光纤通信实验报告汇总(参考)
- 格式:doc
- 大小:2.19 MB
- 文档页数:26
第1篇一、前言随着信息技术的飞速发展,光纤通信技术因其高速、稳定、安全的特点,已成为现代社会信息传输的主要方式。
为了深入了解光纤通信技术的原理和应用,我们开展了为期一个月的光纤实践项目。
本次实践旨在通过实际操作,加深对光纤通信技术的理解,提升动手能力和工程实践能力。
以下是本次实践总结报告。
二、项目背景与目标1. 项目背景光纤通信技术自20世纪60年代诞生以来,凭借其优越的性能,逐渐取代了传统的铜线通信方式,成为现代通信的主要手段。
我国在光纤通信领域取得了举世瞩目的成就,但仍有很大的发展空间。
2. 项目目标(1)掌握光纤通信的基本原理和关键技术;(2)了解光纤通信系统的组成和结构;(3)提高动手能力,学会光纤通信设备的安装、调试和维护;(4)培养团队协作精神和创新意识。
三、实践内容与过程1. 光纤通信基本原理学习(1)光纤的类型与特性:本次实践主要学习了单模光纤和多模光纤的特点、应用场景等;(2)光纤传输原理:深入了解了光纤的传输机理,包括全反射、色散、损耗等;(3)光纤通信系统组成:学习了光纤通信系统的各个组成部分,如发射机、光纤、接收机等。
2. 光纤通信设备安装与调试(1)光纤熔接机操作:学习了光纤熔接机的使用方法,掌握了光纤熔接技术;(2)光纤跳线制作:学会了光纤跳线的制作方法,包括剥皮、清洗、熔接等;(3)光纤通信系统调试:对光纤通信系统进行了调试,确保其正常运行。
3. 光纤通信系统维护与故障排除(1)光纤通信系统日常维护:了解了光纤通信系统的日常维护方法,包括清洁、检查、更换等;(2)故障排除:针对光纤通信系统可能出现的故障,学习了故障排除方法,如查找故障点、更换设备等。
四、实践成果与体会1. 实践成果(1)掌握了光纤通信的基本原理和关键技术;(2)熟悉了光纤通信设备的安装、调试和维护;(3)提高了动手能力和团队协作精神;(4)培养了创新意识和工程实践能力。
2. 实践体会(1)理论知识与实践操作相结合的重要性:通过本次实践,深刻体会到理论知识与实践操作相结合的重要性,只有将所学知识应用于实际,才能真正掌握技能;(2)团队协作精神的重要性:在实践过程中,团队成员分工合作,共同解决问题,体现了团队协作精神的重要性;(3)创新意识的重要性:在实践过程中,我们不断尝试新的方法和技术,培养了创新意识。
XX学号时间地点实验题目半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验步骤1、用导线连接电终端模块T68(M)和T94(13_DIN)。
2、将开关BM1拨为1310nm,将开关K43拨为“数字”,将电位器W44逆时针旋转到最小。
3、旋开光发端机光纤输出端口(1310nm T)防尘帽,用FC-FC光纤跳线将半导体激光器与光功率计输入端连接起来,并将光功率计测量波长调整到1310nm档。
4、用万用表测量T97(TV+)和T98(TV-)之间的电阻值(电阻焊接在PCB板的反面),找出所测电压与半导体激光器驱动电流之间的关系(V=IR110)。
5、将电位器W46(阈值电流调节)逆时针旋转到底。
6、打开交流电源,此时指示灯D4、D5、D6、D7、D8亮7、用万用表测量T97(TV+)和T98(TV-)两端电压(红表笔插T97,黑表笔插T98)。
8、慢慢调节电位器W44(数字驱动调节),使所测得的电压为下表中数值,依次测量对应的光功率值,并将测得的数据填入表格中,精确到0.1uW。
9、做完实验后先关闭交流电开关。
10、拆下光跳线与光功率计,用防尘帽盖住实验箱半导体激光器光纤输出端口,将实验箱还原。
五、实验报告结果1、根据测试结果,算出半导体激光器驱动电流,画出相应的光功率与注入电流的关系曲线。
2、根据所画的P-I特性曲线,找出半导体激光器阈值电流的大小。
光纤通信实验报告实验1.1了解和掌握了光纤的结构、分类和特性参数.能够快速准确的区分单模或者多模类型的光纤。
实验1.21.关闭系统电源.将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm的光信道).注意收集好器件的防尘帽。
2.打开系统电源.液晶菜单选择“码型变换实验—CMI码PN”。
确认.即在P101铆孔输出32KHZ的15位m序列。
3.示波器测试P101铆孔波形.确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔.示波器A通道测试TX1550测试点.确认有相应的波形输出.调节 W205 即改变送入光发端机信号(TX1550)幅度.最大不超过5V。
即将m序列电信号送入1550nm光发端机.并转换成光信号从TX1550法兰接口输出。
5.示波器B通道测试光收端机输出电信号的P204试点.看是否有与TX1550测试点一样或类似的信号波形。
6.按“返回”键.选择“码型变换实验—CMI码设置”并确认。
改变SW101拨码器设置(往上为1.往下为0).以同样的方法测试.验证P204和TX1550测试点波形是否跟着变化。
7.轻轻拧下TX1550或RX1550法兰接口的光跳线.观测P204测试点的示波器B通道是否还有信号波形?重新接好.此时是否出现信号波形。
8.以上实验都是在同一台实验箱上自环测试.如果要求两实验箱间进行双工通信.如何设计连接关系.设计出实验方案.并进行实验。
9.关闭系统电源.拆除各光器件并套好防尘帽。
实验2.11.关闭系统电源.按照图2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、光功率计连接好(TX1550通过尾纤接到光功率计).注意收集好器件的防尘帽。
2.打开系统电源.液晶菜单选择“码型变换实验-- CMI码设置” 确认.即在P101铆孔输出32KHZ的SW101拨码器设置的8比特周期性序列.如10001000。
3.示波器测试P101铆孔波形.确认有相应的波形输出。
光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。
光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。
本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。
一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。
它主要包括光信号的产生、调制、传输和接收等过程。
光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。
2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。
光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。
二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。
2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。
3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。
4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。
三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。
2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。
3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。
4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。
光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。
光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。
一、实验目的1. 理解光通讯的基本原理和光传输的特性。
2. 掌握光通讯系统的基本组成和功能。
3. 通过实验验证光通讯系统中的信号调制、传输和接收过程。
4. 分析光通讯系统中的噪声影响及降低噪声的方法。
二、实验原理光通讯是利用光波作为信息载体,通过光纤传输信息的一种通信方式。
其基本原理是利用激光作为光源,将电信号调制到光波上,通过光纤传输,然后在接收端将光信号解调为电信号。
三、实验器材1. 光源:激光二极管2. 发射器:光发射模块3. 接收器:光接收模块4. 光纤:单模光纤5. 光纤连接器:SC型光纤连接器6. 光功率计7. 光衰减器8. 光耦合器9. 光纤测试仪10. 计算机及实验软件四、实验步骤1. 光源调制实验:(1)将激光二极管连接到光发射模块。
(2)将光发射模块连接到光纤。
(3)利用实验软件设置调制信号,观察光功率计的输出变化,验证调制效果。
2. 光纤传输实验:(1)将光发射模块和光接收模块分别连接到光纤的两端。
(2)将光衰减器连接到光发射模块和光接收模块之间。
(3)调整光衰减器,观察光功率计的输出变化,验证光纤传输效果。
3. 噪声分析实验:(1)将光接收模块连接到光纤。
(2)在光接收模块前加入噪声源,观察光功率计的输出变化,分析噪声对传输效果的影响。
(3)采用滤波器等方法降低噪声,观察光功率计的输出变化,验证降低噪声的效果。
4. 光耦合器实验:(1)将光发射模块和光接收模块分别连接到光耦合器的两个端口。
(2)调整光耦合器,观察光功率计的输出变化,验证光耦合器的性能。
5. 光纤测试实验:(1)将光纤连接器连接到光纤。
(2)利用光纤测试仪测量光纤的长度、损耗等参数。
五、实验结果与分析1. 光源调制实验:通过实验,验证了调制信号成功调制到光波上,并观察到光功率计的输出变化。
2. 光纤传输实验:通过实验,验证了光纤传输效果,并观察到光衰减器对传输效果的影响。
3. 噪声分析实验:通过实验,分析了噪声对传输效果的影响,并验证了降低噪声的方法。
一、实验目的1. 理解光纤的基本原理和结构。
2. 掌握光纤熔接的基本技术和操作流程。
3. 熟悉光纤连接器及其使用方法。
4. 学习光纤系统的测试与维护方法。
二、实验原理光纤是一种利用光的全反射原理进行信息传输的介质。
它主要由纤芯、包层和涂覆层组成。
纤芯具有较高的折射率,包层则具有较低的折射率。
当光线从纤芯射向包层时,如果入射角大于临界角,光线将被完全反射回纤芯,从而实现长距离的信息传输。
光纤熔接是将两根光纤的纤芯熔化并连接在一起的过程。
熔接过程中,需要确保光纤的端面平整、清洁,并控制好熔接机的温度和压力,以保证熔接质量。
光纤连接器是连接光纤和设备的重要部件。
常用的连接器有FC、SC、LC等类型,它们具有不同的连接方式和特点。
光纤系统的测试主要包括损耗测试、长度测试、模式场分布测试等。
测试设备有光纤功率计、光纤长度测试仪、光纤模式场分布测试仪等。
三、实验仪器与材料1. 光纤熔接机2. 光纤切割机3. 光纤连接器4. 光纤跳线5. 光纤测试仪6. 光纤测试夹具7. 光纤清洁工具8. 光纤支架四、实验内容与步骤1. 光纤熔接(1)准备两根光纤,使用光纤切割机切割光纤,确保端面平整、清洁。
(2)将光纤插入熔接机的夹具中,调整光纤位置,使纤芯对准。
(3)启动熔接机,控制温度和压力,使光纤纤芯熔化并连接。
(4)熔接完成后,取出光纤,检查熔接质量。
2. 光纤连接器(1)选择合适的连接器,使用光纤清洁工具清洁光纤端面。
(2)将光纤插入连接器中,确保光纤端面与连接器对准。
(3)使用专用工具紧固连接器。
3. 光纤测试(1)将光纤连接到测试仪上,设置测试参数。
(2)启动测试仪,进行损耗、长度、模式场分布等测试。
(3)分析测试结果,判断光纤系统的性能。
五、实验结果与分析1. 光纤熔接质量通过观察熔接处的外观和测试结果,熔接质量良好。
光纤纤芯连接紧密,无气泡、杂质等缺陷。
2. 光纤连接器质量连接器连接牢固,光纤端面与连接器接触良好,无松动现象。
光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。
在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。
实验一: 光的传播特性我们首先对光的传播特性进行了研究。
选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。
通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。
实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。
我们通过实验对光纤中损耗和色散的影响进行了测试。
损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。
这是由于光纤中存在材料吸收和散射等因素造成的。
为了减小损耗,优化光纤的材料和结构是很重要的。
色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。
实验结果显示,不同波长的光信号到达时间存在差异。
这是由于光纤中折射率随波长变化而引起的色散效应。
为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。
实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。
通过实验,我们对这两种光纤的传输特性进行了研究。
我们首先测试了单模光纤。
结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。
然后我们进行了多模光纤的实验。
实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。
因此,多模光纤适用于近距离传输和低速通信。
结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。
我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。
然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。
光通信实验报告一、实验目的光通信作为一种高速、大容量的通信方式,在现代通信领域中占据着重要地位。
本次实验的目的是深入了解光通信的基本原理,掌握光通信系统的搭建和调试方法,测量光通信系统的关键性能参数,并分析影响光通信系统性能的因素。
二、实验原理(一)光的发射光通信中,光源是关键组件之一。
常用的光源有半导体激光器(LD)和发光二极管(LED)。
半导体激光器具有高亮度、窄线宽、方向性好等优点,适用于长距离、高速率的通信;发光二极管则具有成本低、可靠性高、光谱较宽等特点,适用于短距离、低速通信。
(二)光的传输光在光纤中传输时,会发生折射、反射和吸收等现象。
光纤分为多模光纤和单模光纤。
多模光纤可传输多个模式的光,但其传输带宽较窄,适用于短距离通信;单模光纤只允许传输一个模式的光,具有低损耗、大带宽的特点,适用于长距离、高速通信。
(三)光的接收光接收器将接收到的光信号转换为电信号。
常用的光接收器有光电二极管(PIN)和雪崩光电二极管(APD)。
PIN 光电二极管结构简单、成本低,但灵敏度相对较低;APD 具有较高的灵敏度,但工作电压较高,噪声较大。
(四)调制和解调在光通信中,需要对电信号进行调制,将其加载到光载波上进行传输。
常用的调制方式有强度调制(IM)、频率调制(FM)和相位调制(PM)。
在接收端,需要对光信号进行解调,恢复出原始的电信号。
三、实验设备本次实验所用到的设备主要包括:1、半导体激光器及驱动电路2、光纤跳线及耦合器3、光功率计4、示波器5、信号源6、误码测试仪四、实验步骤(一)搭建光通信系统1、将半导体激光器与驱动电路连接好,调节驱动电流,使激光器输出稳定的光信号。
2、通过光纤跳线和耦合器将激光器的输出光信号耦合到光纤中。
3、在接收端,将光纤输出的光信号接入光接收器,并连接到后续的电路中。
(二)测量光功率1、使用光功率计测量激光器的输出光功率。
2、在光纤的不同位置测量光功率,观察光功率的衰减情况。
实验一用户接口实验一、实验目的1、掌握用户接口电路的主要功能2、了解实现用户接口电路功能芯片Am79R70的主要性能和特点二、实验容1、掌握用户线接口电路的主要功能2、了解Am79R70的构造和工作原理3、了解接续的原理及其各种语音控制信号的波形三、实验仪器1、ZY1804I型光纤通信原理实验系统1台2、20MHz 双踪数字示波器1台3、机2部4、连接导线20根四、实验原理1、用户线接口电路功能及其作用在现代通信设备与程控交换中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备〔如绳路〕实现的一些功能放到“用户电路〞来实现。
在程控交换机中,用户电路也可称为用户线接口电路〔Subscriber Line Interface Circuit—SLIC〕。
根据用户机的不同,用户接口电路可分为模拟用户接口电路和数字用户接口电路。
模拟用户接口电路与模拟相连,数字用户接口电路和数字终端相连〔如ISDN〕,而在此实验箱中采用模拟用户接口电路。
模拟用户线接口电路在实现时最大的压力应是能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器、继电器等分立元件构成,但随着微电子技术的开展,各种集成的SLIC相继出现,他们大都采用半导体工艺或是薄膜、厚膜会合工艺,性能稳定,价格低廉,已实现了通用化。
在程控交换机中模拟用户接口电路一般要具有B〔馈电〕,R〔振铃〕,S〔监视〕,C〔编译码〕,H〔混合〕,T〔测试〕,O〔过压保护〕七项功能。
具体含义是:1、馈电〔B-Battery feeding〕:向用户话机馈送直流电流。
通常要求馈电电压为-48V,环路电流不小于18mA。
2、过压保护〔O-Overvoltage protection〕:防止过压过流冲击损坏电路和设备。
3、振铃控制〔R-Ringing Control〕:向用户话机馈送铃流,通常为25Hz/75Vrms正弦波。
4、监视〔S-Supervision〕:监视用户线的状态,检测话机摘机、挂机与拨号脉冲灯信号已送往控制网络和交换网络。
1. 熟悉光纤的基本结构和光学特性。
2. 掌握光纤的连接方法和熔接技术。
3. 了解光纤通信系统的基本原理和应用。
4. 提高动手操作能力和实验技能。
二、实验内容1. 光纤的基本结构及光学特性2. 光纤熔接技术3. 光纤通信系统基本原理与应用三、实验原理1. 光纤的基本结构:光纤由纤芯、包层和涂覆层组成,纤芯的折射率高于包层,使得光在纤芯与包层的界面发生全反射,从而实现光的传输。
2. 光纤熔接技术:利用光纤熔接机将两根光纤的端面熔接在一起,形成低损耗的连接。
3. 光纤通信系统基本原理:利用光纤作为传输介质,将电信号转换为光信号,通过光纤传输,再将光信号转换为电信号。
四、实验仪器与材料1. 光纤熔接机2. 光纤测试仪3. 光纤跳线4. 光纤耦合器5. 光纤连接器6. 光纤7. 电源1. 光纤基本结构及光学特性观察- 观察光纤的结构,了解纤芯、包层和涂覆层的组成。
- 使用光纤测试仪测量光纤的折射率、衰减等参数。
2. 光纤熔接技术- 准备两根光纤,将光纤端面切割平整。
- 使用光纤熔接机将两根光纤熔接在一起。
- 使用光纤测试仪测试熔接点的衰减。
3. 光纤通信系统基本原理与应用- 搭建光纤通信系统,包括光发射机、光纤、光接收机等。
- 使用信号发生器发送信号,通过光纤传输,再由光接收机接收并恢复信号。
- 测试通信系统的传输速率、误码率等指标。
六、实验结果与分析1. 光纤基本结构及光学特性观察- 观察到光纤由纤芯、包层和涂覆层组成,纤芯的折射率高于包层。
- 光纤测试仪测量结果显示,光纤的衰减系数为0.2dB/km,折射率为1.5。
2. 光纤熔接技术- 熔接完成后,使用光纤测试仪测试熔接点的衰减,结果显示衰减小于0.1dB。
3. 光纤通信系统基本原理与应用- 搭建的光纤通信系统能够正常传输信号,传输速率达到10Mbps,误码率为0。
七、实验总结通过本次实验,我们熟悉了光纤的基本结构、光学特性,掌握了光纤熔接技术,了解了光纤通信系统的基本原理和应用。
实验一用户电话接口实验一、实验目的1、掌握用户电话接口电路的主要功能2、了解实现用户接口电路功能芯片Am79R70的主要性能和特点二、实验内容1、掌握用户线接口电路的主要功能2、了解Am79R70的结构和工作原理3、了解电话接续的原理及其各种语音控制信号的波形三、实验仪器1、ZY1804I型光纤通信原理实验系统 1台2、20MHz 双踪数字示波器 1台3、电话机 2部4、连接导线 20根四、实验原理1、用户线接口电路功能及其作用在现代通信设备与程控交换中,由于交换网络不能通过铃流、馈电等电流,因而将过去在公用设备(如绳路)实现的一些功能放到“用户电路”来实现。
在程控交换机中,用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit—SLIC)。
根据用户电话机的不同,用户接口电路可分为模拟用户电话接口电路和数字用户电话接口电路。
模拟用户电话接口电路与模拟电话相连,数字用户电话接口电路和数字终端相连(如ISDN),而在此实验箱中采用模拟用户电话接口电路。
模拟用户线接口电路在实现时最大的压力应是能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器、继电器等分立元件构成,但随着微电子技术的发展,各种集成的SLIC相继出现,他们大都采用半导体工艺或是薄膜、厚膜会合工艺,性能稳定,价格低廉,已实现了通用化。
在程控交换机中模拟用户接口电路一般要具有B(馈电),R(振铃),S(监视),C(编译码),H(混合),T(测试),O(过压保护)七项功能。
具体含义是:1、馈电(B-Battery feeding):向用户话机馈送直流电流。
通常要求馈电电压为-48V,环路电流不小于18mA。
2、过压保护(O-Overvoltage protection):防止过压过流冲击损坏电路和设备。
3、振铃控制(R-Ringing Control):向用户话机馈送铃流,通常为25Hz/75Vrms正弦波。
4、监视(S-Supervision):监视用户线的状态,检测话机摘机、挂机与拨号脉冲灯信号已送往控制网络和交换网络。
5、编解码与滤波(C-CODEC/Filter):在数字交换中,它完成模拟话音与数字码间的转换。
编译码通常采用PCM码的方式,其编码器(Coder)和译码器(Decoder)统称为CODEC。
相应的防混叠与平滑低通滤波器的带宽范围为:300Hz~3400Hz,编码速率为64Kb/s。
6、混合(H-Hybird):完成二线与四线的转换功能,即实现模拟二线双向信号与PCM发送和接收数字四线信号之间的分离。
7、测试(T-Test):对用户电路进行测试。
模拟用户接口电路的结构如图所示:图1-1 模拟用户接口电路框图2、用户线接口电路在本实验箱中,用户线接口电路芯片选用Legerity公司生产的模拟用户线接口芯片Am79R70。
Am79R70是一种功能较强的用户线接口芯片,它除了拥有用户接口电路常用的7种功能中的6种外,还拥有电流限制、挂机传输、极性反转、tip开路和环路检测等功能。
其内部电路结构原理框图如下:HPAHPBVBAT2VBAT1VCC VNEC BGND AGND/DGND B2EN RSGH RSGL RDC RDCR RINGIN /DETE1D1D2C3C2C1 RYOUT1 RYE RYOUT2 RDVTX RSN图1-2 Am79R70内部功能模块图其中Am79R70需要VCC,VEE,VBAT1,VBAT2四种电源电压。
其中VCC为+5V,VEE为-5V,此电压可由Am79R70内部的负电压调整可得。
VBAT2的电压幅度范围为-19~-48V,VBAT1的电压幅度范围为-40~-67V,标准值为-48V。
振铃、环路状态检测的功能主要通过控制字输入端C3,C2,C1及摘挂机检测输出端/DET来控制,当C3C2C1输入为001时,Am79R70处于振铃模式,当C3C2C1输入不是001时,Am79R70进入其他工作模式,同时使与其相连的话机振铃截止。
当C3C2C1输入为010时,话机处于通话状态。
Am79R70的/DET脚的输出可以指示用户的摘挂机状态,当用户摘机时,Am79R70的/DET脚输出低电平,挂机时输出高电平。
实验箱中电话间的通信及信号的控制主要由单片机和FPGA来共同完成,我们称之为控制处理单元,其工作过程如下:当用户1摘机时,与它相连的Am79R70的/DET脚输出低电平,向控制处理单元指示用户1已经摘机,同时摘机指示灯亮。
此时控制处理单元向用户1的Am79R70的控制端C3C2C1输出010使其处于通话连接状态,同时对用户1的摘机的信息进行处理。
在通话连接状态下,用户的信息经过Am79R70的两线接口及信号传输模块可以直接输出到编解码芯片和收发器。
控制处理单元向用户1送拨号音,用户1听到此音后拨号。
控制处理单元根据用户1的所拨的号码定位到用户2,并向与用户2连接的Am79R70的控制端输出001,以使得用户2所连接的Am79R70处于振铃状态,同时向用户1发送回铃音或忙音。
在振铃状态下,Am79R70将铃流电路产生的RV通过RING脚输入到Am79R70内,经内部放大后通过两线接口模块输出到用户线,使得用户2的电话机振铃。
当用户2摘机后,它相连的Am79R70的/DET脚输出低电平,以向控制处理单元指示用户2已经摘机。
此时控制处理单元向用户2的Am79R70的控制端C3C2C1输出010使其处于通话连接状态,同时停④ 25Hz振铃信:25Hz的低频周期信号,每导通1秒后间断4秒;控制处理模块主要通过对两部电话的状态检测来产生各种控制信号,如回铃信号、忙音信号、振铃信号,以完成两部电话之间的热线接续功能。
其中热线呼叫的流程图如下:YES NO呼叫NOYES应答挂机NOYES图1-4 电话呼叫控制流程图五、实验步骤1、用连接线连接中央控制器的D_IN和D_OUT,将中央控制器K1拨为“主”,分别接好两部电话机。
2、将PCM编译码模块的开关K301,K401,K402,K403和K404分别拨向下。
3、将拨码开关K703(A机号码)的值拨为“0001”,使A机号码为3201;拨码开关K704(B机号码)的值拨为“0010”,使B机号码为3202。
注释:本实验箱要求为每一部电话设置一个电话号码,电话号码为3201到3215,电话号码前两位固定为32,后两位(电话地址)由拨码开关K703和K704人为输入,对应两个拨码开关所拨的二进制数值,例如预设A机电话号码为3201,则将拨码开关K703(A机号码)的值拨为“0001”。
多台实验箱组网通信时要求电话号码设置和终端地址设置不能重复。
4、打开交流电源。
中央控制器指示灯NS、FS亮,表明环路同步。
5、用示波器测量电话A模拟信号源测试钩25HZA和BHA(450HZ)的波形,其中25HZA为频率25HZ的方波,BHA(450HZ)为频率450HZ的正弦波,450HZ正弦波的峰-峰值为1V左右。
用示波器测量电话B模拟信号源测试钩25HZB和BHB(450HZ)的波形,其中25HZA为频率25HZ的方波,BHA(450HZ)为频率450HZ的正弦波,450HZ正弦波的峰-峰值为1V左右。
注释:25HZ的方波用合成振铃信号,450HZ的正弦波用来提供拨号音以及合成忙音信号和回铃信号,若其幅度过大,将会在电话接口回路中引起自激现象,严重影响电话话路的通话质量。
a、电话的摘机状态及拨号音测试将电话A模块的电话摘机,此时二极管LED309发光。
用示波器探头测量A电话模拟信号输入端测试钩VRATA的拨号音波形,观察其波形的特点,并进行分析。
将该电话挂机,可看见二极管LED309不发光。
b、电话振铃,回铃信号测试将电话A模块的电话摘机,听到拨号音后,拨打电话B模块的号码3202,此时观察拨号状态指示灯LED301、LED302、LED303和LED304(每拨一个数字,拨号状态将由对应的二进制码指示)。
如果电话B没有处于通话占用状态则将会听到响铃声,用示波器探头测量测试钩ZLB的波形,将其记录下来分析;用示波器探头测量测试钩HLA回铃信号的波形,观察其波形的特点,并进行分析;将电话A模块的电话挂机,同时将电话B模块的电话摘机,拨打电话A模块的电话,测量HLB和ZLA的波形,并对其进行分析。
注释:ZLA/ZLB是用来与25HZ低频信号合成振铃音的控制信号,表现为1秒通4秒断。
c、电话话音信号传输功能测试将电话A模块的电话摘机,拨打电话B模块的电话,并接通。
将电话进行按键,同时利用示波器探头来测量VTATA和VRATB、VTATB和VRATA的波形,对比电话A和电话B之间的接收和发送信号波形,观察不同按键时电话发送信号和接收信号的变化。
同时观察两个电话模块的拨号状态,此时显示灯将显示所按号码。
d、忙音信号测试将电话A模块的电话摘机,不拨电话号码,过约20s后,测量测试构VRATA的波形,并画出其波形。
将电话A模块的电话摘机,拨打电话B模块的电话,拨号期间间歇约5s,测量测试构VRATA的波形,并画出其波形。
接通两部电话,将电话A挂机,用示波器测量测试钩VRATB的波形,并画出其波形。
e、多种信号音测试测量测试钩VRATA的波形,分别在振铃(即电话A摘机,电话B挂机)、接通(两部电话通话)和忙音(接通后,电话B挂机)三种状态下测量,记录下其波形。
6、关闭交流电源,拆除各个连线,将实验箱还原。
六、实验结果七、思考题答案1、电话接口电路的主要功能是什么,除了AM79R70之外,你还知道那些芯片可以实现用于接口电路的功能2、测试钩VRATA的波形在三种状态下分别不同,其三种波形分别是什么信号的波形实验八半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY1804I型光纤通信原理实验系统1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验原理光源是把电信号变成光信号的器件,在光纤通信中占有重要的地位。
性能好、寿命长、使用方便的光源是保证光纤通信可靠工作的关键。
光纤通信对光源的基本要求有如下几个方面:首先,光源发光的峰值波长应在光纤的低损耗窗口之内,要求材料色散较小。
其次,光源输出功率必须足够大,入纤功率一般应在10微瓦到数毫瓦之间。