重点小学数学必备知识点总归纳
- 格式:doc
- 大小:45.00 KB
- 文档页数:17
一、各年级知识点:小学一年级九九乘法口诀表。
学会基础加减乘。
小学二年级完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级学会乘法交换律,几何面积周长等,时间量及单位。
路程计算,分配律,分数小数。
小学四年级线角自然数整数,素因数梯形对称,分数小数计算。
小学五年级分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级比例百分比概率,圆扇圆柱及圆锥。
二、必背定义、定理公式三角形的面积=底×高÷2。
公式S= a×h÷2正方形的面积=边长×边长公式S= a×a长方形的面积=长×宽公式S= a×b平行四边形的面积=底×高公式S= a×h梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2内角和:三角形的内角和=180度。
长方体的体积=长×宽×高公式:V=abh长方体(或正方体)的体积=底面积×高公式:V=abh正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π 公式:L=πd=2πr圆的面积=半径×半径×π 公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr2圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh圆锥的体积=1/3底面×积高。
公式:V=1/3Sh分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
三、计算方面读懂理解会应用以下定义定理性质公式1、加法交换律:两数相加交换加数的位置,和不变。
完整版)小学数学必备知识点总归纳小学数学必备知识点总归纳常用单位换算1.长度单位换算:1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米2.面积单位换算:1平方千米=100公顷1公顷=平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米3.体积单位换算:1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升4.重量单位换算:1吨=1000千克1千克=1000克1千克=1公斤5.人民币单位换算:1元=10角1角=10分1元=100分6.时间单位换算:1世纪=100年1年=12月大月(31天)有:1、3、5、7、8、10、12月XXX(30天)的有:4、6、9、11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒常用数量关系等式1.份数:每份数×份数=总数总数:每份数=份数总数:份数=每份数2.倍数:1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数:倍数=1倍数3.路程:速度×时间=路程路程:速度=时间路程:时间=速度4.价量:单价×数量=总价总价÷单价=数量总价:数量=单价5.工作量:工作效率×工作时间=工作总量工作总量:工作效率=工作时间工作总量:工作时间=工作效率6.数据运算:加数+加数=和和-一个加数=另一个加数被减数-减数=差被减数-差=减数因数×因数=积积:一个因数=另一个因数被除数:除数=商被除数:商=除数商×除数=被除数常用图形计算公式1.正方形(C:周长,S:面积,a:边长)周长=边长×4,C=4a面积=边长×边长,S=a×a2.正方体(V:体积,a:棱长)表面积=棱长×棱长×6,S表=a×a×6体积=棱长×棱长×棱长,V=a×a×a3.长方形(C:周长,S:面积,a:边长)周长=(长+宽)×2,C=2(a+b)面积=长×宽,S=ab4.长方体(V:体积,S:面积,a:长,b:宽,h:高)表面积=(长×宽+长×高+宽×高)×2,S=2(ab+ah+bh)体积=长×宽×高,V=abh5.三角形(S:面积,a:底,h:高)面积=底×高÷2,S=ah÷2三角形高=面积×2÷底0.91米= 91厘米,0.03平方米= 3平方分米,0.24升= 240毫升,0.65吨= 650千克,1.8厘米= 18毫米,2.078千米=2078米,35厘米= 0.35米,平方厘米= 5.7平方米,79千克= 0.079吨,600毫升= 0.6升。
小学必背数学要点知识点归纳
1. 数的基本概念:自然数、整数、正数、负数、零等。
2. 加减法的运算及性质:加法的交换律、结合律、加法的逆元是负数;减法的定义、
减法的性质。
3. 乘除法的运算及性质:乘法的交换律、结合律、分配律;除法的定义、除法的性质。
4. 分数的概念及基本运算:分子、分母、分数的读法、分数的大小比较、分数的相等性、分数的加减乘除,转化为整数的运算。
5. 小数的概念及基本运算:小数点的作用、小数的读法、小数的大小比较、小数的加
减乘除。
6. 数的计算:计算整数、分数、小数的加减乘除、混合运算。
7. 数的整理和排列:数的从小到大排列、数的顺序关系。
8. 数的倍数和约数:整数的倍数和约数的概念、求一个数的倍数和约数。
9. 图形和几何:几何图形的基本概念、直线、线段、射线、平行线、相交线、垂直线、角的概念。
10. 长度、面积和体积:长度的概念、周长的计算、面积的概念、面积的计算、体积的概念、体积的计算。
11. 时、空与坐标:时间的单位、时钟的指针运动、二维坐标系、点的坐标。
12. 数据处理:数据的搜集、数据的整理和整个、数据的解释和分析。
13. 算术推理和数学推理:算术关系、等式、代数式、推理过程。
14. 单位换算:长度、质量、容积的换算。
15. 错题分析:找出错误的原因和改错方法、整理好课堂笔记并进行归纳整理。
小学数学知识点和重点难点大全一、整数及四则运算1.整数的认识2.整数的比较大小3.整数的加法、减法、乘法、除法运算4.整数的混合运算5.整数的括号运算6.整数的奇偶性7.整数的约数和倍数二、分数1.分数的认识2.分数的加法、减法、乘法、除法运算3.真分数、假分数和带分数之间的转化4.分数的比较大小5.分数的化简和约分6.分数的四则混合运算7.分数的加减混合运算三、小数1.小数的认识2.小数与分数的转化3.小数的加法、减法、乘法、除法运算4.小数的周期性与循环小数5.有限小数和无限小数的判断6.分数的小数化和小数的分数化7.小数的四则混合运算四、长度和面积1.长度单位的认识(米、厘米、千米)2.长度单位之间的换算3.长度的加法、减法运算4.面积单位的认识(平方米、平方厘米)5.面积单位之间的换算6.长方形和正方形的面积计算7.长方形和正方形的周长计算五、容量和质量1.容量单位的认识(升、毫升、立方米)2.容量单位之间的换算3.容量的加法、减法运算4.质量单位的认识(千克、克、吨)5.质量单位之间的换算6.质量的加法、减法运算7.容量和质量的换算六、几何图形1.点、线、线段、射线、角的认识2.三角形、四边形、多边形的认识3.正方形、长方形、圆的认识4.平行线、垂直线、相交线的认识5.直角、钝角、锐角的认识6.图形的对称性7.图形的放大和缩小七、时间1.时间的认识(秒、分钟、小时、一天的24小时)2.时刻的表示3.时钟的读法和时钟的表记4.时间的加法、减法运算5.天、周、月和年的认识6.日期的计算八、统计与概率1.数据的收集和整理2.数据的图表示法(条形图、折线图、饼图)3.数据的分析和解读4.概率的认识5.事件的概率计算6.试验和样本空间的认识7.赌博问题的概率计算以上为小学数学的知识点和重点、难点的大致概括,学生在学习数学时,应注重对每个知识点的透彻理解和巩固。
通过大量的练习和实际应用,培养学生的数学思维和解决问题的能力,以提高数学学习的效果。
最全面小学数学知识点归纳总结(精华版)第一章数和数的运算一、整数1.自然数和零都是整数。
2.自然数是用来表示物体个数的数字,如1、2、3等。
6.整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法读,再在后面加上“亿”或“万”字。
每级末尾的零都不读,其它数位连续有几个零都只读一个零。
7.整数的写法:从高位到低位,一级一级地写。
哪一个数位上一个单位也没有,就在那个数位上写。
为了读写方便,一个较大的多位数常常改写成用“万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
二、小数1.小数的读法:整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。
2.小数的写法:整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。
3.小数的分类:⑴有限小数:小数部分的数位是有限的小数,如41.7、25.3、0.23等。
⑵无限小数:小数部分的数位是无限的小数,如4.333…、3.xxxxxxx…等。
⑶无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数,如√2.⑷循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
三、正数和负数正数是大于零的数,数轴上右边的数叫做正数。
负数用负号“-”标记,如-2、-0.6、-32等。
零既不是正数,也不是负数,它是正、负数的界限。
正数都大于零,负数都小于零。
所有的数都可以用数轴上的点来表示,也可以用数轴来比较两个数的大小。
四、计数单位个、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10.这样的计数法叫做十进制计数法。
五、数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
个位、十位、百位、千位等。
直接得到小数,不能除尽的要进行长除法运算,直到小数部分无限循环为止。
小学数学知识点大汇总一、整数1.整数的概念和运算法则2.正整数、负整数和零3.整数的比较和排序4.整数的加法和减法运算5.整数的乘法和除法运算6.整数的互质和公约数、公倍数7.整数的约分、化简和化整8.分数、真分数和假分数的概念9.分数的加法和减法运算10.分数的乘法和除法运算二、小数1.小数的概念和表示方法2.小数的比较和大小关系3.小数的加法和减法运算4.小数的乘法和除法运算5.小数的四舍五入和精确到其中一位6.百分数和百分数的运算法则7.分数与小数的转换三、几何图形1.点、线、线段和射线的概念2.平面图形的分类和性质3.立体图形的名称和特点4.直线对称和旋转对称5.几何图形的相似和全等6.几何图形的面积和周长7.几何图形的体积和表面积8.几何图形的放大和缩小四、代数1.代数式的概念和性质2.代数式的运算法则3.一元一次方程的概念和解法4.一元一次不等式的概念和解法5.数据的收集、整理和展示6.统计图表的分析和应用7.数据的平均数和中位数五、逻辑推理与思维训练1.逻辑推理的基本规律和方法2.推理判断、判断说法的真假3.快速计算和心算技巧的培养4.算式的解法和变形5.数的性质和规律的总结和归纳6.数学思维、创造力和问题解决能力的培养这些是小学数学的主要知识点,涵盖了整数、小数、几何图形、代数和逻辑推理等方面的内容。
小学数学教学的目标是培养学生的数学思维能力、推理能力和解决问题的能力,帮助学生建立数学概念、掌握数学方法和技巧,培养学生的数学兴趣和创造力。
希望以上内容对您有所帮助!。
小学生数学知识点总结8篇篇1一、数的概念与运算1. 数的认识:小学生需要掌握基本数的概念,包括自然数、整数、分数、小数等。
了解数的性质,如奇数和偶数、质数和合数等。
2. 数的运算:掌握基本的四则运算,包括加、减、乘、除。
学会运用运算律简化计算过程。
二、图形与几何1. 图形的认识:了解常见图形的名称、特点及性质,如正方形、长方形、三角形、圆形等。
2. 图形的测量:掌握长度的基本测量单位及其换算关系,会使用尺子进行测量。
3. 图形的变换:了解图形的平移、旋转和对称等基本变换,学会运用这些变换进行图案设计。
三、函数与方程1. 函数的初步认识:了解函数的概念,会画简单的函数图像,如正比例函数和反比例函数。
2. 方程的初步认识:了解方程的概念,会解简单的线性方程和一元二次方程。
四、数据与概率1. 数据的收集与整理:掌握数据收集的基本方法,会使用统计图表进行数据整理。
2. 数据的描述与分析:了解平均数、中位数和众数等统计量的概念及计算方法,会运用这些统计量对数据进行描述和分析。
3. 概率的初步认识:了解概率的概念,会计算简单事件的概率。
五、生活中的数学1. 时间的计算:掌握时间的计算方法,包括时间的加减法以及时间的乘法(如计算火车运行时间)。
2. 长度、重量和容量的计算:掌握长度、重量和容量的基本换算关系及计算方法。
3. 钱的计算:掌握钱的加减法及简单的乘除法运算,学会找零钱及计算购物时的总花费。
4. 图形的组合与拼摆:了解如何将简单图形进行组合或拼摆成更复杂的图形,培养空间想象力和创造力。
六、解题技巧与思维训练1. 解题技巧:掌握一些基本的解题技巧,如观察法、尝试法、列举法、归纳法等,学会运用这些技巧解决数学问题。
2. 思维训练:通过大量的练习和思考,培养逻辑思维能力和空间想象力,学会用数学的方法思考问题。
七、数学文化与欣赏1. 数学史话:了解一些数学史话,如阿拉伯数字的由来、圆周率的计算等,培养对数学的兴趣和热爱。
小学数学总结知识归纳全部数学是小学阶段学生必修的一门学科,也是培养学生逻辑思维和解决问题能力的重要课程之一。
下面将对小学数学知识进行全面总结和归纳,帮助学生复习和巩固所学的知识。
一、整数与小数1. 整数的认识和运算:- 整数的概念:正整数、负整数及零- 整数的大小比较- 整数的加法、减法和乘法运算- 整数的拓展运算:加减法混合运算2. 小数的认识和运算:- 小数的概念和写法- 小数的大小比较- 小数的加法、减法和乘法运算- 小数与整数的加法和减法二、算式与方程1. 算式的认识和解答:- 算式的概念和构成要素- 算式的四则运算:加法、减法、乘法和除法- 算式的拓展运算:多个运算符的混合运算2. 方程的认识和解答:- 方程的概念和基本形式- 方程的解的概念- 一元一次方程的解法三、图形与几何1. 基本图形的认识和性质:- 点、线、线段、射线、角的认识- 三角形、四边形、圆的认识和性质2. 位置与方向:- 点的坐标与平面直角坐标系- 直线的方向与位置关系- 平面镜像与对称性3. 空间几何与立体图形:- 空间几何基本概念:点、线、面、体- 立体图形的认识和性质:球体、长方体、正方体、圆柱体、圆锥体、棱柱体四、计量与单位1. 长度、面积和容量的认识和换算:- 常见长度单位的换算:米、厘米、千米- 常见面积和容量单位的换算:平方米、立方米2. 时间的认识和计算:- 时、分、秒的概念和换算- 24小时制与12小时制的关系3. 质量和重量的认识和换算:- 常见质量单位的换算:克、千克、吨五、数据与统计1. 数据与图表的认识:- 数据的概念和收集方式- 统计图表的种类和构成:表格、条形图、折线图、圆饼图2. 数据的分析和应用:- 数据的集中趋势:平均数、中位数、众数- 数据的离散程度:极差、方差- 数据的应用:调查、统计、预测六、概率与推理1. 概率的认识和计算:- 概率的概念和计算方式- 等可能事件和互斥事件的计算2. 推理与解题:- 推理的基本方法:归纳、演绎- 解题的思维方法:逻辑推理、分析综合通过对小学数学知识的全面总结和归纳,希望能够帮助小学生巩固所学的数学知识,提高解决问题的能力和思维水平。
第一章数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数34 数位5整数a b能整除a 。
如果数a因为35的约数有1、2、5一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5 000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2、3、5、7、83、89、97。
1例如把如126是12和1 8公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公1把整数1可以”和整数2纯小数:整数部分是零的小数,叫做纯小数。
第一部份数与代数.(一)数的认识.整数【正数、0、负数】一、一个物体也没有,用0表示.0和1、2、3……都是自然数.自然数是整数.二、最小的一位数是1,最小的自然数是0.三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃.“+4”读作正四.“-4”读作负四. +4也可以写成4.四、像+4、19、+8844这样的数都是正数.像-4、-11、-7、-155这样的数都是负数.五、0既不是正数,也不是负数.正数都大于0,负数都小于0.六、通常情况下,比海平面高用正数表示,比海平面低用负数表示.七、通常情况下,盈利用正数表示,亏损用负数表示.八、通常情况下,上车人数用正数表示,下车人数用负数表示.九、通常情况下,收入用正数表示,支出用负数表示.十、通常情况下,上升用正数表示,下降用负数表示.小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示.一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位.每相邻两个计数单位间的进率都是10.三、每个计数单位所占的位置,叫做数位.数位是按照一定的顺序排列的.四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变.五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简.六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大.七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字.八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果.九、整数和小数的数位顺序表:分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数.表示其中一份的数,是这个分数的分数单位.二、两个数相除,它们的商可以用分数表示.即:a÷b=b/a(b≠0)三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数.四、分数可以分为真分数和假分数.五、分子小于分母的分数叫做真分数.真分数小于1.六、分子大于或等于分母的分数叫做假分数.假分数大于或等于1.七、分子和分母只有公因数1的分数叫做最简分数.八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变.九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分.(马上点标题下“小升初”关注可获取更多教育经验、方法、学习资料,每天更新哟!)百分数【税率、利息、折扣、成数】一、表示一个数是另一个数的百分之几的数叫做百分数.百分数也叫百分率或百分比,百分数通常用“%”表示.二、分数与百分数比较:不同点相同点分数可以表示具体数量,可以有单位名称表示两个数之间的关系百分数不可以表示具体数量,不可以有单位名称三、分数、小数、百分数的互化.(1)把分数化成小数,用分数的分子除以分母.(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分.(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号.(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位. (5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数.(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数.四、熟记常用三数的互化.五、1、出勤率表示出勤人数占总人数的百分之几.2、合格率表示合格件数占总件数的百分之几.3、成活率表示成活棵数占总棵数的百分之几.六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几.七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几八、应得利息是税前利息,实得利息是税后利息.九、利息= 本金×利率×时间十、应得利息-利息税= 实得利息十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几.十二、1、原价×折扣=现价2、现价÷原价=折扣3、现价÷折扣=原价十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几.因数与倍数【素数、合数、奇数、偶数】一、4 ×3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数.二、一个数最小的倍数是它本身,没有最大的倍数.一个数倍数的个数是无限的.三、一个数最小的因数是1,最大的因数是它本身.一个数因数的个数是有限的.四、5的倍数:个位上的数是5或0.2的倍数:个位上的数是2、4、6、8或0.2的倍数都是双数.3的倍数:各位上数的和一定是3的倍数.五、是2的倍数的数叫做偶数.不是2的倍数的数叫做奇数.六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数).七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数.八、在1—20这些数中:(1既不是素数,也不是合数)奇数:1、3、5、7、9、11、13、15、17、19.偶数:2、4、6、8、10、12、14、16、18、20.素数:2、3、5、7、11、13、17、19.(共8个,和为77.)合数:4、6、8、9、10、12、14、15、16、18、20.(共11个,和为132.)九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4.十、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数. 十一、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积.(二)数的运算计算法则【整数、小数、分数】一、计算整数加、减法要把相同数位对齐,从低位算起.二、计算小数加、减法要把小数点对齐,从低位算起.三、小数乘法:1、先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点.2、注意:在积里点小数点时,位数不够的,要在前面用0补足.四、小数除法:1、商的小数点要和被除数的小数点对齐;2、有余数时,要在后面添0,继续往下除;3、个位不够商1时,要在商的整数部分写0,点上小数点,再继续除.4、把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位.5、当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足.五、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……六、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……七、分数加、减法:1同分母分数相加减,把分子相加减,分母不变.2异分母分数相加减,要先通分化成同分母分数,然后再相加减.八、分数大小的比较:1同分母分数相比较,分子大的大,分子小的小.2异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小.九、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母.十、甲数除以乙数(0除外),等于甲数乘乙数的倒数.四则运算关系加法一个加数= 和-另一个加数减法被减数= 差+ 减数减数= 被减数-差乘法一个因数= 积÷另一个因数除法被除数= 商×除数除数= 被除数÷商两个规律一、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变.二、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变.简便计算一、运算定律:运算定律用字母表示加法交换律a+b=b+a速度×时间=路程路程÷时间=速度路程÷速度=时间速度和×相遇时间=路程路程÷相遇时间=速度和路程÷速度和=相遇时间三、式与方程用字母表示数一、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“·”,也可以省略不写.在省略数字与字母之间的乘号时,要把数字写在字母的前面.二、2a与a2意义不同:2a表示两个a相加,a2表示两个a相乘.即:2a=a +a,a2= a×a.三、用字母表示数:①用字母表示任意数:如X=4 a=6②用字母表示常见的数量关系:如s=vt③用字母表示运算定律:如a+b=b+a④用字母表示计算公式:S=ah方程与等式一、含有未知数的等式叫做方程.二、使方程左右两边相等的未知数的值,叫做方程的解.三、求方程的解的过程,叫做解方程.四、方程和等式的联系与区别:方程等式联系方程一定是等式,等式不一定是方程区别含有未知数不一定含有未知数五、等式的基本性质(一):等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式.六、等式的基本性质(二):等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式.七、列方程解应用题的一般步骤:①弄清题意,找出未知数并用X表示.②找出应用题中数量间的相等关系,并列出方程.③求出方程的解.④检验或验算,写出答案.(四)正比例与反比例比和比例一、比和比例的联系与区别:比与比例的区别1、意义不同比的意义两个数相除又叫做两个数的比.比例的意义表示两个比相等的式子叫做比例.2、名称不同比的名称两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项.比例的名称组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项.3、性质不同比的性质比的前项和后项同时乘或者除以相同的数(0除外),比值不变.比例的性质在比例里,两个外项的积等于两个内项的积.4、应用不同应用比的意义求比值.应用比的性质化简比.应用比例的意义判断两个不能否组成比例.应用比例的性质不但可以判断两个比能否组成比例,还可以解比例.二、比同分数、除法的联系与区别:比分数除法联系前项分子被除数比号分数线除号后项分母除数比值分数值商比的基本性质分数的基本性质除法的商不变性质区别比表示两个数之间的关系.分数表示一个数.除法表示一种运算.三、求比值与化简比的区别:一般方法结果求比值根据比值的意义,用前项除以后项.是一个数.可以是整数、小数或分数.化简比根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外).是一个比.它的前项和后项都是整数,并且是互质数.四、化简比:①整数比的化简方法是:用比的前项和后项同时除以它们的最大公约数.②小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简.③分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数.五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺.六、比例尺=图上距离︰实际距离比例尺= 图上距离/ 实际距离正比例、反比例一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系.二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系.千米:km米:m分米:dm厘米:cm毫米:mm 吨:t千克:kg克:g升:l毫升:ml平面图形【认识、周长、面积】一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线.线段、射线都是直线上的一部分.线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的.二、从一点引出两条射线,就组成了一个角.角的大小与两边叉开的大小有关,与边的长短无关.角的大小的计量单位是(°).三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角.四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行.五、三角形是由三条线段围成的图形.围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点.六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形.按边分,可以分为等边三角形、等腰三角形和任意三角形.七、三角形的内角和等于180度.八、在一个三角形中,任意两边之和大于第三边.九、在一个三角形中,最多只有一个直角或最多只有一个钝角.十、四边形是由四条边围成的图形.常见的特殊四边形有:平行四边形、长方形、正方形、梯形.十一、圆是一种曲线图形.圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长.通过圆心并且两端都在圆的线段叫做圆的直径.十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形.这条直线叫做对称轴.十三、围成一个图形的所有边长的总和就是这个图形的周长.十四、物体的表面或围成的平面图形的大小,叫做它们的面积.十五、平面图形的面积计算公式推导:【1】平行四边形面积公式的推导过程?①把平行四边形通过剪切、平移可以转化成一个长方形.②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积.③因为:长方形面积=长×宽,所以:平行四边形面积=底×高.即:S=ah. 【2】三角形面积公式的推导过程?①用两个完全一样的三角形可以拼成一个平行四边形.②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2. 即:S=ah ÷2.【3】梯形面积公式的推导过程?①用两个完全一样的梯形可以拼成一个平行四边形.②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半.③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2.即:S=(a+b)h÷2.【4】画图说明圆面积公式的推导过程①把圆分成若干等份,剪开后,拼成了一个近似的长方形.②长方形的长相当于圆周长的一半,宽相当于圆的半径.③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2.即:S=πr2.十六、平面图形的周长和面积计算公式:长方形周长=(长+宽)×2 C = πd S = πr2长方形面积= 长×宽 C = 2πr S =π()2正方形周长= 边长×4r= d÷2S=π()2正方形面积= 边长×边长r=C ÷2π平行四边形面积= 底×高d=2r三角形面积= 底×高÷2d=c ÷π十七、常用数据:常用π值常用平方数2π=6.2812π=37.6812= 1 3π=9.4215π=47.122=4 4π=12.5616π=50.2432=9 5π=15.7018π=56.5242=16 6π=18.8420π=62.852=25 7π=21.9825π= 78.562=36 8π=25.1232π=100.4872=49 9π=28.26 2.25π=7.06582=64 10π=31.4 6.25π=19.62592=81立体图形【认识、表面积、体积】一、长方体、正方体都有6个面,12条棱,8个顶点.正方体是特殊的长方体.二、圆柱的特征:一个侧面、两个底面、无数条高.三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高.四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积.五、体积:物体所占空间的大小叫做物体的体积.容器所能容纳其它物体的体积叫做容器的容积.六、圆柱和圆锥三种关系:①等底等高:体积1︰3②等底等体积:高1︰3③等高等体积:底面积1︰3七、等底等高的圆柱和圆锥:①圆锥体积是圆柱的1/3,②圆柱体积是圆锥的3倍,③圆锥体积比圆柱少2/3,④圆柱体积比圆锥多2倍.八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4.九、立体图形公式推导:【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)①圆柱的侧面展开后一般得到一个长方形.②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高.③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高.④圆柱的侧面展开后还可能得到一个正方形.正方形的边长=圆柱的底面周长=圆柱的高.【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?①把圆柱分成若干等份,切开后拼成了一个近似的长方体.②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高.③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高.即:V=Sh. 【3】请画图说明圆锥体积公式的推导过程?①找来等底等高的空圆锥和空圆柱各一只.②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完.③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍.即:V=1/3Sh.十、立体图形的棱长总和、表面积、体积计算公式:名称计算公式长方体棱长总和长方体棱长总和= (长+宽+高)×4长方体表面积长方体表面积=(长×宽+长×高+宽×高)×2长方体体积长方体体积=长×宽×高正方体棱长总和正方体棱长总和=棱长×12正方体表面积正方体表面积=棱长×棱长×6正方体体积正方体体积=棱长×棱长×棱长圆柱体侧面积圆柱体侧面积=底面周长×高圆柱体表面积圆柱体表面积=侧面积+底面积×2圆柱体体积圆柱体体积=底面积×高圆锥体体积圆锥体体积=Sh(二)图形与变换一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度.二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小.三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同.(三)图形与位置一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置.二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向.再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置.第三部份统计与可能性(一)统计一、我们通常都是通过打勾、画圆、划“正”字的方法进行数据的收集和整理.。
精心整理小学数学必备知识点总归纳常用单位换算1、长度单位换算:1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米2、面积单位换算:1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米3体(容)积单位换算:1立方米=10001立方分米=1升1立方厘米=1毫升14、重量单位换算:1吨=1000千克1千克5、人民币单位换算:1元=10角1角=10分6、时间单位换算:1世纪=100年1年=12(30天)的有:4\6\9\11月平年2月28天,闰年2月29平年全年365天,闰年全年1日=24秒常用数量关系等式1、份数:=每份数2、倍数:1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、路程:速度×时间=路程路程÷速度=时路程÷时间=速度4、价量:单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作量:工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、数据运算:加数十加数=和和一一个加数=另一个加数被减数一减数=差被减数一差=减数因数×因数=积被除数÷除数=商商×除数=被除数差+减数=被减数积÷一个因数=另一个因数被除数÷商=常用图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4C=4a面积=边长×边长2、正方体(V:体积a:棱长)表面积=棱长×棱长×6S表=a×a×6V=a×a×a3、长方形(C:周长S:周长=(长+4、长方体b:宽h:高)表面积=()×2S=2(ab+ah+bh)体积=5、三角形(s:面积a:底h:高)面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高S=ah7、梯形(s:面积a:上底面积=(上底+下底)×高÷28、圆形(S:面积C:周长nd=直径r=半径)周长=直径×n=2×n×半径C=nd=2nr面积=半径×半径×n 9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)侧面积=底面周长×高=ch(2nr或nd)表面积=侧面积+底面积×2体积=体积=侧面积÷2×半径10、圆锥体(v:体积h:高s:底面积r:体积=底面积×高12、和差问题:(和+差)÷2=小数3=大数)41)=小数+差=大数)5、相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和一相遇路程÷相遇时间6、追及问题追及距离=速度差×追及时间追及时间=追及距离:速度差速度差=追及距离:追及时间7、流水问题顺流速度=静水速度十水流速度逆流速度=静水速度一水流速度8、浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量9、利润与折扣问题利润=售出价一成本利润率=利润÷成本×-1)×100%利息=(1-20%)10(盈+亏)÷两次分配量之差=参加分配的份数大盈一小盈)÷两次分配量之差=参加分配的份数(大亏一小亏)÷两次分配量之差=参加分配的份数应特别注意植树问题非封闭线路上的植树问题,主要可分为以下三种情形(1)如果在非封闭线路的两端都要植树,那么全长=株距×(株数一1)株距=全长÷(株数-1)(2)如果在非封闭线路的一端要植树,另一端不要植树那么株数=段数=全长÷株距全长=株距×株数株距=全长÷株数(2)株数=段数-1=全长÷株距一1全长=株距×(株数+1)株距=全长÷(2、封闭线路上的植树问题株数=全长=株距×株数株距=数的整除:整数a a能被b 整除,或者说b能整除如果数a,b就叫做a的约数(或a的因数)。
倍数因为35是7的倍数,7是35的约数,其中最小的约数是1最大的约数是它本身。
例如:10的约数有1、1,最大的约数是10一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……·其中最小的倍数是3,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除一个数各位数上的和能被9整除,这个数就能被9整除.能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2整除的特征可分为奇数和偶数。
个数,如果只有1和它本身两个约数,:2、3、5、7、11、1317、19、23、29、31、3771、73、79、83、89、97.一个数,如果除了1和它本身还有别的约数、9、12都是合数。
1不是质数也不是合数,自然数除了1外,的个数的不同分类,,叫做这个合数的质因数,例如15的质因数。
,叫做分解质因数例如把28,叫做这几个数的最大公约数,例如3、4、6、12;18的约数有1、2、3、6、9、18。
其中,1、2、3、6是12和18的公约数,6是它们的最大公约数。
公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、46、8、10、12、14、16、183的倍数有3、6、9、12、15、18。
其中6、12、18…是2、3的公倍数,6是它们的最小公倍数。
如果较大数是较小数的倍数,如果两个数是互质数,几个数的公约数的个数是有限的,(二)小数1小数的意义:把整数1平均分成10份、之几、千分之几……可以用小数表示。
一位小数表示十分之几,,小数点,小数点右边的数叫做小数部分。
10。
小数部分的最高分数单位“十102纯小数:整数部分是零的小数,叫做纯小数。
例如0.25、0.368都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。
例如3.25、5.26都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。
例如:41.7、25.3、0.23都是有限小数。
无限小数:小数部分的数位是无限的小数,叫做无限小数。
例如:4.333.1415926无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
例如:∏循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
例如3.555……0.0333……12.109109……一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
例如:3.99…….的循环节是“9”,0.5454……·的循环节是“54”。
纯循环小数:……混循环小数:……0.03333……写循环小数的时候,为了简便,点。
例如:3.777…算…简写作0.5302302(三)分数1分数的意义:把单位“1在分数里,,叫做分母,表示把单位“1”平均分成多少份;把单位“1,表示其中的一份的数叫做分数单位.2真分数: 1.假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数1表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二、数的读法和写法1.整数的读法:从高位到低位,一级一级地读。
读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿或“万”字。
每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。
2.整数的写法:从高位到低位,位上写0。
3.小数的读法:读小数的时候,从左向右顺次读出每位数位上的数字。
4.小数的写法:写小数的时候,,5.分数的读法:读分数时,,分子和分母按照整数的读法来读6.,按照整数的写法来写7.,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
8.,而在原来的分子后面加上百分号“%”来表示。
(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用万”或“亿”作单位的数。
有时还可以根据需要,省略这个数某一位后面的数,写成近似数。
4.大小比较1.比较整数大小:比较整数的大小,位数多的那个数就大。
如果位数相同,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2.比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大…3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化1.小数化成分数:原来有几位小数,就在1数点作分子,能约分的要约分。