05实验五 Linux环境下多线程应用程序实验
- 格式:pdf
- 大小:169.49 KB
- 文档页数:13
第1篇一、实验目的1. 理解多线程的概念和作用。
2. 掌握多线程的创建、同步和通信方法。
3. 熟悉Java中多线程的实现方式。
4. 提高程序设计能力和实际应用能力。
二、实验环境1. 操作系统:Windows 102. 开发工具:IntelliJ IDEA3. 编程语言:Java三、实验内容本次实验主要完成以下任务:1. 创建多线程程序,实现两个线程分别执行不同的任务。
2. 使用同步方法实现线程间的同步。
3. 使用线程通信机制实现线程间的协作。
四、实验步骤1. 创建两个线程类,分别为Thread1和Thread2。
```javapublic class Thread1 extends Thread {@Overridepublic void run() {// 执行Thread1的任务for (int i = 0; i < 10; i++) {System.out.println("Thread1: " + i);}}}public class Thread2 extends Thread {@Overridepublic void run() {// 执行Thread2的任务for (int i = 0; i < 10; i++) {System.out.println("Thread2: " + i);}}}```2. 创建一个主类,在主类中创建两个线程对象,并启动它们。
```javapublic class Main {public static void main(String[] args) {Thread thread1 = new Thread1();Thread thread2 = new Thread2();thread1.start();thread2.start();}```3. 使用同步方法实现线程间的同步。
```javapublic class SynchronizedThread extends Thread {private static int count = 0;@Overridepublic void run() {for (int i = 0; i < 10; i++) {synchronized (SynchronizedThread.class) {count++;System.out.println(Thread.currentThread().getName() + ": " + count);}}}}public class Main {public static void main(String[] args) {Thread thread1 = new SynchronizedThread();Thread thread2 = new SynchronizedThread();thread1.start();thread2.start();}```4. 使用线程通信机制实现线程间的协作。
实验五多线程程序设计实验报告一、实验目的1. 熟悉利用Thread 类建立多线程的方法。
2. 熟悉利用Runnable 接口建立多线程的方法。
二、实验原理1. 通过继承Thread 类实现多线程的方法:① 创建一个Thread 类的子类。
② 重写run 方法。
③ 创建这个子类的实例。
④调用子类的start 方法启动线程。
2. 通过Runnable 接口实现多线程的方法:① 创建一个线程类,实现Runnable 接口。
② 实现run 方法。
③ 通过Thread 类中的Thread(Runnable) 构造方法创建一个线程类实例。
④ 调用线程类的start 方法启动线程。
三、实验内容1. 阅读下列程序,分析并上机检验其功能。
class DelayThread extends Thread {private static int count=0;private int no;private int delay;public DelayThread() {count++;no=count;}public void run() {try {for (int i=0;i<10;i++){delay=(int)(Math.random()*5000);sleep(delay);System.out.println(“Thread ”+no+” with a delay ”+delay);} catch(InterruptedException e) { }}}public class MyThread {public static void main(String args[]) {DelayThread thread1 = new DelayThread();DelayThread thread2 = new DelayThread();thread1.start();thread2.start();try {Thread.sleep(1000);} catch (InterruptedException e) {System.out.println(“Thread wrong”);}}}2. 利用Runnable 接口修改上面的程序,使之完成同样的功能。
实验报告5Linux进程管理实验五 Linux进程管理四、实验过程(实验步骤、记录、数据、分析、结果)(⼀)进程查看、终⽌、挂起及暂停等操作1、使⽤ps命令查看和控制进程1)显⽰本⽤户进程#ps2)显⽰所有⽤户的进程#ps–au3)在后台运⾏cat命令#cat&4)查看进程cat#ps aux |grep cat5)杀死进程cat#kill -9 cat6)再次查看进程cat,看看是否被杀死。
2、使⽤top命令查看和控制进程1)⽤top命令动态显⽰当前的进程。
2)只显⽰某⼀⽤户的进程(u)3)杀死指定进程号的进程(k)3、挂起和恢复进程1)执⾏命令cat2)按【ctrl+z】挂起进程3)输⼊jobs命令,查看作业4)输⼊bg,把cat切换到后台执⾏5)输⼊fg,把cat切换到前台执⾏6)按【ctrl+c】结束进程(⼆)通过at命令实现计划任务1、5分钟后执⾏/bin/date#at now+5minutesat>/bin/dateat>(提⽰:输⼊【ctrl+d】job任务号at 年-⽉-⽇⼩时:分钟如何查看结果?使⽤atq可以查询到已添加的at计划任务2、查找系统中任何以c为后缀名的⽂档,将结果保存到$HOME/findc⽂件中,指定时间为2016年12⽉01⽇早上8点#at 8am 12/01/16at>find / -name ‘*.c’>$HOME/findcat>job任务号at 年-⽉-⽇⼩时:分钟如何查看结果?使⽤atq可以查询到已添加的at计划任务3、2题的命令写到$HOME/findjob中,使⽤at命令执⾏,并将结果保存到$HOME/findfc⽂件中,指定时间为当前时间后5分钟#vi $HOME/findjob内容如下:find / -name ‘*.c’>$HOME/findfc存盘退出#at –f $HOME/findjob now+5minutes4、at命令实现在3天后统计/etc/inittab⽂件的⾏数,将统计结果发送⾄$HOME/initline⽂件中#at now+3daysat>wc–l /etc/inittab>>$HOME/initlineat>5.列出现有的所有at任务,并记下相关信息6、删除某at任务,并进⾏查看是否删除(三)通过cron命令实现计划任务1、使⽤cron命令实现12⽉每天下午2点系统进⾏维护状态,重新启动系统#vi $HOME/shutcron输⼊内容:00 14 * 12 * /sbin/shutdown–r存盘退出#crontab $HOME/shutcron2、使⽤cron命令实现在12⽉1号星期四的17点30分查看/etc/passwd内容,并将查看结果送⾄$HOME/passtext #vi $HOME/checkcron输⼊内容:30 17 1 12 4 more /etc/passwd>$HOME/passtext存盘退出#crontab $HOME/checkcron3、查看当前的crontab⽂件#crontab -l4、⽤户user的crontab⽂件#crontab –u user –r。
Linux并发编程实验多线程、多进程编程一.实验目的和要求二、实验内容三、实验结果与分析1、进程实验(1)分别创立4个C文件,get.c、copy.c、put.c以及main.c分别实验读入,拷贝,输出,及前三个函数的调用;(2)定义三个缓冲区,其中一个记录对各项操作的选择,另外两个用来传输拷贝文件内容,相当于图中的缓冲区s和缓冲区t;(3)并发执行时定义了4个信号灯,分别用来控制缓冲区s是否有内容,缓冲区s是否空,缓冲区t是否有内容,缓冲区t是否为空;顺序执行时定义了三个信号灯,让get、copy、put分别其按顺序依次执行。
(4)创建三个进程分别实现get、copy、put功能;(5)并发时原理如下If(f不为空){get(s,f);while(誊抄未完成){t=s;cobeginput(t,g);get(s,f);coend;}}(6)顺序执行时原理如下:while(f不为空){input;output;}(7)创建一个字符文档如下,大小为42.4KB,内容为一连串的字符此时文件比较小用并发和顺序所得执行结果如下由此可知当文件很小时,并发执行和顺序执行比本感觉不出差距。
(8)创建一个一个较大的f.txt文档,大小为113.5KB,内容为一连串字符,如下:此时文件较大,并发执行和顺序执行的程序运行结果如下所示:此时才能看出两者之间有细小的差别,顺序执行效率小于并发执行的效率!但还是可见差距非常不明显!(9)分析:对于进程而言,顺序执行和并发执行之间的差距并不是那么明显,尤其是在拷贝文件较小时,基本感觉不出差距,只有在拷贝文件很大时才能有感觉到明显的差距。
2、线程实验(1)实验原理与进程一致,只是这次用的是一个thread。
C文件,内部有4个函数分别为get、copy、put、main来实现全部功能。
并且创建的为3个线程。
(2)创建一个f.txt文件,大小为113.5KB,内容为一串连续字符,如下所示并发和顺序的执行结果如下所示:并发执行的结果为4.83秒,而顺序执行在两分钟后还是没有完成,用ctrl+C打断,可见当要拷贝的文件很大时,线程的并发和顺序执行之间的差距是非常明显的!(3)创建一个较小的f.txt文件,大小为7.6KB,内容为一连串的字符,如下所示:此时的运行结果如下所示:可见,当拷贝的文件较小时,线程的顺序与并发执行指尖的差距也会变小。
操作系统上机实验报告实验名称:进程和线程实验目旳:理解unix/Linux下进程和线程旳创立、并发执行过程。
实验内容:1.进程旳创立2.多线程应用实验环节及分析:一、进程旳创立下面这个C程序展示了UNIX系统中父进程创立子进程及各自分开活动旳状况。
fork( )创立一种新进程。
系统调用格式:pid=fork( )参数定义:int fork( )fork( )返回值意义如下:0:在子进程中,pid变量保存旳fork( )返回值为0,表达目迈进程是子进程。
>0:在父进程中,pid变量保存旳fork( )返回值为子进程旳id值(进程唯一标记符)。
-1:创立失败。
如果fork( )调用成功,它向父进程返回子进程旳PID,并向子进程返回0,即fork( )被调用了一次,但返回了两次。
此时OS在内存中建立一种新进程,所建旳新进程是调用fork( )父进程(parent process)旳副本,称为子进程(child process)。
子进程继承了父进程旳许多特性,并具有与父进程完全相似旳顾客级上下文。
父进程与子进程并发执行。
2、参照程序代码/*process.c*/#include <stdio.h>#include <sys/types.h>main(int argc,char *argv[]){int pid;/* fork another process */pid = fork();if (pid < 0) { /* error occurred */fprintf(stderr, "Fork Failed");exit(-1);}else if (pid == 0) { /* child process */execlp( "/bin/ls", "ls",NULL);}else {/* parent process *//* parent will wait for the child to complete */ wait(NULL);printf( "Child Complete" );exit(0);}}3、编译和运营$gcc process.c –o processs4、运营$./process编辑如图所示:运营如图所示:思考:(1)系统是如何创立进程旳?1,申请空白PCB(进程控制块);2,为新进程分派资源;3,初始化PCB;4,将新进程插入就绪队列;(2)扩展程序,在父进程中输出1到5,在子进程中输出6-10,规定父子进程并发输出;记录实验成果,并给出简朴分析。
实验5Linux进程控制编程实验实验5 Linux进程控制编程实验1、实验目的(1)熟悉多用户、多任务环境,通过实验,进一步牢固掌握进程的概念;(2)掌握Linux环境下进程的创建;(3)掌握Linux环境下进程的执行和传参要求;(4)熟悉进程间的通信。
2、实验要求1、实验必须在在Linux环境下进行操作。
2、文件名按照下面规则命名:源程序文件名最后要加学号后4位尾数。
如:f+学号最后4位.c3、实验报告中需要说明实验中在Linux环境下进行的实际操作;4、实验报告中应给出实际操作命令、所编写的程序、以及计算机输出的程序运行结果。
5、按照规定格式打印实验报告。
3、实验内容注意:(1)下面xxxx是自己学号的后4位尾数。
1、编写一个程序pxxxx.c,由它作为父进程去创建一个子进程。
并且父进程和子进程分别输出自己的进程号,同时输出你学号后4位尾数。
2、本题有两小题。
(1)运行下面程序,观察运行结果,并以下面的形式画出运行结果的进程树。
p1→p11→p111|→p12|→p13它表示进程p1创建了子进程p11、p12、p13;而p11又创建了子进程p11。
//pxxxx.c#include#includeint main(void){ int result,i;for(i=0;i<3;i++){result = fork();if(result == -1){perror("fork"); _exit(1);}if(result == 0){printf(" father's PID =%d --> child's PID =%d \n" ,getppid(),getpid() );}//waitpid(result,NULL,0);}printf("Now this is parent process, my PID = %d .\n",getpid());}(2)将循环控制变量i的值修改为2,并且去掉waitpid语句的注释,再编译并运行程序,观察运行结果并画出运行结果的进程树。
一、实验目的1. 理解多线程编程的基本概念和原理。
2. 掌握多线程的创建、同步、通信和调度等关键技术。
3. 通过实验加深对多线程编程的理解,提高编程能力。
二、实验环境硬件:PC机软件:VMware虚拟机、Linux系统、C/C++编译器三、实验内容1. 多线程创建与运行2. 线程同步与互斥3. 线程通信与协作4. 线程调度与优先级5. 生产者-消费者问题四、实验步骤1. 多线程创建与运行(1)创建线程:使用pthread_create函数创建线程,指定线程的入口函数、参数、线程属性等。
(2)线程运行:编写线程入口函数,实现线程需要执行的任务。
(3)线程结束:在线程入口函数中执行任务后,使用pthread_exit函数结束线程。
2. 线程同步与互斥(1)互斥锁:使用pthread_mutex_lock和pthread_mutex_unlock函数实现互斥锁,保证同一时刻只有一个线程访问共享资源。
(2)条件变量:使用pthread_cond_wait和pthread_cond_signal函数实现条件变量,实现线程间的同步与协作。
(3)读写锁:使用pthread_rwlock_rdlock和pthread_rwlock_wrlock函数实现读写锁,允许多个线程同时读取共享资源,但只有一个线程可以写入。
3. 线程通信与协作(1)线程间通信:使用pthread_cond_signal、pthread_cond_broadcast、pthread_barrier_wait等函数实现线程间的通信。
(2)线程协作:使用pthread_barrier_init、pthread_barrier_wait函数实现线程间的协作,确保所有线程到达某个点后再继续执行。
4. 线程调度与优先级(1)线程调度:了解操作系统的线程调度算法,如时间片轮转、优先级调度等。
(2)线程优先级:使用pthread_setschedparam函数设置线程的调度策略和优先级。
linux shell多线程编程实例Linux Shell是一种命令行解释器,可以通过编写Shell脚本来实现自动化任务。
在Shell脚本中,我们可以使用多线程编程来同时执行多个任务,提高程序的执行效率。
本文将介绍如何在Linux Shell中实现多线程编程,并给出一个实际的例子。
在Linux Shell中,我们可以使用`&`符号来将任务放到后台执行,实现并发执行的效果。
但是这种方式并不是真正的多线程,因为它们共享同一个进程空间,无法充分利用多核处理器的优势。
为了实现真正的多线程并发执行,我们可以使用`parallel`命令。
`parallel`命令是一个用于并行执行任务的工具,它可以将任务分成多个子任务,并在多个CPU核心上并行执行。
使用`parallel`命令,我们可以很方便地实现多线程编程。
下面是一个使用`parallel`命令实现多线程编程的例子。
假设我们有一个包含1000个文件的目录,我们需要对每个文件进行处理。
我们可以使用以下命令来并行处理这些文件:```shellls /path/to/files | parallel -j 4 --progress process_file {} ```上面的命令中,`ls /path/to/files`会列出目录中的所有文件,`parallel -j 4`表示最多同时执行4个任务,`--progress`会显示任务的进度,`process_file`是一个自定义的处理函数,`{}`表示当前文件名。
在上面的例子中,`parallel`命令会将`ls /path/to/files`的输出作为参数传递给`process_file`函数,并在后台启动多个进程来并行执行这些任务。
每个进程会处理一个文件,直到所有文件都被处理完毕。
在`process_file`函数中,我们可以编写具体的文件处理逻辑。
例如,可以使用`grep`命令来搜索文件中的关键字,或者使用`sed`命令来替换文件中的内容。