抛物型方程的有限差分法
- 格式:pptx
- 大小:558.96 KB
- 文档页数:78
10_抛物型方程的有限差分方法抛物型方程是一类常见的偏微分方程,广泛应用于自然科学和工程学的领域中。
有限差分方法是一种常用的数值求解抛物型方程的方法之一、本文将介绍抛物型方程的有限差分方法(II)。
有限差分方法主要基于离散化的思想,将偏微分方程转化为差分方程,进而求解差分方程的数值解。
对于抛物型方程,其一般形式可以表示为:∂u/∂t=Δu+f(x,t)其中,u(x, t)是未知函数,表示空间位置x和时间t上的解,Δu表示Laplace算子作用于u的结果,f(x, t)是已知函数。
有限差分方法的基本思想是将空间和时间域进行离散化,将连续的空间和时间划分为有限个网格点,然后使用差分近似代替偏导数,得到差分方程。
假设空间域被划分为Nx个网格点,时间域被划分为Nt个网格点,对于每个网格点(i,j),可以表示为(x_i,t_j),其中i=0,1,...,Nx,j=0,1,...,Nt。
在有限差分方法中,我们使用中心差分近似来代替偏导数。
对于时间导数,可以使用向前差分或向后差分,这里我们使用向前差分,即:∂u/∂t≈(u_i,j+1-u_i,j)/Δt对于空间导数,可以使用中心差分,即:∂^2u/∂x^2≈(u_i-1,j-2u_i,j+u_i+1,j)/Δx^2将上述差分近似代入抛物型方程中,可以得到差分方程的离散形式:(u_i,j+1-u_i,j)/Δt=(u_i-1,j-2u_i,j+u_i+1,j)/Δx^2+f_i,j其中,f_i,j=f(x_i,t_j)。
重排上式,可以得到递推关系式:u_i,j+1=αu_i-1,j+(1-2α)u_i,j+αu_i+1,j+Δt*f_i,j其中,α=Δt/Δx^2通过设置初始条件和边界条件,可以利用以上递推关系式得到抛物型方程的数值解。
总结来说,抛物型方程的有限差分方法(II)是一种常用的数值求解抛物型方程的方法。
它基于离散化的思想,将偏微分方程转化为差分方程,然后利用中心差分近似代替偏导数,得到差分方程的离散形式。
抛物方程的有限差分法作者:李娜来源:《科技视界》2014年第32期【摘要】抛物方程是描述物理现象的一类重要方程,其中差分方法和有限元方法是求其数值解的两类主要方法。
本文主要介绍有限元方法中的向前差分法,首先简单介绍向前差分法,给出稳定性和收敛性的概念,然后以一维热传导方程为例进行求解,同时给出收敛性和稳定性分析,并利用Matlab软件做出了误差分析图。
【关键词】抛物方程;有限元方法;向前差分法;误差分析0 引言由于抛物型方程与时间t有关,称为非驻定问题。
非驻定问题可用差分法,也可用有限元法求解。
热传导方程式(或称热方程)是一个重要的偏微分方程,它描述一个区域内的温度如何随时间变化。
热传导在三维等方向均匀介质里的传播可用方程式u■=kΔu表示,其中u■=u (t,x,y,z)表示温度,它是时间变量t与空间变量(x,y,z)的函数,■是空间中一点的温度对时间的变化率,uxx、uyy和uzz是温度对三个空间坐标轴的二次导数。
k决定于材料的热传导率、密度与热容。
求解方程时,如果考虑的介质不是整个空间,则为了得到方程唯一解,必须指定的边界条件。
如果介质是整个空间,为了得到唯一解,必须假定解的增长速度有一个指数型的上界,并且此假定与实验结果相吻合。
1 本文研究的方程本文主要研究一维热传导方程的有限差分解法,下面给出了各向同性介质中无热源的一维热传导方程及初始条件:■=a(x,t)■a>0 0<x<1,0<t<Tux,0=?覫x=sin(πx) 0<x<1u0,t=u(1,t)=0 0≤t≤T (1)在此,本文利用有限元方法中的向前差分法求解偏微分方程式(1),首先需要建立差分格式,而在建立差分格式时通常取空间步长和时间步长为常量。
下面介绍向前差分的概念以及如何利用该方法对其进行收敛性、精确性和稳定性分析。
1.1 向前差分格式有限差分法和有限元方法是求解偏微分方程的两种主要的数值方法。
图1
,我们需要求解这1/h +1()×T/τ+1()个点对应的函数值实上由已知的初边值条件蓝色标记附近的点可直接得到,所以只要确定微分方程的解在其它点上的取值即可,可记为u []
k j
=u (x j ,t k )。
建立差分格式
j =1, (1)
-1;k =0,1,…,T τ-1,用向前差分代替关于时间的
一阶偏导数,用二阶中心差分代替关于空间的二阶偏导数,则可定义最简显格式:
-u k j =u k j+1-2u k j +u k
j-1
h
2
变形有:
(上接第50页)极大值理论,检测初始行波、故障点反射波和对端母线反射波到达测量端的时间,测量故障点距离,从测试结果看,该方案有效弥补传统行波测距的不足之处,提高了故障测距的精确度。
【参考文献】
[1]陈靖.行波法故障测距的理论研究及其实现方案[D].武汉:武汉大学,2004.数值解的剖分图如图2:
图2
真解与数值解的误差剖分图如图3:
图3
3数值实验及结果分析
我们对所求解的初边值问题(1)进行算法精度的数值实验,当
u 0
(x )sin πx 时,边界值仍然为u (0,t )=u (1,t )=0,其精确解为:u (x ,t )
从表中我们可以看出。
. All Rights Reserved.。
分类号:O241.82本科生毕业论文(设计)题目:一类抛物型方程的计算方法作者单位数学与信息科学学院作者姓名专业班级2011级数学与应用数学创新2班指导教师论文完成时间二〇一五年四月一类抛物型方程的数值计算方法(数学与信息科学学院数学与应用数学专业2011级创新2班)指导教师摘要: 抛物型方程数值求解常用方法有差分方法、有限元方法等。
差分方法是一种对方程直接进行离散化后得到的差分计算格式,有限元方法是基于抛物型方程的变分形式给出的数值计算格式。
本文首先给出抛物型方程的差分计算方法,并分析了相应差分格式的收敛性、稳定性等基本理论问题.然后,给出抛物型方程的有限元计算方法及理论分析。
关键词:差分方法,有限元方法,收敛性,稳定性Numerical computation methods for a parabolic equationYan qian(Class 2, Grade 2011,College of Mathematics and Information Science)Advisor: Nie huaAbstract:The common methods to solve parabolic equations include differential method,finite element method etc。
The main idea of differential method is to construct differential schemes by discretizing differential equations directly. Finite element scheme is based on the variational method of parabolic equations。
In this article, we give some differential schemes for a parabolic equation and analyze their convergence and stability. Moreover,the finite element method and the corresponding theoretical analysis for parabolic equation are established.Key words:differential method,finite element method, convergence,stability1 绪 论1。
抛物型方程有限差分法1. 简单差分法考虑一维模型热传导方程(1.1) )(22x f xua t u +∂∂=∂∂,T t ≤<0 其中a 为常数。
)(x f 是给定的连续函数。
(1.1)的定解问题分两类:第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件:(1.2) ()()x x u ϕ=0,, ∞<<∞-x第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件:()13.1 ()()x x u ϕ=0,,l x l <<-及边值条件()23.1 ()()0,,0==t l u t u ,T t ≤≤0假定()x f 和()x ϕ在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。
现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h =为空间步长,MT=τ为时间步长,其中N ,M 是自然数, jh x x j ==, ()N j ,,1,0Λ=; τk y y k ==, ()M k ,,1,0Λ=将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。
其中 ()j i y x ,表示网格节点;h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合;h Γ表示h G -h G 网格边界点的集合。
k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。
注意到在节点()k i t x ,处的微商和差商之间的下列关系((,)kj k ju u x t t t ∂∂⎛⎫≡ ⎪∂∂⎝⎭):可得到以下几种最简差分格式 (一) 向前差分格式()24.1 ()j j j x u ϕϕ==0, k u 0=kN u =0其中1,,1,0-=N j Λ,1,,1,0-=M k Λ。
偏微分方程数值解所在学院:数学与统计学院课题名称:抛物形扩散方程的有限差分法及数值实例学生:向聘抛物形扩散方程的有限差分法及数值实例1.1抛物型扩散方程抛物型偏微分方程是一类重要的偏微分方程。
考虑一维热传导方程:22(),0u ua f x t T t x∂∂=+<≤∂∂ (1.1.1) 其中a 是常数,()f x 是给定的连续函数。
按照初边值条件的不同给法,可将(1.1.1)的定解分为两类:第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1.1)和初始条件:()()x x u ϕ=0,, ∞<<∞-x (1.1.2)第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1.1)和初始条件:()()x x u ϕ=0,, 0x l << (1.1.3) 及边值条件()()0,,0==t l u t u , T t ≤≤0 (1.1.4)假定()x f 和()x ϕ在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。
1.2抛物线扩散方程的求解下面考虑如下热传导方程22()(0.)(,)0(,0)()u ua f x t x u t u L t u x x ϕ⎧∂∂=+⎪∂∂⎪⎪==⎨⎪=⎪⎪⎩(1.2.1) 其中,0x l <<,T t ≤≤0,a (常数)是扩散系数。
取N l h =为空间步长,MT=τ为时间步长,其中N ,M 是自然数,用两族平行直线jh x x j ==,()N j ,,1,0Λ=和k t t k τ==, ()M k ,,1,0Λ=将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。
其中 (),j k x t 表示网格节点;h G 表示网格点(位于开矩形G 中的网格节点)的集合;h G 表示位于闭矩形G 中的网格节点的集合;h Γ表示h G -h G 网格边界点的集合。
二维抛物方程的有限差分法摘要二维抛物方程是一类有广泛应用的偏微分方程,由于大部分抛物方程都难以求得解析解,故考虑采用数值方法求解。
有限差分法是最简单又极为重要的解微分方程的数值方法。
本文介绍了二维抛物方程的有限差分法。
首先,简单介绍了抛物方程的应用背景,解抛物方程的常见数值方法,有限差分法的产生背景和发展应用。
讨论了抛物方程的有限差分法建立的基础,并介绍了有限差分方法的收敛性和稳定性。
其次,介绍了几种常用的差分格式,有古典显式格式、古典隐式格式、Crank-Nicolson隐式格式、Douglas差分格式、加权六点隐式格式、交替方向隐式格式等,重点介绍了古典显式格式和交替方向隐式格式。
进行了格式的推导,分析了格式的收敛性、稳定性。
并以热传导方程为数值算例,运用差分方法求解。
通过数值算例,得出古典显式格式计算起来较简单,但稳定性条件较苛刻;而交替方向隐式格式无条件稳定。
关键词:二维抛物方程;有限差分法;古典显式格式;交替方向隐式格式FINITE DIFFERENCE METHOD FORTWO-DIMENSIONAL PARABOLICEQUATIONAbstractTwo-dimensional parabolic equation is a widely used class of partial differential equations. Because this kind of equation is so complex, we consider numerical methods instead of obtaining analytical solutions. finite difference method is the most simple and extremely important numerical methods for differential equations. The paper introduces the finite difference method for two-dimensional parabolic equation.Firstly, this paper introduces the background and common numerical methods for Parabolic Equation, Background and development of applications. Discusses the basement for the establishment of the finite difference method for parabolic equation And describes the convergence and stability for finite difference method.Secondly, Introduces some of the more common simple differential format,for example, the classical explicit scheme, the classical implicit scheme, Crank-Nicolson implicit scheme, Douglas difference scheme, weighted six implicit scheme and the alternating direction implicit format. The paper focuses on the classical explicit scheme and the alternating direction implicit format. The paper takes discusses the derivation convergence,and stability of the format . The paper takes And the heat conduction equation for the numerical example, using the differential method to solve. Through numerical examples, the classical explicit scheme is relatively simple for calculation, with more stringent stability conditions; and alternating direction implicit scheme is unconditionally stable.Keywords:Two-dimensional Parabolic Equation; Finite-Difference Method; Eclassical Explicit Scheme; Alternating Direction Implicit Scheme目录摘要 (I)Abstract (II)1绪论 (1)1.1课题背景 (1)1.2发展概况 (1)1.2.1抛物型方程的常见数值解法 (1)1.2.2有限差分方法的发展 (2)1.3差分格式建立的基础 (3)1.3.1区域剖分 (3)1.3.2差商代替微商 (3)1.3.3差商代替微商格式的误差分析 (4)1.4本文主要研究内容 (5)2显式差分格式 (7)2.1常系数热传导方程的古典显式格式 (7)2.1.1古典显式格式格式的推导 (7)2.1.3古典显式格式的算法步骤 (8)3隐式差分格式 (10)3.1古典隐式格式 (10)3.2 Crank-Nicolson隐式格式 (12)3.3 Douglas差分格式 (13)3.4加权六点隐式格式 (14)3.5交替方向隐式格式 (15)3.5.1 Peaceman-Rachford格式 (15)3.5.2 Rachford-Mitchell格式 (15)3.5.3 Mitchell-Fairweather格式 (15)3.5.4交替方向隐式格式的算法步骤 (16)4实例分析与结果分析 (17)4.1算例 (17)4.1.1已知有精确解的热传导问题 (17)4.1.2未知精确解的热传导问题 (19)4.2结果分析 (20)5稳定性探究与分析 (21)5.1稳定性问题的提出 (21)5.2 几种分析稳定性的方法 (21)5.3 r变化对稳定性的探究 (23)5.3.1 古典显式格式的稳定性 (23)5.3.2 P-R格式格式的稳定性 (24)结语 (26)参考文献 (27)附录P-R格式的C++实现代码 (28)致谢 (30)1绪论1.1课题背景抛物方程是一类特殊的偏微分方程,二维抛物方程的一般形式为u Lu t∂=∂ (1-1) 其中1212((,,))((,,))(,,)(,,)(,,)u u u u u u L a x y t a x y t b x y t b x y t C x y t x x y y x y∂∂∂∂∂∂=++++∂∂∂∂∂∂ 120,0,0a a C >>≥。
第四章 抛物型方程的有限差分方法1 常系数扩散方程22u ua t x∂∂=∂∂,x R ∈,0t > (1.1) 其中a 为正常数。
如果给点初始条件(,0)()u x g x =,x R ∈ (1.2)(1.1)式和(1.2)式构成了一个初值问题。
1.1 向前差分格式,先后差分格式以上初值问题的向前差分格式111220n n n n nj jj j j u u u u u ahτ++---+-= (1.3)0()j j u g x = (1.4)其截断误差为2()O h τ+,易其增长因子为2(,)14sin 2khG k a τλ=- 其中2h τλ=,如果有12a λ≤,则有(,)1G k τ≤,即von Neumann 条件满足。
因此(1.3)稳定的条件是12a λ≤。
(1.1) 的先后差分格式 111220n n n n nj jj j j u u u u u ah τ-+---+-= (1.5)是无条件稳定的格式。
1.2 加权隐式格式把(1.3)改写为111111220n n n n n j jj j j u u u u u ah τ----+---+-= (1.3)' 用(1.5)(1)(1.3)θθ'⋅+-⋅得,111111112222[(1)]0n n n n nn n n j jj j j j j j u u u u u u u u a hhθθτ----+-+---+-+-+-= (1.6)其中01θ≤≤,称差分格式(1.6)为加权隐式格式。
其节点分布如图(4.1)把(1.6)改写为便于计算的形式11(12)n n nj j j a u a u a u λθλθλθ+--++-=11111(1)[12(1)](1)n n n j j j a u a u a u λθλθλθ---+--+--+-(1.7)其中2h τλ=。
(1.6)式中,取12θ=,用1n n +→,得 111111112[(2)(2)02n n j jn n n n n nj j j j j j u u a u u u u u u hτ+++++-+----++-+= (1.8) 此格式称为Crank-Nicolson 格式。
有限差分法求解抛物型方程偏微分方程只是在一些特殊情况下,才能求得定解问题解的解析式,对比较复杂的问题要找到解的解析表达式是困难的,因此需采用数值方法来求解.有限差分法是一种发展较早且比较成熟的数值求解方法,只适用于几何形状规则的结构化网格.它在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值.本章主要介绍有限差分法的基本思想,并给出一些具体的数值实例.§1 差分方法的基本思想有限差分法把偏微分方程的求解区域划分为有限个网格节点组成的网格,主要采用Taylor 级数展开等方法,在每个网格节点上用有限差分近似公式代替方程中的导数,从而建立以网格节点上的函数值为未知数的代数方程组.有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式.从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式和显隐交替格式等.目前常见的差分格式,主要是上述几种格式的组合,不同的组合构成不同的差分格式.泰勒级数展开法对有限差分格式的分类和公式的建立起着十分重要的作用.下面采用泰勒展开式导出一个自变量系统的若干有限差分表达式.首先考虑单变量函数()u x ,如图1把区域x 离散为一批结点,记0()(), =0,1,2,i i u x u x ih u i =+=图1 单变量函数离散化函数()u x 在点i x 处的泰勒展开式为23()()()()()2!3!i i i i i u x u x u x h u x u x h h h ''''''+=++++ (1)或23()()()()()2!3!i i i i i u x u x u x h u x u x h h h ''''''-=-+-+ (2)式(1)和(2)重新整理可得2()()()()()2!3!i i i i i u x h u x u x u x u x h h h '''''+-'=---(3)和2()()()()()2!3!i i i i i u x u x h u x u x u x h h h '''''--'=+++(4)于是给出在点i x 处函数u 的一阶导数的两个近似公式1()()()i i i ii u x h u x u u u x h h ++--'≈= (5)1()()()i i i i i u x u x h u u u x h h----'≈= (6)因为级数被截断,这两个近似公式肯定要产生误差,此误差与h 同阶,形式分别为()(), ,2()(), .2i i i i i i hE u O h x x h hE u O h x h x ξξξξ''=-=≤≤+''==-≤≤ 若把式(3)和(4)相加并求()i u x ',可得11()()()22i i i i i u x h u x h u u u x h h+-+---'≈= (7)其截断误差与2h 同阶,形式为22()(), ,6i i i h E u O h x h x h ξξ''=-=-≤≤+若把式(3)和(4)相减并求()i u x '',可得1122()2()()2()i i i i i i i u x h u x u x h u u u u x h h +-+-+--+''≈= (8)其截断误差与2h 同阶,其形式为22()(), ,12i i i h E u O h x h x h ξξ''=-=-≤≤+我们可继续用这种方式来推导更复杂的公式,类似的公式还有很多,这里不再一一列举.公式(5)、(6)分别称为一阶向前、向后差分格式,这两种格式具有一阶计算精度,公式(7)、(8)分别称为一阶、二阶中心差分格式,这两种格式具有二阶计算精度.图2 二维区域网格剖分上面的结果可直接推广使用于导出二元函数(,)u x y 的许多有限差分近似公式.如图7.2,把求解区域进行网格剖分,使12(,)(,), ,=0,1,2,i j ij u x y u ih jh u i j ==其中x 方向的网格间距为1,h y 方向的网格间距为2,h 整数i 和j 分别表示函数(,)u x y 沿x 坐标和y 坐标的位置.二元函数(,)u x y 对x 求偏导时y 保持不变,对y 求偏导时x 保持不变,根据向前差分公式(7.5)可以给出在点(,)i j x y 处函数(,)u x y 的一阶偏导数的两个近似公式1,,1(,)i j i j i ju x y u u xh +∂-≈∂ (9),1,2(,)i j i j i ju x y u u yh +∂-≈∂ (10)相类似地,根据二阶中心差分格式(8)可以得到函数(,)u x y 的二阶偏导数的近似公式21,,1,221(,)2i j i j i j i ju x y u u u x h +-∂-+≈∂ (11)2,1,,1222(,)2i j i j i j i j u x y u u u yh+-∂-+≈∂ (12)下面我们推导函数(,)u x y 的二阶混合偏导数2ux y∂∂∂在(,)i j x y 的有限差分表达式.根据一阶中心差分格式(7),112111,11,11,11,122121221,11,1(,)(,)(,)1()21 ()()222 i j i j i j i j i j i j i j i j i j i u x y u x y u x y O h x y h y y u u u u O h O h h h h u u u +-+++--+--+++-∂∂∂⎡⎤⎡⎤∂=-+⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦--⎡⎤=-++⎢⎥⎣⎦--≈1,11,1124j i j u h h -+--+二维有限差分近似可以直接推广到三维空间或三维空间加一维时间的情形.定义1 当步长趋于零时,差分方程的截断误差趋于零,则称差分格式与微分方程是相容的.定义2 当步长趋于零时,差分方程的解收敛于微分方程的解,则称差分格式是收敛的. 定义3 当差分方程的解由于舍入误差的影响,所产生的偏差可以得到控制时,则称差分格式是稳定的.§2 抛物型方程的有限的差分法为了说明如何使用有限差分法来求解偏微分方程,本节我们给出以下几个数值实例.算例1 考虑一维非齐次热传导方程的初边值问题:2212(,), 01,01,(,0)(), 01,(0,)(), (1,)(), 0 1.u ua f x t x t t x u x q x x u t g t u t g t t ⎧∂∂=+<<<≤⎪∂∂⎪⎪=≤≤⎨⎪==<≤⎪⎪⎩(7.13),其中2,a =函数11(,)[cos()2sin()],22xf x t e t t =--+-初始条件1()sin,2xq x e =左、右边界条件分别为11()sin(),2g t t =-21()sin()2g t e t =-.该定解问题的解析解为1(,)sin(),(,)[0,1][0,1].2xu x t e t x t =-∈⨯将求解区域{(,)|,0}x t a x b t T Ω=≤≤≤≤进行网格剖分,[,]a b 作m 等分,[0,]T 作n 等分,记,,b a Th m nτ-==则 ,0,,0i k x a ih i M t k k n τ=+≤≤=≤≤对该问题建立如下向前差分格式:11122, 11, 11,k kk k k k i i i i i i u u u u u a f i m k n hτ+-+--+=+≤≤-≤≤-(14) (,0)(),1,i i u x q x i m =≤≤ (15) 12(,)(), (,)(),1.k k k k u a t g t u b t g t k n ==≤≤ (16)令2r ah τ=,差分格式(7.14)整理得111(12), 11, 1 1.k k k k k i i i i i u ru r u ru f i m k n τ+-+=+-++≤≤-≤≤- (17)显然时间在1k t +上的每个逼近值可独立地由k t 层上的值求出。
抛物型方程的有限差分方法一,求解问题考虑一维非齐次热传导方程的定解问题22(,),0,0(,0)(),0(0,)(),(1,)(),0u ua f x t x l t T t xu x t x l u t t u t t t T ϕαβ∂∂-=<<<≤∂∂=≤≤==<≤......(1)..................(2) (3)其中α为正长数,(,)f x t ,()t ϕ,()t α,()t β为已知函数,(0)(0),(1)(0)ϕαϕβ==,式(2)为初值条件,(3)为边值条件。
二,网格剖分取空间步长/h l M =和时间步长/T N τ=,其中M 、N 都是整数。
用两族平行直线,(0,1,,)i x x ih i M ===和(0,1,,)k t t k i N τ===将矩形域{0;0}Gx l t T =≤≤≤≤分割成矩形网格,网格结点为(,)i k x t 。
以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;h h G G Γ=-是网格界点集合。
其次,用ki u 表示定义在网点(,)i k x t 的函数,11,01i Mk N ≤≤-≤≤-。
用适当的差商代替方程(1)中相应的偏微商。
三, 差分格式 1, 向前差分 向前差分格式111202()(),11,01k kk k kiii i i ii i kki i i M u u u u u af hf f x u x u u i M k N ττϕϕ++---+=+====≤≤-≤≤-以2/ra h τ=为网比。
将上式改写为便于计算的形式,则得以下向量形式111(12)()(,)11,01k k k kii i i i k u r u r u u f x t i M k N τ+-+=-+++≤≤-≤≤-上式表示第k 层的值显示表示出来。
已知第k 层的值{|1}k i u i M ≤≤,则可以直接得到第k+1的值1{|1}k i u i M +≤≤。
二维抛物方程的有限差分法二维抛物方程的有限差分法摘要二维抛物方程是一类有广泛应用的偏微分方程,由于大部分抛物方程都难以求得解析解,故考虑采用数值方法求解。
有限差分法是最简单又极为重要的解微分方程的数值方法。
本文介绍了二维抛物方程的有限差分法。
首先,简单介绍了抛物方程的应用背景,解抛物方程的常见数值方法,有限差分法的产生背景和发展应用。
讨论了抛物方程的有限差分法建立的基础,并介绍了有限差分方法的收敛性和稳定性。
其次,介绍了几种常用的差分格式,有古典显式格式、古典隐式格式、Crank-Nicolson隐式格式、Douglas差分格式、加权六点隐式格式、交替方向隐式格式等,重点介绍了古典显式格式和交替方向隐式格式。
进行了格式的推导,分析了格式的收敛性、稳定性。
并以热传导方程为数值算例,运用差分方法求解。
通过数值算例,得出古典显式格式计算起来较简单,但稳定性条件较苛刻;而交替方向隐式格式无条件稳定。
关键词:二维抛物方程;有限差分法;古典显式格式;交替方向隐式格式FINITE DIFFERENCE METHOD FORTWO-DIMENSIONAL PARABOLICEQUATIONAbstractTwo-dimensional parabolic equation is a widely used class of partial differential equations. Because this kind of equation is so complex, we consider numerical methods instead of obtaining analytical solutions. finite difference method is the most simple and extremely important numerical methods for differential equations. The paper introduces the finite difference method fortwo-dimensional parabolic equation.Firstly, this paper introduces the background and common numerical methods for Parabolic Equation, Background and development of applications. Discusses the basement for the establishment of the finite difference method for parabolic equation And describes the convergence and stability for finite difference method.Secondly, Introduces some of the more common simple differential format,for example, the classical explicit scheme, the classical implicit scheme, Crank-Nicolson implicit scheme, Douglas difference scheme, weighted six implicit scheme and the alternating direction implicit format. The paper focuses on the classical explicit scheme and the alternating direction implicit format. The paper takes discusses the derivation convergence,and stability of the format . The paper takes And the heat conduction equation for the numerical example, using the differential method to solve. Through numerical examples, the classical explicit scheme is relatively simple for calculation, with more stringent stability conditions; and alternating direction implicit scheme is unconditionally stable.Keywords:Two-dimensional Parabolic Equation; Finite-Difference Method; Eclassical Explicit Scheme; Alternating Direction Implicit Scheme目录摘要........................................................................................................................... .. (I)Abstract .............................................................................................................. ............................ II 1绪论. (1)1.1课题背景 (1)1.2发展概况 (1)1.2.1抛物型方程的常见数值解法 (1) 1.2.2有限差分方法的发展 (2)1.3差分格式建立的基础 (3)1.3.1区域剖分 (3)1.3.2差商代替微商 (3)1.3.3差商代替微商格式的误差分析 (4) 1.4本文主要研究容 (5)2显式差分格式 (7)2.1常系数热传导方程的古典显式格式 (7) 2.1.1古典显式格式格式的推导 (7)2.1.3古典显式格式的算法步骤 (8)3隐式差分格式 (10)3.1古典隐式格式 (10)3.2 Crank-Nicolson隐式格式 (12)3.3 Douglas差分格式 (13)3.4加权六点隐式格式 (14)3.5交替方向隐式格式 (15)3.5.1 Peaceman-Rachford格式 (15) 3.5.2 Rachford-Mitchell格式 (15)3.5.3 Mitchell-Fairweather格式 (15) 3.5.4交替方向隐式格式的算法步骤 (16) 4实例分析与结果分析 (17)4.1算例 (17)4.1.1已知有精确解的热传导问题 (17) 4.1.2未知精确解的热传导问题 (19)4.2结果分析 (20)5稳定性探究与分析 (21)5.1稳定性问题的提出 (21)5.2 几种分析稳定性的方法 (21)5.3 r变化对稳定性的探究 (23)5.3.1 古典显式格式的稳定性 (23)5.3.2 P-R格式格式的稳定性 (24)结语 (26)参考文献 (27)附录P-R格式的C++实现代码 (28)致谢 (30)1绪论1.1课题背景抛物方程是一类特殊的偏微分方程,二维抛物方程的一般形式为u Lu t=? (1-1) 其中1212((,,))((,,))(,,)(,,)(,,)u u u u u u L a x y t a x y t b x y t b x y t C x y t x x y y x y=++++ 120,0,0a a C >>≥。