北师大版初一数学上册探索与表达规律
- 格式:docx
- 大小:24.36 KB
- 文档页数:2
北师大版初一上册3教材分析:探究规律是北师大版七年级数学上册第三章第五节,探究规律本身是数学课中比较抽象的一部分内容,学生需要积存一定的体会和差不多的探究方法才能够找到题目的规律,本章学习的整式及其加减正好用来表示这种规律,因此表达规律是整式应用专门好的范例,教材在本章安排了几种简单的规律探究问题,其目的要紧是让学生把握解决这类问题的差不多方法即:探究分析——归纳表示——验证结论,体会解决问题的差不多思想即:从专门到一样的思想。
教学目标:1.知识目标:会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探究的规律。
2.能力目标:培养学生的观看能力、动手能力、创新能力以及交往协作能力,并提高其分析问题和解决问题的能力。
3.情感目标:让学生体会数学就在周围,激发学生的探究热情,体验数学活动的探干脆及制造性,培养学生实事求是的科学态度。
教学重难点:【教学重点】探究实际问题中蕴涵的关系和规律。
【教学难点】用字母、运算符号表示一样规律。
课前预备:见PPT教学过程:一、问题引入这是2021年3 月的日历,你能填空吗?【设计意图】通过简单的问题,学生快速回答从而获得对数字规律的直观体验,为用字母表示规律埋下伏笔。
二、合作探究1.学生探究活动项目单:(1)说一说日历中的数字排列有什么规律?(同一排或同一列)(2)若用一个方框任意框出九个数,这九个数字之间有什么数量关系?(3)用字母表示这种数量关系。
(4)这九个数的和与中间数有什么关系?(5)尝试使用较为简练的语言和同桌说一说你发觉的规律。
学生摸索、猜想、交流,个别学生展现。
应鼓舞学生大胆探究,积极发言。
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = __9a____可得到:蓝色方框中九个数之和=9×正中间的数。
进一步挑战:给出几个图形,如“十”字形、“H”形,“W”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,并分小组展现。
第三章第五节探索与表达规律一、基本知识点1.探究规律;2.计算二、基本方法数字探究;图形探究三、知识讲练【例1】图形题用棋子摆出下列一组图形:(1)(2)(3)图形编号 1 2 3 4 5 6图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?〖针对练习1〗1.用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子枚(用含n的代数式表示).…第1个图第2个图第3个图2. 下列每个图是由若干盆花组成的形如三角形的图案,按此规律写出第n个图形花盆的总数______________________;3. 下列每个图是由若干盆花组成的形如正方形的图案,按此规律写出第n个图形花盆的总数__________4. 下列每个图是由若干盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,花盆的总数S=______________________;5. 下列每个图是由若干盆组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是S,按此规律推断,花盆的总数S=______________________;6. 下图中所有正方体的边长都是1. 例如第(1)个图形的表面积为6个平方单位,第(2)个图形的表面积为18个平方单位,第(3)个图形的表面积是36个平方单位。
依此规律。
则第(6)个图形的表面积个平方单位。
【例2】数字题1. 有若干个数,第1个数记为1a,第二个数记为2a,第三个数记为3a……,第n个记为na,若211-=a,从第二个数起,每个数都等于“1与它前面的那个数的差的倒数。
”(1)试计算__________,__________________,432===aaa(2)根据以上结果,请你写出___________1999=a,_______2001=a。
探索与表达规律
教学目标:
1.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律,培养学生通过观察已知数据或图形,探索数量之间的关系得到规律的能力.
2. 通过动手操作、观察、思考,经历探索数量关系、运用符号表示规律、通过运算验证规律的过程,体验数学活动是充满着探索性和创造性的过程.
3. 体验在解决问题的过程中与他人合作的重要性.
二、教学重难点
重点:探索发现规律,并会用代数式表示规律.
难点:用代数式表示规律.
(一)儿歌规律
这节课我们将一起探究数学中的规律,从而引出课题:探索规律
(二)合作探究
探究:数的变化规律
1.请同学们快速记住日历中的数字并能准确的说出它们的位置.
2.请同学填空,并说说是以什么方法记忆日历的?
学生通过观察,找到每一行、每一列、每一条对角线上相邻两数之间的关系.
3.探究方框中九个数的和与正中间数的关系.(所给的是今年十月份的日历)
(1)请思考方框中九个数的和与正中间的数有什么关系?
(2)请同学们拿出日历,任意用方框框住这份日历中其它的九个数,这个关系是否成立?
(3)这个关系对十月份的日历成立,那对其他月份的日历成立吗?
从而得到猜想:蓝色方框中九个数之和=9×正中间的数
(4)我们应该如何进行验证?
学生根据方框中数的不确定性,引导他们想到用字母表示数,学生可能设任意一个方格的数为字母(任意),表示出其余的八个数,通过代数和运算发现,设正中间的数为字母的计算较为简单,得到“问什么设什么”,根据代数和的运算验证了猜想的正确性.
从而得到规律:蓝色方框中九个数之和=9×正中间的数
挑战:给出几个图形,如“十”字形、“H”形,“M”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,分小组展示.
探究:图形的变化规律
按下图方式用火柴棒搭三角形:
…
1.照这样的规律搭下去,搭8个三角形需要多少根火柴棒?
2.探究:搭n个这样的三角形需要多少根火柴棒?
学生可以通过摆放的多种方式得到规律,同时经过去括号、合并同类项等化简运算得到结果相同,也可以引导学生将图形的规律转化为数来研究.
挑战:将一张长方形纸按如图方式连续对折,每一次的
折痕都与第一次的折痕平行,对折1次后,纸为几层?
对折2次后,纸为几层? 对折n次呢?
先研究层数,再研究折痕的条数,并让学生认识到有时
仅从图形是不容易发现规律的,需要借助于数来猜想得
到规律,并用具体图形来验证.
(三)归纳提炼
让学生对本节课所学的基本方法和数学思想进行归纳.
(四)拓展延伸
设置游戏,拓展有关整除的规律.
(五)布置作业
请学生自己设置包含数字规律的数阵,并写出探究的过程.。