验中,小磁针的偏转可用实物投影把偏转现象放大.实验装置的示意图如图1所示.图1图1中木块起垫高作用,使小磁针与平行板电容器的铜板等高.实验中发现,每当通、断电时,小磁针就会发生较明显的偏转.显然,小磁针受到了除地磁场以外的其它磁场对它的作用力.这个磁场只能是在通、断电时平行板电容器间的变化电场产生的.因此,实验证明变化的电场的确可以产生磁场.此实验的效果相当好,大大地激发了学生的学习积极性.为什么用感应圈给电容器充、放电可以产生较强的磁场?这牵涉到感应圈的结构及工作原理.如图2是感应圈的内部结构示意图.其主要部分是在铁芯上用较粗的绝缘金属线绕成圈数不多的原线圈L 1,在原线圈L 1的外面,套上一个用几千圈绝缘性能良好的细金属线绕成的副线圈L 2,副线圈L 2两端分别接到放电柱上.图2其工作原理如图3所示.当拨动转换开关ZK 至1、2接点位置时,电源接通,电流通过ZK 1,DK 、原线圈L 1、ZK 2返回电源,构成原线圈边回路.这时,铁芯被磁化,吸引断续器DK 簧片,使原线圈L 1断路.原线圈边无电流通过,铁芯失磁,DK 簧片返回,电流再度接通.这样,借助断续器DK 的作用,在原线圈L 1里出现断图3续的电流,引起铁芯磁通量的交替变化.若通、断电时电流变化率较大,可使放电柱间的空气击穿而放电,放电时的电流呈脉动状单向直流.但是,在本实验中,我们不需要放电柱放电,而是把放电柱用导线与平行板电容器的两极板相连,使感应出的几万伏高压降落在电容器极板上,在两极板间产生强电场.然后,通过通、断电使电容器间的电场产生变化.这样,这个变化的电场可产生较强的磁场,使得小磁针偏离了原—42—V ol.24N o.4 物 理 教 师 第24卷第4期 (2003) PHY SICS TE ACHER 2003年 提高“用油膜法估测分子的大小”实验成功率的探讨张丽英 吴新民(云南省建水第一中学,云南建水 654300) “油膜法估测分子大小”是高中物理新大纲增设的学生分组实验.本实验能使学生对分子运动理论的内容增加理解和感受.实验研究的对象是油酸(C17H33 C OOH)在水面上形成的油膜.实验原理是:当把一滴用酒精稀释过的油酸滴在水面上时,油酸就在水面上散开,其中酒精溶于水中,并很快挥发,剩下一层油酸薄膜浮于水面.油酸(C17H33C OOH)中的烃基C17H33———与水没有亲合力要冒出水面,羧基———C OOH因对水有很强的亲合力被水吸引,就留在水里.这样油酸分子一个个直立在水面上形成单分子厚度的油膜.实验只要知道油膜的体积并测出油膜的面积,即可根据计算式d=V/S估算出油酸分子的直径.我校高二年级首开本实验.配用的仪器是杭州之江光学仪器厂生产的油膜实验器(标准代号:Q/ HZG57—2001),水盘是直径为22cm,面积为380cm2的圆盘.用注射器做滴管,其针筒容积为3m L,针头为6号针头.稀释的油酸浓度为1/500.用的粉是市售痱子粉.我校高二年级10个教学班,共有学生600多人,每班约分30个小组,每组2-3人,实验反馈的结果使我们非常震惊.测得油酸分子大小数量级在10-10m-10-8m范围内的学生还不到50%!有的小组一次都没做成功,有的小组一次成功,一次又不成功.有的班级成功率高,有的班级成功率低.一个新开的学生实验做成如此结果,促使我们下决心进行研究和分析.笔者经过多次反复实验,并了解了部分学生的实验情况,发现了一些应注意的问题.鉴于有些问题在有关刊物上已有同行指出过,故下面列出的仅是我们发现的问题中的一部分.1 水盘的选择盘子为深色(最好是黑色)为好(大小可依油酸浓度的配制而定).因为水是无色透明的,而痱子粉是白色的,这样可增大黑白对比度,使油膜面积的测量较为准确.2 水的深度在1~2cm之间为宜,水太浅了痱子粉散不开,而太深时倒进去的水不能很快静止,学生们性急,又赶时间,痱子粉撒上后,由于水的流动使粉末也运动,扩散后油膜形状不稳定、不规则,面积测量误差大,故要提醒学生待水静止后才开始撒粉.3 水的温度这是一个容易忽略的问题.引起我们注意的原因是上午几个班做实验时,先做的几个班较好,越后的班级越差.而我们用的水是自来水管里面的水,水管暴露在外受太阳光的照射.后来我们用不同温度的水反复做实验,证实水温确实会影响成功率.一般来说,水温不能太高(最好低于35℃),水温高了的结果是粉撒下后不稳定,油膜扩散后的形状也不稳定,使面积变得不规则,奇形怪状,难于测量,测出来误差就大.这可能是水温高,水分子运动太激烈的缘故.4 撒粉的方法(1)只须撒在盘的中央.方法是用手拈一点痱子粉,手在盘中央的正上方20cm左右处轻轻地撒下即可,不必到处都撒,粉自己会散开.(2)绝不能撒得太多,不然粉太厚,油膜扩散时推不开,油膜扩散的面积很小,只是形成一个小窟窿,或几条裂缝,导致实验完全失败.5 滴油酸的方法来的位置.由于利用的是将感应的高电压直接降落在电容器的两个极板上,而不让其放电.因此,在实验中应注意平行板电容器的两极板间的距离不能太小(一般为20 cm左右),以避免放电;其次,应注意平行板电容器两块极板与小磁针的位置,避免变化电场产生的新磁场与地磁场的方向一致,而出现小磁针不偏离原来方向的情况,发生无新磁场产生的错觉;另外,在实验中应注意安全,撤掉仪器前应先将电容器放电,以防高压电击.(收稿日期:2002-10-31)—52—第24卷第4期 物 理 教 师 V ol.24N o.4 2003年 PHY SICS TE ACHER (2003)。
电磁场与电磁波【教学目标】1.初步了解麦克斯韦电磁场理论的基本思想。
2.了解电磁波的产生和电磁波的特点。
3.了解电磁场的物质性。
4.了解麦克斯韦电磁场理论在物理学发展史上的意义。
【教学重难点】1.电磁振荡中电场能和磁场能的转化。
2.麦克斯韦电磁场理论的基本内容。
【教学过程】一、新课导入1.打开收音机的开关,转动选台旋钮,旋到使收音机收不到电台的频道,然后开大音量。
在收音机附近,将电池盒的两根引线反复碰撞,你会听到收音机中发出“喀喀”的响声。
为什么会产生这种现象呢?打开电扇,将它靠近收音机,看看又会怎样。
提示:电磁波是由电磁振荡产生的,在收音机附近,将电池盒两引线反复碰触,变化的电流产生变化的磁场,变化的磁场产生变化的电场,这样会发出电磁波,从而导致收音机中发出“喀喀”声。
若将转动的电扇靠近收音机,因为电扇中电动机内通有交变电流,电动机的运行同样会引起收音机发出“喀喀”声。
2.复习电磁振荡的周期和频率:(1)电磁振荡的周期T:电磁振荡完成一次周期性变化所用的时间。
(2)电磁振荡的频率f:1s内完成周期性变化的次数。
(3)LC回路的周期公式。
周期公式:T=2π√LC。
其中:周期T、自感系数L、电容C的单位分别是秒(s)、亨利(H)、法拉(F)。
二、新课教学(一)电磁场1.变化的磁场产生电场即使在变化的磁场中没有闭合电路,也同样要在空间产生电场。
2.变化的电场产生磁场逐步深入讲解:1.均匀变化的磁场产生稳定的电场;非均匀变化的磁场产生变化的电场。
周期性变化的磁场产生同频率周期性变化的电场。
2.均匀变化的电场产生稳定的磁场;非均匀变化的电场产生变化的磁场。
周期性变化的电场产生同频率周期性变化的磁场。
英国物理学家麦克斯韦在总结前人研究电磁现象成果的基础上,建立了完整的电磁场理论。
可定性表述为变化的磁场产生电场,变化的电场产生磁场,变化的电场和磁场总是相互联系的,形成一个不可分离的统一场,这就是电磁场。
(二)电磁波紧接着电磁场进行讲述:1.电磁波的产生:变化的电场和磁场由近及远地向周围传播,形成了电磁波。
1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的方程为: 。
2.设线性各向同性的均匀媒质中,02=∇φ称为 方程。
3.时变电磁场中,数学表达式H E S⨯=称为 。
5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为: 。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。
二、简述题11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇ ,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?一、填空题1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D 和电场E 满足的方程为: 。
2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位所满足的方程为 。
3.时变电磁场中,坡印廷矢量的数学表达式为 。
4.在理想导体的表面,电场强度的 分量等于零。
5.表达式()S d r A S ⋅⎰称为矢量场)(r A 穿过闭合曲面S 的 。
7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。
8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。
9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。
二、简述题11.试简述磁通连续性原理,并写出其数学表达式。
12.简述亥姆霍兹定理,并说明其意义。
13.已知麦克斯韦第二方程为S d t B l d E S C ⋅∂∂-=⋅⎰⎰,试说明其物理意义,并写出方程的微分形式。