第二章.热力学第二定律
- 格式:ppt
- 大小:1.28 MB
- 文档页数:72
第二章热力学第二定律§2.1 热力学第二定律2.1.1 自发过程1、物质自发变化过程的方向与限度——自发过程A、温度不同的两个物体相互接触热总是从高温物体传到低温物体,直到两物体温度相等达到平稳为止。
相反,热不会自动从低温物体传给高温物体,使温差增大。
B、气箱中充有压力不等的空气,抽去隔板空气必定从压力大的左边向压力小的右边扩散,直到整个气箱中压力相等达到平稳为止。
相反,空气不会自动地从低压向高压方向移动,使压力差增大。
C、水总是自发的从高处向低处流动,直到各处的水位相等。
相反,水绝不会自动倒流。
D、锌片投入硫酸铜溶液中,自动地发生置换反应,生成Cu和ZnSO4。
相反,其逆过程是不会自动发生。
…………以上实例说明:自然界中自动发生的过程是自然地朝着一定方向变化而趋向平衡。
结论:一切自发过程都有方向性和限度。
、自发过程特点⇨局限性:热力学不可逆性(过程)(单向,趋向平衡)区别于不可能倒着来(以上过程均可以倒着来进行,但环境必须对系统做功。
)3、自发过程的热力学不可逆性——不可逆过程Ex1. 理想气体的真空膨胀(恒温槽中),自发过程。
(1)过程L:W=0、△T=0、△U=0、Q=0;环境没有变化;系统:若要使系统复原,我们可以对系统进行等温可逆压缩L`,使系统回复到始态。
(2)过程L`:环境对系统做功W,由热力学第一定律:0=△U=Q +W∴Q= -W 系统散失了热Q。
环境:损失了功- W、得到了热-Q,总能量不变。
(3)系统经真空膨胀L和等温可逆压缩过程L`的循环后:系统:回复到始态环境:损失了功W、得到了热-Q,总能量不变。
要使环境也复原,就要:从环境(单一热源)中取出热-Q,全部转变为功W,而不留下任何痕迹(即不引起其他变化)。
——是不可能的。
∴理想气体的真空自由膨胀是热力学不可逆过程。
Ex2.高温物体自发传热给低温物体自发过程高温物体T1(环境)传给低温物体T2(系统)热量Q1,达到平衡。
第二章 热力学第二定律§2–1 引言(一) 热力学第一定律的局限性:凡是违背第一定律的过程一定不能实现,但是不违背第一定律的过程并不是都能自动实现的。
例如:1.两块不同温度的铁相接触,究竟热从哪一块流向哪一块呢?按热力学第一定律,只要一块铁流出的热量等于另一块铁吸收的热量就可以了,但实际上,热必须温度从较高的一块流向温度较低的那块,最后两块温度相等,至于反过来的情况,热从较冷的一块流向热的一块,永远不会自动发生。
2.对于化学反应:以上化学反应计量方程告诉我们,在上述条件下,反应生成1mol NO 2,则放热57.0KJ,若1mol NO 2分解,吸热57.0KJ ,均未违反热力学第一定律,但热力学第一定律不能告诉我们,在上述条件下的混合物中,究竟是发生NO 2的分解反应,还是NO 2的生成反应?假定是生成NO 2的反应能自动进行,那么进行到什么程度呢?这些就是过程进行的方向和限度问题,第一定律无法解决,要由第二定律解决。
(二) 热力学第二定律的研究对象及其意义:1. 研究对象:在指定条件下,过程自发进行的方向和限度:当条件改变后,方向和限度有何变化。
2. 意义:过程自发进行的方向和限度是生产和科研中所关心和要解决的重要问题。
例如:在化工及制药生产中,不断提出新工艺,或使用新材料,或合成新药品这一类的科学研究课题,有的为了综合利用,减少环境污染,有的为了改善劳动条件不使用剧毒药品,……等。
这些方法能否成功?也就是在指定条件下,所需要的化学反应能否自动进行?以及在什么条件下,能获得更多新产品的问题。
当然,我们可以进行各种实验来解决这一问题,但若能事先通过计算作出正确判断,就可以大大节省人力,物力。
理论计算认为某条件下根本不可能进行的反应,就不要在该条件下去进行实验了。
3. 研究方法:以自然界已知的大量事实为基础,从中抽象出它们的共性,进而导出几个新的状态函数:熵(s),亥姆霉兹自由能(F)和吉布斯自由能(G),用来判断过程的方向和限度,以达到问题的解决。