§1.1.2 余弦定理(1)
- 格式:docx
- 大小:54.38 KB
- 文档页数:2
1.1.2 余弦定理课时过关·能力提升1已知在△ABC 中,a ∶b ∶c=1∶1∶√3,则cos C 的值为( ) A.23 B.-23C.12D.-122在△ABC 中,若2cos B sin A=sin C ,则△ABC 的形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形D.等边三角形2cos B sin A=sin C ,得a 2+a 2-a 2aa·a=c , 所以a=b.所以△ABC 为等腰三角形.3已知在△ABC 中,AB=3,BC=√13,AC=4,则边AC 上的高是( ) A.3√22B.3√32C.32D.3√3,得cos A=aa 2+aa 2-aa 22aa ·aa =9+16-132×3×4=12.∴sin A=√32.∴S △ABC =12AB ·AC ·sin A=12×3×4×√32=3√3.设边AC 上的高为h ,则S △ABC =12AC ·h=12×4×h=3√3. ∴h=3√32.4已知在△ABC 中,∠ABC=π4,AB=√2,BC=3,则sin ∠BAC=( ) A.√1010 B.√105C.3√1010D.√55ABC中,由余弦定理,得AC2=AB2+BC2-2AB·BC cos∠ABC=2+9-2×√2×3×√22=5,即得AC=√5.由正弦定理aasin∠aaa =aasin∠aaa,即√5√22=3sin∠aaa,所以sin∠BAC=3√1010.5已知在△ABC中,∠B=60°,b2=ac,则△ABC一定是三角形.B=60°,b2=ac,由余弦定理,得b2=a2+c2-2ac cos B,得ac=a2+c2-ac,即(a-c)2=0,所以a=c.又∠B=60°,所以△ABC是等边三角形.6已知△ABC的内角∠A,∠B,∠C的对边分别为a,b,c,且3b2+3c2-3a2=4√2bc,则sin A=.7设△ABC的内角∠A,∠B,∠C的对边分别为a,b,c,且a=1,b=2,cos C=14,则sinB=.,得c2=a2+b2-2ab cos C=1+4-2×1×2×14=4,解得c=2,即b=c,故sin B=sin C=√1-(14)2=√154.8如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=2√23,AB=3√2,AD=3,则BD的长为.AD⊥AC,∴∠DAC=π2.∵sin ∠BAC=2√23,∴sin (∠aaa +π2)=2√23,∴cos ∠BAD=2√23.由余弦定理,得BD 2=AB 2+AD 2-2AB ·AD ·cos∠BAD=(3√2)2+32-2×3√2×3×2√23=3.∴BD=√3. √3 9在△ABC 中,已知∠B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长.ADC 中,AD=10,AC=14,DC=6,由余弦定理,得cos ∠ADC=aa 2+aa 2-aa 22aa ·aa=100+36-1962×10×6=-12,∴∠ADC=120°,∴∠ADB=60°.在△ABD 中,AD=10,∠B=45°,∠ADB=60°, 由正弦定理,得aa sin∠aaa=aasin a, ∴AB=aa ·sin∠aaasin a=10sin60°sin45°=10×√32√22=5√6.10在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且满足c=2b cos A. (1)求证:∠A=∠B ;(2)若△ABC 的面积S=152,cos C=45,求c 的值.c=2b cos A ,由正弦定理,得sin C=2sin B ·cos A ,所以sin(A+B )=2sin B ·cos A ,所以sin(A-B )=0.在△ABC 中,因为0<∠A<π,0<∠B<π, 所以-π<∠A-∠B<π,所以∠A=∠B.(1)知a=b.因为cos C=45,又0<∠C<π,所以sin C=35.又因为△ABC 的面积S=152, 所以S=12ab sin C=152,可得a=b=5. 由余弦定理,得c 2=a 2+b 2-2ab cos C=10. 所以c=√10. ★11设△ABC 是锐角三角形,a ,b ,c 分别是内角∠A ,∠B ,∠C 所对的边,并且sin 2A=sin (π3+a )sin (π3-a )+sin 2B.(1)求∠A 的值;(2)若aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12,a=2√7,求b ,c (其中b<c ).因为sin 2A=(√32cos a +12sin a )·(√32cos a -12sin a )+sin 2B=34cos 2B-14sin 2B+sin 2B=34,所以sin A=√32.又∠A 为锐角, 所以∠A=π3.(2)由aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·aa ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =12,可得bc cos A=12.① 由(1)知∠A=π3, 所以bc=24.②由余弦定理知a 2=c 2+b 2-2bc cos A , 将a=2√7及①代入上式,得c 2+b 2=52,③ 由③+②×2,得(b+c )2=100,所以b+c=10. 因此b ,c 是一元二次方程t 2-10t+24=0的两个根. 解此方程并由c>b 知c=6,b=4.。
1.2余弦定理(1)(时间:)1.掌握余弦定理的内容;2.掌握余弦定理的证明方法;余弦定理的证明及其应用.余弦定理的证明,余弦定理在解三角形时应用思路.读记教材交流问题1:余弦定理的内容是什么?问题2:怎么推导余弦定理?问题3:由余弦定理怎么判断角的大小?问题4:利用余弦定理能够解决斜三角形中的哪些类型问题?中,【例1】在ABC(1)已知3=b ,1=c ,︒=60A ,求a ;(2)已知654===c b a ,,,求A cos ,A tan .【例2】用余弦定理证明:在ABC ∆中,当C ∠为锐角时,222c b a >+;当C ∠为钝角时,222c b a <+.: :1.在ABC ∆中,(1)已知︒=60A ,4=b ,7=c ,求a ; (2)已知7=a ,5=b ,3=c ,求A .2.若三条线段的长分别为5,6,7,则用这三条线段能构成( )A .直角三角形B .锐角三角形C .钝角三角形D .不是钝角三角形3.在ABC ∆中,已知222a b ab c ++=,求C 的大小.4.两游艇自某地同时出发,一艇以h km /10的速度向正北行驶,另一艇以8/km h 的速度向北偏东060方向行驶,问:经过30min ,两艇相距多远?一、填空题1.在△ABC 中,若)())((c b b c a c a +=-+,则A =________.2.在△ABC 中,已知a =1,b =2,C =60°,则c =______________.3.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为________.4.在△ABC 中,已知a =2,则b cos C +c cos B =____________.5.△ABC 中,已知a =2,b =4,C =60°,则A =________.6.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于________.7.在△ABC 中,sin 2A 2=c -b 2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状 为________.8.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.9.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为________.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.二、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长; (3)求△ABC 的面积.水平提升13.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是____________.14.在△ABC中,a cos A+b cos B=c cos C,试判断三角形的形状.1.2余弦定理(一)答案作业设计1.120° 2. 3 3.π6解析 ∵a>b>c ,∴C 为最小角, 由余弦定理cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32.∴C =π6. 4.2解析 b cos C +c cos B =b·a 2+b 2-c 22ab +c·c 2+a 2-b 22ac =2a 22a=a =2. 5.30°解析 c 2=a 2+b 2-2ab cos C =22+42-2×2×4×cos 60°=12,∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12.∵a<c ,∴A<60°,A =30°. 6.34解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a , ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a·2a =34. 7.直角三角形解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a 22bc⇒a 2+b 2=c 2,符合勾股定理. 故△ABC 为直角三角形. 8.120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12,∴θ=120°. 9.45°解析 ∵S =14(a 2+b 2-c 2)=12ab sin C , ∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C.由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,∴C =45° .10.-23解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得, b 2=a 2+c 2-2ac cos B =13,∴cos C =a 2+b 2-c 22ab =-113,sin C =1213,∴tan C =-12=-2 3. 11.解 由条件知:cos A =AB 2+AC 2-BC 22·AB·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49⇒x =7. 所以,所求中线长为7.12.解 (1)cos C =cos [π-(A +B)]=-cos (A +B)=-12,又∵C ∈(0°,180°),∴C =120°. (2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎪⎨⎪⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b)2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32. 13.3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC =22,∴sin C =22.∴AD =AC·sin C = 3.14.解 由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab, 代入已知条件得a·b 2+c 2-a 22bc +b·a 2+c 2-b 22ac +c·c 2-a 2-b 22ab=0, 通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0,展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2.根据勾股定理知△ABC 是直角三角形.。
1.1.2余弦定理(一)一、选择题1.在△ABC 中,已知13,34,8===c b a ,则△ABC 的最小角为( )A .3πB .4π C.4π D.12π2.在△ABC 中,如果bc a c b c b a 3))((=-+++,则角A等于( )A.030 B.060 C.0120 D.01503.在△ABC 中,根据下列条件解三角形,则其中有两个解的是( ) A.0075,45,10===C A b B.080,5,7===A b aC.060,48,60===C b a D.045,16,14===A b a 4在△ABC 中,已知)(2222444b a c c b a +=++则角C=( )A.030 B.060 C.0013545或 D.01205.某人朝正东方向走x km 后,向右转150°,然后朝新方向走3km ,结果他离出发点恰好3km ,那么x 的值为( ) A. 3 B. 23 C. 23或3 D. 36.在△ABC 中,()()()6:5:4::=+++b a a c c b ,则△ABC 的最大内角的度数是( )A .90° B.120° C .135° D.150°二、填空题7.已知锐角三角形的边长为1、3、a ,则a 的取值范围是________8.在△ABC 中,三边的边长为连续自然数,且最大角是钝角,这个三角形三边的长分别为_______三、解答题9.在△ABC 中,已知030,35,5===A c b ,求C B a 、、及面积Sa、的长. 10.在△ABC中,已知A>B>C,且A=2C, 8b,求ca=c,4=+1.1.2余弦定理(一) 一、选择题1.B2.B3.D4.C5.C6.B二、填空题7.1022<a< 8. 32三、解答题 9. 解 由余弦定理,知A bc c b a cos 2222-+=2530sin 3552)35(5022=⨯⨯-+=∴5=a 又∵b a =∴030==A B∴00120180=--=B A C432530sin )35(521sin 210=⨯⨯==A bc S10. 解:由正弦定理,得C c A a sin sin = ∵A=2C ∴Cc C a sin 2sin = ∴C c a sin 2= 又8=+c a ∴ c c cocC 28-= ① 由余弦定理,得 C C c Cab b a c 222222cos 1616cos 4cos 2-+=-+= ②① 入②,得 )(44524516舍或⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧==a c a c ∴516524==c a ,。
§1.1.2 余弦定理一、教学内容分析《余弦定理》选自人教版《普通高中课程标准实验教科书•必修(五)》(第2版)第一章《解三角形》第一单元第二课。
通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。
二、学生学情分析本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。
在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。
总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。
三、教学目标(一)知识与技能: 1.理解并掌握余弦定理和余弦定理的推论。
2.掌握余弦定理的推导、证明过程。
(二)过程与方法:1.能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
2.通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
(三)情感态度与价值观:在方程思想指导下,提升处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
四、教学重难点(一)教学重点:余弦定理的发现过程及定理的应用。
(二)教学难点:用向量的数量积推导余弦定理的思路方法及余弦定理在应用求解三角形时的思路。
五、教学过程(一)温故引新特例激疑1.正弦定理的内容是什么?在一个三角形中,各边和它所对角的正弦之比相等,即:asinA =bsinB=csinC.2.应用正弦定理可以解决所有的解三角形问题吗?如图,在△ABC中,已知AB=c,AC=b,∠CAB=A,求BC即a。
1.2 余弦定理(1)江苏省靖江高级中学 朱锦萍教学目标:1. 掌握余弦定理及其证明方法;2. 初步掌握余弦定理的应用;3. 培养学生推理探索数学规律和归纳总结的思维能力.教学重点:余弦定理及其应用. 教学难点:用解析法证明余弦定理.教学方法:发现教学法.教学过程:一、问题情境在上节中,我们通过等式AC BA BC +=的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理.Cc Bb Aa sin sin sin ==.探索1 还有其他途径将向量等式AC BA BC +=数量化吗? 二、学生活动向量的平方是向量数量化的一种手段. 因为AC BA BC +=(如图1),所以)()(AC BA AC BA BC BC +⋅+=⋅222AC BA AC BA +⋅+=ABC图1222cos 2)180bA cb c ACA +-=+-︒+=即 A bc c b a cos 2222-+=, 同理可得 B ac c a b cos 2222-+=,Cab B a ccos 2222-+=.上述等式表明,三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.引出课题——余弦定理.三、建构数学对任意三角形,有余弦定理:A bc c b acos 2222-+=,B ac c a b cos 2222-+=, Cab b a ccos 2222-+=.探索2:回顾正弦定理的证明,尝试用其他方法证明余弦定理. 师生共同活动,探索证明过程.经过讨论,可归纳出如下方法. 方法一:如图2建立直角坐标系,则)0,(),sin ,cos (),0,0(b C A c A c B A . 所以()()22222222sin cos sin cos bc A c A c A c b A c a -+=+-=A bc c b cos 222-+=.同理可证:B ac c a b cos 2222-+=,Cab b a ccos 2222-+=.方法二:若A 是锐角,如图3,由B 作AC BD ⊥,垂足为D ,则A c AD cos =.图2BCAD 图3所以,22222222(AC AD )AC AD 2AC AD BDa D C BD BD =+=-+=+-⋅+A bc c b AD AC BD ADACcos 22-)(22222-+=⋅++=,即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显然成立.同理可证 B ac c a b cos 2222-+=,C ab b a c cos 2222-+=. 方法三:由正弦定理,得)sin(2sin 2C B R A R a +==. 所以)cos cos sin sin 2sincoscos (sin4)(sin 422222222C B C B C B C B R C B R a++=+= ]cos cos sin sin 2sin )sin 1()sin 1([sin 422222C B C B C B C B R +-+-=)]cos(sin sin 2sin[sin 4222C B C B C B R +++=A C RB RC R B R cos )sin 2)(sin 2(2sin4sin42222-+=A bc c b cos 222-+=.同理可证 B ac c a b cos 2222-+=,C ab b a c cos 2222-+=. 余弦定理也可以写成如下形式:bc ac b A 2cos 222-+=,ca ba c B 2cos 222-+=,abcb a C 2cos 222-+=.探索3 利用余弦定理可以解决斜三角形中的哪些类型问题? 利用余弦定理,可以解决以下两类解斜三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.四、数学运用 1.例题.例1 在ABC ∆中,(1)已知︒===60,1,3A c b ,求a ;(2)已知,6,10,7===c b a 求最大角的余弦值. 解 (1)由余弦定理,得 760cos 13213cos 222222=︒⨯⨯⨯-+=-+=A bc c b a , 所以 7=a .(2) 因为b a c <<,所以B 为最大角, 由余弦定理,得28576210762cos 222222-=⨯⨯-+=-+=caba c B .例2 用余弦定理证明:在ABC ∆中,当C ∠为锐角时,222c b a >+;当C ∠为钝角时,222c b a <+.证明:当C ∠为锐角时,0cos >C ,由余弦定理得22222cos 2ba C ab b ac +<-+=即 222c b a >+;同理可证,当C ∠为钝角时,222c b a <+. 2.练习.(1)在ABC ∆中,已知3,5,7===c b a ,求A .(2)若三条线段的长分别为5,6,7,则用这三条线段( ) A. 能组成直角三角形 B. 能组成锐角三角形C. 能组成钝角三角形D. 不能组成三角形 (3)在ABC ∆中,已知222c ab b a =++,试求C 的大小. 练习答案: (1)32π=A (2)B (3)32π=C五、要点归纳与方法小结本节课我们得出了任一三角形的三边及其一角之间的关系,即余弦定理.余弦定理可以解决斜三角形中这样的两类问题:已知三边,求三个角;已知两边和它们的夹角,求第三边和其他两个角.。
第2课时 正弦定理和余弦定理学习目标 1.熟练掌握正弦、余弦定理及其变形形式.2.能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题.知识点一 正弦定理、余弦定理及常见变形 1.正弦定理及常见变形(1)a sin A =b sin B =c sin C =2R (其中R 是△ABC 外接圆的半径); (2)a =b sin A sin B =c sin A sin C =2R sin A ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R .2.余弦定理及常见变形 (1)a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C ; (2)cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.知识点二 有关三角形的隐含条件 (1)由A +B +C =180°可得sin(A +B )=sin C ,cos(A +B )=-cos C , (2)由大边对大角可得sin A >sin B ⇔A >B .(3)由锐角△ABC 可得任意两内角之和大于π2,进而可得sin A >cos B .1.当b 2+c 2-a 2>0时,△ABC 为锐角三角形.( × ) 2.△ABC 中,若cos 2A =cos 2B ,则A =B .( √ ) 3.在△ABC 中,恒有a 2=(b -c )2+2bc (1-cos A ).( √ )4.△ABC 中,若c 2-a 2-b 2>0,则角C 为钝角.( √ )题型一 利用正弦、余弦定理解三角形例1 在△ABC 中,若c cos B =b cos C ,cos A =23,求sin B 的值.解 由c cos B =b cos C ,结合正弦定理, 得sin C cos B =sin B cos C ,故sin(B -C )=0,∵0<B <π,0<C <π, ∴-π<B -C <π,∴B -C =0,B =C ,故b =c .∵cos A =23,∴由余弦定理可知,a 2=b 2+c 2-2bc cos A =2b 2-2b 2·23=23b 2,得3a 2=2b 2,再由余弦定理,得cos B =66,故sin B =306. 引申探究1.对于本例中的条件,c cos B =b cos C ,能否使用余弦定理? 解 由余弦定理,得c ·a 2+c 2-b 22ac =b ·a 2+b 2-c 22ab .化简得a 2+c 2-b 2=a 2+b 2-c 2, ∴c 2=b 2,从而c =b .2.本例中的条件c cos B =b cos C 的几何意义是什么? 解 如图,作AD ⊥BC ,垂足为D . 则c cos B =BD ,b cos C =CD .∴c cos B =b cos C 的几何意义为边AB ,AC 在BC 边上的射影相等. 反思感悟 (1)边、角互化是处理三角形边、角混合条件的常用手段. (2)解题时要画出三角形,将题目条件直观化,根据题目条件,灵活选择公式.跟踪训练1 在△ABC 中,已知b 2=ac ,a 2-c 2=ac -bc . (1)求A 的大小; (2)求b sin B c的值.解 (1)由题意及余弦定理知, cos A =b 2+c 2-a 22bc =ac +bc -ac 2bc =12,∵A ∈(0,π),∴A =π3.(2)由b 2=ac ,得b c =ab ,∴b sin Bc =sin B ·a b =sin B ·sin A sin B =sin A =32. 题型二 判断三角形形状例2 在△ABC 中,已知a ,b ,c 分别是角A ,B ,C 的对边,若a +b a =cos B +cos A cos B ,试判断三角形的形状.解 方法一 由正弦定理知,a =2R sin A ,b =2R sin B ,R 为△ABC 外接圆半径. ∵a +b a =cos B +cos Acos B , ∴sin A +sin B sin A =cos B +cos Acos B,∴sin A cos B +sin B cos B =sin A cos B +sin A cos A , ∴sin B cos B =sin A cos A , ∴sin 2B =sin 2A , ∴2A =2B 或2A +2B =π, 即A =B 或A +B =π2,∴△ABC 为等腰三角形或直角三角形.方法二 由a +b a =cos B +cos A cos B ,得1+b a =1+cos Acos B ,b a =cos Acos B,由余弦定理,得cos A cos B =b 2+c 2-a 22bc a 2+c 2-b 22ac=a b ·b 2+c 2-a2a 2+c 2-b 2,∴b a =a (b 2+c 2-a 2)b (a 2+c 2-b 2). a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), a 2c 2-a 4=b 2c 2-b 4, c 2(a 2-b 2)=(a 2-b 2)(a 2+b 2). ∴a 2=b 2或c 2=a 2+b 2.∴△ABC 是等腰三角形或直角三角形.反思感悟 (1)要结合题目特征灵活选择使用正弦定理还是使用余弦定理. (2)变形要注意等价性,如sin 2A =sin 2B ⇏2A =2B . c 2(a 2-b 2)=(a 2-b 2)(a 2+b 2) ⇏c 2=a 2+b 2.跟踪训练2 在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定答案 C解析 由正弦定理知,sin A =a 2R ,sin B =b 2R ,sin C =c2R .∴sin 2A +sin 2B <sin 2C 可化为 a 2+b 2<c 2,a 2+b 2-c 2<0. ∴cos C =a 2+b 2-c 22ab<0.∴角C 为钝角,△ABC 为钝角三角形.题型三 利用正弦、余弦定理进行求值、化简和证明 例3 在△ABC 中,有 (1)a =b cos C +c cos B ; (2)b =c cos A +a cos C ; (3)c =a cos B +b cos A ,这三个关系式也称为射影定理,请给出证明.证明 方法一 (1)由正弦定理,得 b =2R sin B ,c =2R sin C ,∴b cos C +c cos B =2R sin B cos C +2R sin C cos B =2R (sin B cos C +cos B sin C ) =2R sin(B +C ) =2R sin A =a . 即a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A . 方法二 (1)由余弦定理,得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,∴b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 22a +a 2+c 2-b 22a =2a 22a =a .∴a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A .反思感悟 证明三角形中边角混合关系恒等式,可以考虑两种途径:一是把角的关系通过正弦、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是通过正弦定理把边的关系转化为角的关系.跟踪训练3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2Asin C = . 答案 1解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos A c =4cos A 3=1.求三角形一角的值典例 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3或2π3C.π3D.π6或5π6 答案 B解析 ∵cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B ,代入已知等式得2ac ·cos B tan B =3ac , 即sin B =32,则B =π3或2π3. [素养评析] 选择运算方法是数学运算素养的内涵之一.运算从一点出发可以有无限个方向.一个式子也可以有无限个变形,逐个试探肯定不现实.那么如何选择运算方向才能算得出,算得快?要点有3个:①公式要熟,如本例至少应知道cos B =a 2+c 2-b 22ac ,tan B =sin Bcos B .②观察联想,如看到a 2+c 2-b 2应联想到a 2+c 2-b 2=2ac cos B .③权衡选择,如本例也可把所有的边都化为相应角的正弦,但权衡运算繁简,不如整体把a 2+c 2-b 2化为2ac cos B 简单.1.在△ABC 中,若b 2=a 2+c 2+ac ,则B 等于( ) A .60° B .45°或135° C .120° D .30°答案 C解析 ∵b 2=a 2+c 2-2ac cos B =a 2+c 2+ac , ∴ac =-2ac cos B ,cos B =-12,又0°<B <180°, ∴B =120°.2.在△ABC 中,角A ,B ,C 所对的边的长分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定答案 C解析 根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,△ABC 是钝角三角形.3.已知在△ABC 中,sin A ∶sin B ∶sin C =4∶3∶2,则cos B 等于( ) A.1116 B.79 C.2116 D.2916 答案 A解析 依题意设a =4k ,b =3k ,c =2k (k >0),则cos B =a 2+c 2-b 22ac =16k 2+4k 2-9k 22×4k ×2k =1116.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c cos A +a cos C =2c ,若a =b ,则sin B 等于( ) A.154 B.14 C.34D.32答案 A解析 ∵c cos A +a cos C =2c ,∴由正弦定理可得sin C cos A +sin A cos C =2sin C , ∴sin(A +C )=2sin C , ∴sin B =2sin C ,∴b =2c , 又a =b ,∴a =2c .∴cos B =a 2+c 2-b 22ac =4c 2+c 2-4c 22×2c 2=14,∵B ∈(0,π),∴sin B =1-cos 2B =154.1.熟悉正弦、余弦定理的各种变形,注意观察题目条件的结构特征,根据这些特征尽量使用正弦、余弦定理各种变形整体代换,可以有效减少计算量. 2.对所给条件进行变形,主要有两种方向 (1)化边为角. (2)化角为边.一、选择题1.若三条线段的长分别为5,6,7,则用这三条线段( ) A .能组成直角三角形 B .能组成锐角三角形 C .能组成钝角三角形 D .不能组成三角形答案 B解析 设最大角为θ,则最大边对应的角的余弦值为 cos θ=52+62-722×5×6=15>0,所以能组成锐角三角形.2.已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2b 2-2a 2=ac +2c 2,则sin B 等于( ) A.154 B.14 C.32 D.12答案 A解析 由2b 2-2a 2=ac +2c 2,得2(a 2+c 2-b 2)+ac =0. 由余弦定理,得a 2+c 2-b 2=2ac cos B , ∴4ac cos B +ac =0.∵ac ≠0,∴4cos B +1=0,cos B =-14,又B ∈(0,π),∴sin B =1-cos 2B =154. 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c 等于( )A .1B .2C .4D .6答案 C解析 ∵a 2=c 2+b 2-2cb cos A , ∴13=c 2+9-2c ×3×cos 60°, 即c 2-3c -4=0,解得c =4或c =-1(舍去).4.若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1 D.23 答案 A解析 由余弦定理c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C , ∴(a +b )2-c 2=2ab (1+cos C ) =2ab (1+cos 60°)=3ab =4, ∴ab =43.5.已知在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c 2-b 2=ab ,C =π3,则sin Asin B 的值为( )A.12 B .1 C .2 D .3 答案 C解析 由余弦定理得c 2-b 2=a 2-2ab cos C =a 2-ab =ab ,所以a =2b ,所以由正弦定理得sin Asin B =a b=2. 6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则C 等于( )A.π3B.3π4C.2π3D.5π6 答案 C解析 由正弦定理a sin A =b sin B 和3sin A =5sin B ,得3a =5b ,即b =35a ,又b +c =2a ,∴c =75a ,由余弦定理得cos C =a 2+b 2-c 22ab =-12,∴C =2π3.7.若△ABC 的两边长分别为2,3,其夹角的余弦值为13,则其外接圆的直径为( )A.922B.924C.928 D .9 2答案 B解析 设另一条边为x ,则x 2=22+32-2×2×3×13=9,∴x =3.设cos θ=13,θ为长度为2,3的两边的夹角,则sin θ=1-cos 2θ=223.∴2R =3sin θ=3223=924.8.在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC 等于( )A.1010 B.105 C.31010 D.55答案 C解析 在△ABC 中,由余弦定理,得 AC 2=BA 2+BC 2-2BA ·BC ·cos ∠ABC =(2)2+32-2×2×3×cos π4=5.∴AC =5,由正弦定理BC sin ∠BAC =ACsin ∠ABC ,得sin ∠BAC =BC ·sin ∠ABCAC =3×sinπ45=3×225=31010.二、填空题9.在△ABC 中,B =60°,a =1,c =2,则csin C = .答案 2解析 ∵由余弦定理得,b 2=a 2+c 2-2ac cos B =3,∴b =3,∴由正弦定理得,c sin C =b sin B =332=2. 10.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sin B ,则B = .答案 45°解析 由正弦定理,得a 2+c 2-2ac =b 2,由余弦定理,得b 2=a 2+c 2-2ac cos B ,故cos B =22. 又因为B 为三角形的内角,所以B =45°.11.在△ABC 中,a 2-b 2=3bc ,sin C =23sin B ,则A = .答案 30°解析 由sin C =23sin B 及正弦定理,得c =23b ,把它代入a 2-b 2=3bc ,得a 2-b 2=6b 2,即a 2=7b 2.由余弦定理,得cos A =b 2+c 2-a 22bc =b 2+12b 2-7b 22b ·23b =6b 243b 2=32, 又0°<A <180°,所以A =30°.三、解答题12.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,a 2+c 2-b 2=65ac . 求2sin 2A +C 2+sin 2B 的值. 考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与三角变换的综合解 由已知得a 2+c 2-b 22ac =35, 所以cos B =35, 又因为角B 为△ABC 的内角,所以sin B >0,所以sin B =1-cos 2B =45,所以2sin 2A +C 2+sin 2B =2cos 2B 2+sin 2B =1+cos B +2sin B cos B=1+35+2×45×35=6425. 13.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)∵2a sin A =(2b -c )sin B +(2c -b )sin C ,∴2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12. ∵0°<A <180°,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°,由sin B +sin C =3,得sin B +sin(120°-B )=3,∴sin B +sin 120°cos B -cos 120°sin B =3,∴32sin B +32cos B =3,即sin(B +30°)=1. 又∵0°<B <120°,∴30°<B +30°<150°,∴B +30°=90°,即B =60°,∴A =B =C =60°,∴△ABC 为正三角形.14.在△ABC 中,若a 2=bc ,则角A 是( )A .锐角B .钝角C .直角D .不确定答案 A解析 ∵cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=⎝⎛⎭⎫b -c 22+3c 242bc >0,∴0°<A <90°,即角A 是锐角.15.在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且sin A a =3cos C c. (1)求C 的大小;(2)如果a +b =6,CA →·CB →=4,求c 的值.考点 正弦、余弦定理与其他知识的综合题点 正弦、余弦定理与平面向量的综合解 (1)由正弦定理,sin A a =3cos C c 可化为sin A 2R sin A =3cos C 2R sin C,即tan C = 3.又∵C ∈(0,π),∴C =π3. (2)CA →·CB →=|C A →||CB →|cos C =ab cos C =4, 且cos C =cos π3=12.∴ab =8. 由余弦定理,得c 2=a 2+b 2-2ab cos C=(a +b )2-2ab -2ab cos π3=(a +b )2-3ab =62-3×8=12.∴c =2 3.。
1.1.2 余弦定理第1课时 余弦定理及其直接应用学习目标 1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法.2.会运用余弦定理解决两类基本的解三角形问题.知识点一 余弦定理思考1 根据勾股定理,在△ABC 中,C =90°,则c 2=a 2+b 2=a 2+b 2-2ab cos C .① 试验证①式对等边三角形还成立吗?你有什么猜想? 答案 当a =b =c 时,C =60°,a 2+b 2-2ab cos C =c 2+c 2-2c ·c cos 60°=c 2,即①式仍成立,据此猜想,对一般△ABC ,都有c 2=a 2+b 2-2ab cos C .思考2 在c 2=a 2+b 2-2ab cos C 中,ab cos C 能解释为哪两个向量的数量积?你能由此证明思考1的猜想吗? 答案 ab cos C =|CB →||CA→CB →,CA →=CB →·CA →.∴a 2+b 2-2ab cos C =CB →2+CA →2-2CB →·CA →=(CB →-CA →)2=AB →2=c 2. 猜想得证.梳理 余弦定理的公式表达及语言叙述特别提醒:余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中的三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量. 知识点二 适宜用余弦定理解决的两类基本的解三角形问题思考1 观察知识点一梳理表格第一行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,两边及其夹角.故如果已知三角形的两边及其夹角,可用余弦定理解三角形.思考2 观察知识点一梳理表格第三行中的公式结构,其中等号右边涉及几个量?你认为可用来解哪类三角形?答案 每个公式右边都涉及三个量,即三角形的三条边,故如果已知三角形的三边,也可用余弦定理解三角形.梳理 余弦定理适合解决的问题:(1)已知两边及其夹角,解三角形;(2)已知三边,解三角形.1.勾股定理是余弦定理的特例.(√)2.余弦定理每个公式中均涉及三角形的四个元素.(√)3.在△ABC 中,已知两边及夹角时,△ABC 不一定唯一.(×)类型一 余弦定理的证明例1 已知△ABC ,BC =a ,AC =b 和角C ,求c 的值. 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,设CB →=a ,CA →=b ,AB →=c ,由AB →=CB →-CA →,知c =a -b , 则|c |2=c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |cos C . 所以c 2=a 2+b 2-2ab cos C , 即c =a 2+b 2-2ab cos C .反思与感悟 所谓证明,就是在新旧知识间架起一座桥梁.桥梁架在哪儿,要勘探地形,证明一个公式,要观察公式两边的结构特征,联系已经学过的知识,看有没有相似的地方. 跟踪训练1 例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题? 考点 余弦定理及其变形应用 题点 余弦定理的理解解 如图,以A 为原点,边AB 所在直线为x 轴建立直角坐标系,则A (0,0),B (c ,0), C (b cos A ,b sin A ),∴BC 2=b 2cos 2A -2bc cos A +c 2+b 2sin 2A , 即a 2=b 2+c 2-2bc cos A . 同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 类型二 用余弦定理解三角形 命题角度1 已知两边及其夹角例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =2,cos(A +B )=13,则c 等于( ) A.4 B.15 C.3D.17考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 D解析 由三角形内角和定理可知 cos C =-cos(A +B )=-13,又由余弦定理得c 2=a 2+b 2-2ab cos C =9+4-2×3×2×⎝⎛⎭⎫-13=17, 所以c =17.反思与感悟 已知三角形两边及其夹角时,应先从余弦定理入手求出第三边,再利用正弦定理求其余的角.跟踪训练2 在△ABC 中,已知a =2,b =22,C =15°,求A . 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形解 由余弦定理,得c 2=a 2+b 2-2ab cos C =8-43, 所以c =6- 2.由正弦定理,得sin A =a sin C c =12,因为b >a ,所以B >A , 所以A 为锐角,所以A =30°. 命题角度2 已知三边例3 在△ABC 中,已知a =26,b =6+23,c =43,求A ,B ,C . 考点 用余弦定理解三角形 题点 已知三边解三解形解 根据余弦定理,cos A =b 2+c 2-a 22bc=(6+23)2+(43)2-(26)22×(6+23)×(43)=32. ∵A ∈(0,π),∴A =π6,cos C =a 2+b 2-c 22ab=(26)2+(6+23)2-(43)22×26×(6+23)=22, ∵C ∈(0,π),∴C =π4.∴B =π-A -C =π-π6-π4=7π12,∴A =π6,B =7π12,C =π4.反思与感悟 已知三边求三角,可利用余弦定理的变形cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =b 2+a 2-c 22ba 先求一个角,求其余角时,可用余弦定理也可用正弦定理.跟踪训练3 在△ABC 中,sin A ∶sin B ∶sin C =2∶4∶5,判断三角形的形状. 考点 用余弦定理解三角形 题点 已知三边解三角形解 因为a ∶b ∶c =sin A ∶sin B ∶sin C =2∶4∶5, 所以可令a =2k ,b =4k ,c =5k (k >0). c 最大,cos C =(2k )2+(4k )2-(5k )22×2k ×4k <0,所以C 为钝角,从而三角形为钝角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的第三边长为( )A.52B.213C.16D.4 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 B解析 设第三边长为x ,则x 2=52+32-2×5×3×⎝⎛⎭⎫-35=52,∴x =213. 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12考点 用余弦定理解三角形 题点 已知三边解三角形 答案 B解析 ∵a >b >c ,∴C 为最小角且C 为锐角, 由余弦定理,得cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32. 又∵C 为锐角,∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 考点 用余弦定理解三角形 题点 已知三边解三角形 答案 D解析 设顶角为C ,周长为l ,因为l =5c ,所以a =b =2c , 由余弦定理,得cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,a =32,b =23,cos C =13,则c 2= .考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 30-4 6解析 c 2=a 2+b 2-2ab cos C =(32)2+(23)2-2×32×23×13=30-4 6.5.在△ABC 中,若b =1,c =3,C =2π3,则a = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案 1解析 ∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos 2π3,∴a 2+a -2=0,即(a +2)(a -1)=0.∴a =1或a =-2(舍去).∴a =1.1.利用余弦定理可以解决两类有关三角形的问题 (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角.2.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角. (2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角. (3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.一、选择题1.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A.1 B. 2 C.2 D.4 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ca =2a 22a =a =2.2.在△ABC 中,已知B =120°,a =3,c =5,则b 等于( ) A.4 3 B.7 C.7 D.5 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 ∵b 2=a 2+c 2-2ac cos B =32+52-2×3×5×cos 120°=49,∴b =7. 3.边长为5,7,8的三角形的最大角与最小角的和是( ) A.90° B.120° C.135° D.150° 考点 用余弦定理解三角形 题点 已知三边解三角形答案 B解析 设中间角为θ,则θ为锐角,cos θ=52+82-722×5×8=12,θ=60°,180°-60°=120°为所求.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2, ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ×2a=34.5.若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A.19 B.14 C.-18 D.-19 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 D解析 设三角形的三边分别为a ,b ,c , 依题意得,a =5,b =6,c =7.∴AB →·BC →=|AB →|·|BC →|·cos(π-B )=-ac ·cos B . 由余弦定理得b 2=a 2+c 2-2ac ·cos B ,∴-ac ·cos B =12(b 2-a 2-c 2)=12(62-52-72)=-19,∴AB →·BC →=-19.6.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若a =4,b =5,c =6,则sin 2A sin C 等于( )A.1B.2C.12D.34考点 用余弦定理解三角形 题点 已知三边解三角形 答案 A解析 由余弦定理得cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin 2A sin C =2sin A cos A sin C =2a cos Ac=4cos A3=1.7.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,小区里有一条平行于AO 的小路CD .已知某人从点O 沿OD 走到点D 用了2 min ,从点D 沿DC 走到点C 用了3 min.若此人步行的速度为50 m/min ,则该扇形的半径为( ) A.50 m B.45 m C.507 m D.47 m 考点 用余弦定理解三角形 题点 已知两边及其夹角解三角形 答案 C解析 依题意得OD =100 m , CD =150 m , 连接OC ,易知∠ODC =180°-∠AOB =60°, 因此由余弦定理,得OC 2=OD 2+CD 2-2OD ×CD ×cos ∠ODC , 即OC 2=1002+1502-2×100×150×12,解得OC =507(m).8.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43B.8-4 3C.1D.23 考点 余弦定理及其变形应用 题点 余弦定理的变形应用 答案 A解析 (a +b )2-c 2=a 2+b 2-c 2+2ab =4, 又c 2=a 2+b 2-2ab cos C =a 2+b 2-ab ∴a 2+b 2-c 2=ab ,∴3ab =4,∴ab =43.二、填空题9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2+b 2<c 2,且sin C =32,则C = .考点 余弦定理及其变形应用 题点 用余弦定理求边或角的取值范围 答案2π3解析 因为a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以三角形是钝角三角形,且C >π2.又因为sin C =32,所以C =2π3. 10.在△ABC 中,A =60°,最大边长与最小边长是方程x 2-9x +8=0的两个实根,则边BC 的长为 .考点 余弦定理及其变形应用题点 余弦定理与一元二次方程结合问题 答案57解析 设内角B ,C 所对的边分别为b ,c .∵A =60°,∴可设最大边与最小边分别为b ,c .由条件可知b +c =9,bc =8,∴BC 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =92-2×8-2×8×cos 60°=57,∴BC =57.11.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是 . 考点 余弦定理解三解形 题点 已知三边解三角形 答案3解析 ∵cos C =BC 2+AC 2-AB 22×BC ×AC=22,∵C ∈⎝⎛⎭⎫0,π2,∴sin C =22.∴AD =AC ·sin C =3. 三、解答题12.在△ABC 中,已知A =120°,a =7,b +c =8,求b ,c . 考点 余弦定理及其变形应用 题点 余弦定理的变形应用解 由余弦定理,得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),所以49=64-2bc ⎝⎛⎭⎫1-12,即bc =15, 由⎩⎪⎨⎪⎧ b +c =8,bc =15,解得⎩⎪⎨⎪⎧ b =3,c =5或⎩⎪⎨⎪⎧ b =5,c =3. 13.在△ABC 中,a 2+c 2=b 2+2ac .(1)求B 的大小;(2)求2cos A +cos C 的最大值.考点 用余弦定理解三角形题点 余弦定理解三角形综合问题解 (1)由a 2+c 2=b 2+2ac 得a 2+c 2-b 2=2ac ,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22. 又0<B <π,所以B =π4. (2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4. 所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎫3π4-A=2cos A +cos3π4cos A +sin 3π4sin A =2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎫A +π4. ∵0<A <3π4,∴π4<A +π4<π, 故当A +π4=π2, 即A =π4时,2cos A +cos C 取得最大值1. 四、探究与拓展14.已知a ,b ,c 是△ABC 的三边长,若直线ax +by +c =0与圆x 2+y 2=1无公共点,则△ABC 的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定考点 判断三角形形状 题点 利用余弦定理判断三角形形状答案 B解析 ∵直线ax +by +c =0与圆x 2+y 2=1无公共点,∴圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2>1,即a 2+b 2-c 2<0,∴cos C =a 2+b 2-c 22ab <0, 又C ∈(0,π),∴C 为钝角.故△ABC 为钝角三角形.15.在△ABC 中,已知BC =7,AC =8,AB =9,则AC 边上的中线长为 . 考点 用余弦定理解三角形题点 已知三边解三角形答案 7解析 由条件知cos A =AB 2+AC 2-BC 22×AB ×AC =92+82-722×9×8=23, 设中线长为x ,由余弦定理,知x 2=⎝⎛⎭⎫AC 22+AB 2-2×AC 2×AB cos A =42+92-2×4×9×23=49, 所以x =7.所以AC 边上的中线长为7.。
课题: §1.1.2余弦定理●教学目标 知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
●教学重点余弦定理的发现和证明过程及其基本应用;●教学难点勾股定理在余弦定理的发现和证明过程中的作用。
●教学过程Ⅰ.课题导入 C如图1.1-4,在∆ABC 中,设BC=a,AC=b,AB=c,已知a,b 和∠C ,求边c b aA c B(图1.1-4)Ⅱ.讲授新课[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。
A如图1.1-5,设CB a =u u r r ,CA b =u u r r ,AB c =u u r r ,那么c a b =-r r r ,则 b r c r()()222 2 2c c c a b a b a a b b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅r r r r r r r r r r r r r r r r r C a r从而 2222cos c a b ab C =+- (图1.1-5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。
即 2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下推论:222cos 2+-=b c a A bc 222cos 2+-=a c b B ac 222cos 2+-=b a c C ba[理解定理]从而知余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角。
§1.1.2 余弦定理(1)
一、学科核心素养培育目标
1.通过学生小组讨论,教师点拨能证明余弦定理,并且记住余弦定理及其推论
2.通过学生小组讨论教师点拨,会运用余弦定理解决两类基本的解三角形问题.
二、学习重点、难点
1.重点:余弦定理的探索和证明及其基本应用.
2.难点:余弦定理的探索和证明及其基本应用.
三、预习提纲
1.预习时间:20-30分钟(晚自习完成)
2.预习内容:步步高4-5页
3.达成度:完成步步高相应内容
四、导学过程预设
活动一、自主学习 合作探究
问题:在三角形中,已知两角及一边,或已知两边和其中一边的对角,可以利用正弦定理求其他的边和角.那么,已知两边及其夹角,怎么求出此角的对边呢?已知三条边,又怎么求出它的三个角呢?
探究新知
问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .
∵AC = ,
∴AC AC •=
同理可得: 2222cos a b c bc A =+-,
2222cos c a b ab C =+-.
新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.
思考:这个式子中有几个量?
从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?
从余弦定理,又可得到以下推论:
222
cos 2b c a A bc
+-=, , .
[理解定理]
(1)若C=90︒,则cos C = ,这时222c a b =+
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.
(2)余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边;
②已知三角形的三条边就可以求出其它角.
学生活动二
标杆例1. 在△ABC中,已知a=b,45
B=,求,A C和c.
变式:在△ABC中,若AB,AC=5,且cosC=
9
10
,则BC=_______.
标杆例2. 在△ABC中,已知三边长3
a=,4
b=,c=,求三角形的最大内角.变式:在∆ABC中,若222
a b c bc
=++,求角A.
五、课堂小结
六、巩固训练
七、课堂教学反思。