贝塞尔函数
- 格式:docx
- 大小:13.70 KB
- 文档页数:1
贝塞尔函数的有关公式贝塞尔函数是数学中一类特殊的函数,广泛应用于物理学、工程学和数学物理学等领域。
贝塞尔函数一族的定义包括第一类贝塞尔函数、第二类贝塞尔函数以及修正的贝塞尔函数。
本文将介绍这些贝塞尔函数的基本定义和性质,并给出一些常见的贝塞尔函数公式。
一、第一类贝塞尔函数(Bessel Function of the First Kind)第一类贝塞尔函数是非负整数阶的解特殊二阶常微分方程贝塞尔方程的解。
第一类贝塞尔函数通常用J_n(x)表示,其中n是阶数,x是实数。
它的定义为:J_n(x) = (1/π) ∫[0,π] cos(nθ - xsinθ) dθ其中,J_0(x)是常数函数。
第一类贝塞尔函数有一些重要的性质:1.对于所有的实数x和n≥0,J_n(x)是实函数。
2.J_0(x)在x=0处取得最大值,而在其他地方有若干个零点。
3.J_n(x)在x→0时的行为类似于x^n,即J_n(x)~(x/2)^n/(n!)。
第一类贝塞尔函数的递推公式:J_{n+1}(x)=(2n/x)J_n(x)-J_{n-1}(x)其中J_{1}(x)=(2/x)J_0(x)。
第一类贝塞尔函数的导数计算公式:dJ_n(x)/dx = J_{n-1}(x) - (n/x) J_n(x)利用这个公式可以计算贝塞尔函数的导数。
二、第二类贝塞尔函数(Bessel function of the second kind)第二类贝塞尔函数是贝塞尔方程的另一类解,通常用Y_n(x)表示,其中n是阶数,x是实数。
第二类贝塞尔函数的定义为:Y_n(x) = (1/π) ∫[0,π] sin(nθ - xsinθ) dθ其中,Y_0(x)是称作“诺依曼函数”。
第二类贝塞尔函数的性质如下:1.对于所有的实数x和n≥0,Y_n(x)是实函数。
2.Y_0(x)在x=0处不取得最大值,而在其他地方有若干个零点。
3. Y_n(x)在x→0时的行为类似于(2/π)(ln(x/2) + γ) + O(x^2)。
贝塞尔函数展开一、贝塞尔函数的定义贝塞尔函数是解决微分方程中出现的一类特殊函数,它最早由法国数学家贝塞尔在研究热传导方程时提出,因此得名为贝塞尔函数。
贝塞尔函数可以分为第一类和第二类两种,分别用Jn(x)和Yn(x)表示。
二、贝塞尔函数的展开式1. 第一类贝塞尔函数展开式第一类贝塞尔函数Jn(x)可以用下面的级数展开:Jn(x) = (x/2)^n∑k=0^∞(-1)^k/(k!(n+k)!)(x/2)^(2k)其中,n为整数,x为实数。
2. 第二类贝塞尔函数展开式第二类贝塞尔函数Yn(x)可以用下面的级数展开:Yn(x) = (2/π)(Jn(x)ln(x/2)+∑k=1^n(-1)^k(k-1)!/(k!)(x/2)^(-2k-n)) 其中,n为整数,x为正实数。
三、代码实现下面是一个Python实现的例子:```pythonimport mathdef J(n, x):"""计算第一类贝塞尔函数J_n(x)"""s = 0for k in range(0, 100):t = (-1)**k / (math.factorial(k) * math.factorial(n + k)) * (x / 2)**(2 * k + n)s += tif abs(t) < 1e-10:breakreturn s * (x / 2)**ndef Y(n, x):"""计算第二类贝塞尔函数Y_n(x)"""if x == 0:return float('-inf')s = J(n, x)t = math.log(x / 2) * J(n, x) - sum((-1)**k / (math.factorial(k) * (k + 1)) * (x / 2)**(-2 * k - n) for k in range(1, n + 1))return (2 / math.pi) * tif __name__ == '__main__':print(J(0, 1)) # 输出0.7651976865579666print(Y(0, 1)) # 输出-inf```四、应用举例贝塞尔函数在物理学、工程学和数学中都有广泛的应用,下面举几个例子:1. 球谐函数的展开式中就包含了贝塞尔函数。
贝塞尔函数(Bessel functions)是数学上的一类的总称。
一样贝塞尔函数是以下(一样称为贝塞尔方程)的标准解函数y(x):这种方程的解是无法用系统地表示的。
贝塞尔函数的具体形式随上述方程中任意实数α转变而转变(相应地,α被称为其对应贝塞尔函数的阶数)。
实际应用中最多见的情形为α是n,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍适应针对α和−α概念两种不同的贝塞尔函数(如此做能带来益处,比如排除函数在α=0 点的不滑腻性)。
历史贝塞尔函数的几个正整数阶特例早在中叶就由在研究悬链振动时提出了,那时引发了数学界的爱好。
的叔叔,、等数学大师对贝塞尔函数的研究作出过重要奉献。
,数学家在研究提出的三体系统的运动问题时,第一次系统地提出了贝塞尔函数的整体理论框架,后人以他的名字来命名了这种函数。
现实背景和应用范围贝塞尔方程是在或下利用求解和时取得的(在圆柱域问题中取得的是整阶形式α = n;在球形域问题中取得的是半奇数阶形式α = n+½),因此贝塞尔函数在和各类涉及有势场的问题中占有超级重要的地位,最典型的问题有:在圆柱形中的传播问题;圆柱体中的问题;圆形(或环形)的分析问题;在其他一些领域,贝塞尔函数也相当有效。
譬如在中的()或()的概念中,都要用到贝塞尔函数。
概念贝塞尔方程是一个二阶常微分方程,必然存在两个的解。
针对各类具体情形,人们提出了表示这些解的不同形式。
下面别离介绍这些不同类型的贝塞尔函数。
第一类贝塞尔函数图2 0阶、1阶和2阶第一类贝塞尔函数(贝塞尔J函数)曲线(在下文中,第一类贝塞尔函数有时会简称为“J函数”,敬请读者留意。
)第一类α阶贝塞尔函数Jα(x)是贝塞尔方程当α为整数或α非负时的解,须知足在x= 0 时有限。
如此选取和处置Jα的缘故见本主题下面的;另一种概念方式是通过它在x = 0 点的展开(或更一样地通过展开,这适用于α为非整数):上式中Γ(z)为(它可视为函数向非整型的推行)。
贝塞尔函数贝塞尔函数是贝塞尔方程的解,它们和其他函数组合成柱调和函数。
贝塞尔函数和初等函数是在物理和工程中最常用的函数。
贝塞尔函数是以19世纪德国天文学家F.W.贝塞尔的姓氏命名的,他在1824年第一次描述过它们。
贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是一些常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数。
这样做能带来好处,比如消除了函数在=0点的不光滑性。
几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位。
因为贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的。
最典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导定律|热传导问题;以及圆形(或环形)薄膜的振动模态分析问题。
bessely函数贝塞尔函数(Bessel function)是数学中的一类特殊函数,由德国数学家弗里德里希·贝塞尔(Friedrich Bessel)在19世纪初引入和研究的。
贝塞尔函数在物理学、工程学和数学中有广泛的应用。
贝塞尔函数可以分为第一类贝塞尔函数和第二类贝塞尔函数两类。
第一类贝塞尔函数一般记作Jn(z),其中n为阶数,z为自变量。
第二类贝塞尔函数一般记作Yn(z)。
贝塞尔函数满足贝塞尔方程,即二阶常微分方程:z^2 * d^2y/dz^2 + z * dy/dz + (z^2 - n^2) * y = 0贝塞尔函数的性质和特点使其在科学和工程领域中拥有广泛的应用,特别是在波动理论、电磁学、热力学和量子力学中。
以下是贝塞尔函数的一些重要应用:1.振动问题:贝塞尔函数可以描述弦、鼓膜、声音等的振动情况。
通过解贝塞尔方程,可以得到这些系统的振动模式和频率。
2.圆柱波:贝塞尔函数是描述无限长圆柱体中的波动现象的基本工具。
例如,电磁波在圆柱体中的传播可以用贝塞尔函数来描述。
3.散射和辐射问题:贝塞尔函数的特殊性质使其在散射和辐射问题中有重要应用。
例如,电磁波在球体上的散射和辐射问题可以通过贝塞尔函数来求解。
4.热传导问题:贝塞尔函数可以描述热传导问题中的温度分布。
例如,考虑一个半径为R的无限长圆柱体,在柱体表面施加边界条件后,可以通过贝塞尔函数来求解圆柱体内部的温度分布。
5.量子力学:贝塞尔函数在量子力学中有重要的应用,特别是在氢原子问题中。
贝塞尔函数可以用来描述氢原子中电子的径向波函数。
除了上述的应用,贝塞尔函数还在其他领域中发挥着重要的作用,如电磁场分析、激光传输、声学等。
贝塞尔函数的定义和性质可以通过级数展开、递归关系或微分方程等多种方法来推导和求解。
总结起来,贝塞尔函数是一类特殊函数,具有广泛的应用领域。
它可以用来描述振动问题、圆柱波、散射和辐射问题、热传导问题以及量子力学中的一些问题。
贝塞尔函数基本概念编辑是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解无法用初等函数系统地表示。
贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
基本内容编辑贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法对其进行定性分析。
这里,被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。
定义贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
历史几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔〔Hankel〕函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数〔或称汤姆孙函数〕n阶第一类开尔文〔Kelvin〕第五章贝塞尔函数在第二章中,用别离变量法求解了一些定解问题。
从§2.3可以看出,当我们采用极坐标系后,经过别离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行别离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径为R 的薄圆盘,其侧面绝缘,假设圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用别离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程〔5.1〕得22222()V V VT a T x y ∂∂'=+∂∂ 或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+=〔5.4〕 22220V V V x yλ∂∂++=∂∂ 〔5.5〕 从〔5.4〕得2()a t T t Ae λ-= 方程〔5.5〕称为亥姆霍兹〔Helmholtz 〕方程。
贝塞尔函数1.贝塞尔方程及解:令()()()(),,=R ,u ϕτϕτΦZ 为分离变量的解,则()R ,满足本征值问题的方程,2222210R dy dR m R dx d ω⎛⎫∂++-= ⎪∂⎝⎭(17.1.1)其中2ω是分量的本征值问题的本征值。
若作变换()R()R()y(x);m xx x ωλνω=====或; 则上面方程可以变换:2//2/2(x )y 0x y x y ν++-= (17.1.1a )当ν≠整数时,贝塞尔方程的通解为:(x)AJ (x)BJ (x)y νν-=+当ν=整数时,由于J m -=(1)(x)m m J -,因此通解为 (x)AJ (x)BY (x)m m y =+式中A 与B 为任意常数,J (x)m 与Y (x)m 分别定义为 m 阶第一类与m 阶第二类贝塞尔函数。
2.贝塞尔方程的的级数解二阶线性齐次常微分方程2'''22(x )y 0,0x y xy x b υ++-=≤≤ 为贝塞尔方程现在x=0的领域求解贝塞尔方程的解 2.1级数解的形式由p(x)=1x,q(x)=1-22x ν可见,x=0是p=(x )的一阶极点,是q(x)的二阶极点。
因此,x=0是方程的正则奇点,方程的第一解具有形式;nkk p k k k k y x C x C x ∞∞+===∑=∑ 2.1.12.2指标方程将2.1.1代入贝塞尔方程可得:22300(k )0k p k k k k k C x C x ρρν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 2.1.2 由x 的最低次幂x ρ的系数为0,即得:220()C 0x ρρν-=因0C 0≠,即得指标方程220ρν-=。
由此得指标1,ρν= 2ρν=-2.3.系数递推公式为确定起见,令ν>0,并将ρ=1ρ=ν代入2.1.2中得到22200(k )0k k k k k k C x C x νννν∞∞+++==⎡⎤∑+-+∑=⎣⎦ 改变第二项的求和指标,可得202k(k 2)0k k k k k k C xC xννν∞∞++-==∑++∑=由x的同次幂数之和为0,1(12)0C ν+=2k(k 2)0k k k C C ν-++=由此得10C =2(1)k(k 2)k k C C ν--=+2.4.推公式求系数得特解 ………将系数代入1.1中的贝塞尔方程的一个特解为20120(1)(1)C (x)2!(n 1)n n n n y x n ννν∞+=-Γ-+=∑Γ++2.5.另一个特解同理,令2ρρν==-可得另一个特解为20220(1)(1)C (x)2!(n 1)n n n n y xn ννν∞-=-Γ-+=∑Γ-++3.第一类贝塞尔函数第一类贝塞尔函数(x)J ν的级数形式为21(x)(1)()!(1)2kkk dy x J k νννκ+∞==-Γ++∑经过证明可得:,(x)(1)(x)mm m J J -=-同理可得:,(x)(x)m m J J -=因此:,(x)(1)(x)mmm J J -=-4.第二类贝塞尔函数:第二类贝塞尔函数是Weber 和Schlafli ,通常把它定义为 cos (x)(x)Y (x)sin J J νννπνπ--Y (x)m 的级数形式为Y (x)m ={}1220021(m k 1)!1(1)ln (x)()(k)(m )()2!2!(m k)2k m m k m m k k k x x x J k k κγϕϕκπππ-∞-++==---⎡⎤+--++⎢⎥+⎣⎦∑∑式中γ=0.577216,而 (k)ϕ=11n nκ=∑当x 很小时,可得 0Y ≈2lnx π(0ν=)当x 很大时,(x)(x )42xY νπν≈-- (17.1.12)5.第三类贝塞尔函数 通常定义为(1)H (x)iY (x)J ννν=+ (2)H (x)iY (x)J ννν=-则方程(17.1.1 a)的通解可以写成为(1)(2)y(x)AH H (x)B νν=+ 当x →∞时其渐进展开式为3(x )(1)22H (x )x i o νν--=+ (17.1.14a )3(x )(2)242H (x )x i o νπν----=+ (17.1.14b ) 当x 0→时其渐进展开式为 (1)!2(x)()H ix ννπ-≈- (ν>0) (2)2H (x)iln x νπ≈-总结上述,ν阶贝塞尔方程2/22(x )y 0x y xy ν++-= 的通解有三种形式: (1)y(x)AJ(x)(x)BJ =+ (ν0≠)(2)y(x)AJ(x)(x)BY ν=+ (ν可取任意整数) (3)(1)(2)y(x)AH (x)(x)BH νν=+ (ν可取任意整数) 其中A,B 为常数。
第一类贝塞尔函数图2 0阶、1阶和2阶第一类贝塞尔函数(贝塞尔J函数)曲线(在下文中,第一类贝塞尔函数有时会简称为“J函数”,敬请读者留意。
)第一类α阶贝塞尔函数Jα(x)是贝塞尔方程当α为整数或α非负时的解,须满足在x= 0 时有限。
这样选取和处理Jα的原因见本主题下面的性质介绍;另一种定义方法是通过它在x = 0 点的泰勒级数展开(或者更一般地通过幂级数展开,这适用于α为非整数):上式中Γ(z)为Γ函数(它可视为阶乘函数向非整型自变量的推广)。
第一类贝塞尔函数的形状大致与按速率衰减的正弦或余弦函数类似(参见本页下面对它们渐进形式的介绍),但它们的零点并不是周期性的,另外随着x的增加,零点的间隔会越来越接近周期性。
图2所示为0阶、1阶和2阶第一类贝塞尔函数Jα(x)的曲线(α = 0,1,2)。
如果α不为整数,则Jα(x)和J−α(x)线性无关,可以构成微分方程的一个解系。
反之若α是整数,那么上面两个函数之间满足如下关系:于是两函数之间已不满足线性无关条件。
为寻找在此情况下微分方程与Jα(x)线性无关的另一解,需要定义第二类贝塞尔函数,定义过程将在后面的小节中给出。
贝塞尔积分α为整数时贝塞尔函数的另一种定义方法由下面的积分给出:(α为任意实数时的表达式见参考文献[2]第360页)这个积分式就是贝塞尔当年提出的定义,而且他还从该定义中推出了函数的一些性质。
另一种积分表达式为:和超几何级数的关系贝塞尔函数可以用超几何级数表示成下面的形式:第二类贝塞尔函数(诺依曼函数)图3 0阶、1阶和2阶第二类贝塞尔函数(贝塞尔Y函数)曲线图(在下文中,第二类贝塞尔函数有时会简称为“Y函数”,敬请读者留意。
)第二类贝塞尔函数也许比第一类更为常用。
贝塞尔函数贝塞尔函数是贝塞尔方程的解。
它们与其他功能结合形成圆柱谐波功能。
除基本功能外,贝塞尔功能是物理学和工程学中最常用的功能。
它们以19世纪德国天文学家贝塞尔(F.W. Bessel)的名字命名,后者于1824年首次对其进行了描述。
贝塞尔函数是数学中一类特殊函数的总称。
常规贝塞尔函数是以下常微分方程(通常称为“贝塞尔方程”)的标准解函数。
这种方程的解不能用基本函数来系统地表示。
但是,可以将自动控制理论中的相平面法用于定性分析。
在这里,它被称为其对应的贝塞尔函数的顺序。
在实际应用中,最常见的情况是整数,相应的解称为阶贝塞尔函数。
尽管在上面的微分方程中,符号本身不会改变方程的形式,但在实际应用中仍然习惯定义两个不同的Bessel函数(这可以带来好处,例如消除点处的函数不平滑性)。
定义贝塞尔方程是二阶常微分方程,必须有两个线性独立的解。
针对各种特定情况,提出了这些解决方案的不同形式。
下面描述了不同类型的贝塞尔函数。
历史瑞士数学家丹尼尔·伯努利(Daniel Bernoulli)在18世纪中叶提出了几个正整数阶的Bessel函数,这在当时引起了数学界的轰动。
Jacobs Bernoulli,Leonhard Euler和Joseph Louis Lagrange为Bessel函数的研究做出了重要贡献。
1817年,德国数学家弗里德里希·威廉·贝塞尔(Friedrich Wilhelm Bessel)在研究约翰内斯·开普勒(Johannes Kepler)提出的三体重力系统的运动问题时,首次提出了贝塞尔函数的理论框架。
后人以他的名字命名这个功能。
现实背景和适用范围贝塞尔方程是通过使用变量分离方法在圆柱坐标或球坐标中求解拉普拉斯方程和亥姆霍兹方程而获得的。
因此,贝塞尔函数在波动问题和涉及势场的各种问题中起着重要作用。
*电磁波在圆柱波导中的传播;*圆柱体中的热传导定律|导热问题;*圆形(或环形)膜的振动模式分析;贝塞尔函数的一个示例:鼓鼓表面在中心被击中后,沿拉紧鼓表面的二阶振动模式的半径方向的振幅分布是贝塞尔函数(考虑正负号)。
贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。
一般贝塞尔函数
是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。
这类方程的解无法用初等函数系统地表示。
但是可以运用自动控制理论中的相平面法
对其进行定性分析。
这里,α被称为其对应贝塞尔函数的阶数。
实际应用中最常见的情形为n 是整数,对
应解称为n阶贝塞尔函数。
尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对
α和-α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0点的不
光滑性)。
定义
贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。
针对各种具体情况,人们提出了这些解的不同形式。
下面分别介绍不同类型的贝塞尔函数。
历史
几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链
振动时提出,当时引起了数学界的轰动。
雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路
易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。
1817年,德国
数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问
题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。
现实背景和应用范围
贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程
时得到的,因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位,最典型的问题有:
* 在圆柱形波导中的电磁波传播问题;
* 圆柱体中的热传导定律|热传导问题;
* 圆形(或环形)薄膜的振动模态分析问题;
贝塞尔函数的实例:一个紧绷鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径
方向上的分布就是一个贝塞尔函数(考虑正负号)。
实际生活中受敲击的鼓面的振动是各
阶类似振动形态的叠加。