冷却塔设计计算参考
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
冷却塔的热力计算冷却塔的任务是将一定水量Q ,从水温t 1冷却到t 2,或者冷却△t =t 1-t 2。
因此,要设计出规格合适的冷却塔,或核算已有冷却塔的冷却能力,我们必须做冷却塔的热力计算。
为了便于计算,我们对冷却塔中的热力过程作如下简化假设:(1)散热系数α,散质系数v β,以及湿空气的比热c ,在整个冷却过程被看作是常量,不随空气温度及水温变化。
(2) 在冷却塔内由于水蒸气的分压力很小,对塔内压力变化影响也很小,所以计算中压力取平均大气压力值。
(3)认为水膜或水滴的表面温度与内部温度一致,也就是不考虑水侧的热阻。
(4) 在热平衡计算中,由于蒸发水量不大,也可以将蒸发水量忽略不计。
(5) 在水温变化不大的范围内,可将饱和水蒸汽分压力及饱和空气与水温的关系假定为线性关系。
冷却塔的热力计算方法有焓差法、湿差法和压差法等,其中最常用的是麦克尔提出的焓差法,以下简要介绍冷却塔的焓差法热力计算。
麦克尔提出的焓差法把过去由温度差和浓度差为动力的传热公式,统一为一个以焓差为动力的传热公式。
在方程式中,麦克尔引进入刘易斯关系式,导出了以焓差为动力的散热方程式。
()dV h h dH t xv q 0"-=β (1)式中:q dH —— 水散出热量;xv β —— 以含湿差为基准的容积散质系数()[]kg kg s m kg //3⋅⋅ ;"t h —— 温度为水温t 时饱和空气比焓 (kg kJ /); 0h —— 空气比焓 (kg kJ /)。
将式(1)代入冷却塔内热平衡方程:n w w q tdQ c Qdt c dH += (2)式中:q dH —— 水散出热量;w c —— 水的比热()[]C /J o ⋅kg k ;Q —— 冷却水量 (s /g k ); u Q —— 蒸发水量 (s /g k ) t —— 水温度 (℃)并引入系数K :m w u m u w r tc Q r t Q c K 2211-=-=式中 m r ——塔内平均汽化热(kg kJ /)经整理,并积分后,可得冷却塔热力计算的基本方程式:⎰-=120"t t t wxv h h dt c Q vK β (3) 上式的左端表示在一定淋水填料及格型下冷却塔所具有的冷却能力,它与淋水填料的特性、构造、几何尺寸、冷却水量有关,称冷却塔的特性数,以符号愿'Ω表示,即:Q VK xv β=Ω'(3)式的右端表示冷却任务的大小,与气象条件有关,而与冷却塔的构造无关,称为冷却数(或交换数),以符号'Ω表示,也即:⎰-=Ω120"t t t w h h dt c由于水温不是空气焓的直接函数,直接积分有困难,所以,在求解冷却数的时候,一般均采用近似积分方法。
冷却塔设计计算举例冷却塔符号说明(名称及单位)这⾥列出的符号是按习惯形成和长期延⽤的统⼀符号。
实际上符号是⼈为定的,不同的名称可⽤各种符号来代替,但为便于识别和运⽤,尽可能予以统⼀。
常⽤的有关冷却塔设计计算的符号与名称⼤致如下:t 1——进冷却塔⽔温(℃);t 2——出冷却塔⽔温(℃);Δt——进、出冷却塔⽔温差(℃),即Δt =t 1 -t 2 ;t m——平均⽔温(℃),t m =(t 1 -t 2 )/2 ;T——绝对温度(城),T =273 +ti ;θ——空⽓⼲球温度(℃);τ——空⽓湿球温度(℃);t 2 –τ——冷幅⾼(℃),此值越⼩,冷却效率越⾼;θ1 ——进冷却塔空⽓的⼲球温度(℃);θ2 ——出冷却塔空⽓的⼲球温度(℃);τ1 ——进冷却塔空⽓的湿球温度(℃);τ2 ——出冷却塔空⽓的湿球温度(℃);P a——⼤⽓压⼒(m m H g ),P a =P g +P q ;P g——空⽓中⼲空⽓的分压⼒(kg/cm2 ,或m m H g );P q——空⽓中⽔蒸⽓的分压⼒(kg/cm2 ,或m m H g );P ″τ1——进冷却塔空⽓温度为湿球温度τ1 时饱和空⽓中⽔蒸⽓分压⼒(kg/cm2 ,或m m H g );P ″θ1——进冷却塔空⽓温度为⼲球温度θ1 时饱和空⽓中⽔蒸⽓分压⼒(kg/cm2 ,或m m H g ); P ″——饱和空⽓中⽔蒸⽓分压⼒(kg/cm2 ,或m m H g );P ″t1——空⽓为进冷却塔⽔温t 1 时饱和⽔蒸⽓分压⼒(kg/cm2 ,或m m H g );P ″t2——空⽓为出冷却塔⽔温t 2 时饱和⽔蒸⽓分压⼒(kg/cm2 ,或m m H g );P ″tm——平均⽔温时饱和⽔蒸⽓压⼒(kg/cm2 ,或m m H g );Q——冷却塔冷却⽔量(m3/h 或kg/h );q——冷却塔淋⽔密度(m3/(m2· h ));G ——进冷却塔的空⽓量,即风量(m3/h 或kg/h );g ——进冷却塔空⽓重量速度(kg/(m2·h )或kg/(m2 ·s ));有时表⽰重⼒加速度(m/s2 );V——外界风速风向(m/s);i 1 ——进塔空⽓的焓(kcal/kg );i 2 ——出塔空⽓的焓(kcal/kg );i m ——平均温度时空⽓的焓(kcal/kg );i″1 ——空⽓温度为进塔⽔温t 1 时的饱和空⽓焓(kcal/kg );i″2 ——空⽓温度为出塔⽔温t 2 时的饱和空⽓焓(kcal/kg );i″m ——空⽓温度为进、出塔⽔温的平均温度t m 时的饱和空⽓焓(kcal/kg );γg——空⽓的密度(⽐重)(kg/m3 );γ——⽔的汽化热(kcal/kg );λ——⽓、⽔⽐(⽆量纲);K——蒸发⽔量带⾛的热量系数(⽆量纲);βxv ——以焓差为基准的容积散质系数(kg/(m 3·h ));V m——塔内平均风速(m/s);Z ——淋⽔填料装置⾼度(m );Z g ——淋⽔填料装置尾部⾼度(m );F——冷却塔内断⾯积(m2 );V——淋⽔填料装置有效容积(m3 ):(注:有时表⽰⽔流或⽓流速度,m/s);N (或Ω)——以温度进⾏积分的交换数(⽆量纲);Σhi——空⽓总阻⼒(mmH2O);hi ——进塔空⽓各部分的阻⼒(mmH2O);D N——⽔管⼦内径(m m );L——管⼦长度(m );n——有时表⽰转速(r/min );有时表⽰根数;有时表⽰孔眼数;ηi——表⽰电机、风机、传动装置等效率(%);ξi——流体(⽔或空⽓)有关阻⼒系数。
冷却塔设计计算举例冷却塔是一种常用的热交换设备,主要用于将热水冷却至一定温度。
其设计计算是为了保证冷却效果和安全性能。
下面以一个简单的冷却塔设计计算举例进行说明。
一、设计参数确定1.冷却介质:假设为水,需要冷却至25℃。
2.进口温度:假设为70℃。
4.气象条件:温度为35℃,湿度为80%,周围空气压力为101.325千帕。
二、冷却介质流量计算根据热负荷和进出口温差可以计算出冷却介质的流量,常用的公式为:Q = m * Cp * (Tout - Tin)其中,Q为热负荷,m为流量,Cp为冷却介质的比热容,Tout为出口温度,Tin为进口温度。
假设冷却介质的比热容为4.18千焦/千克.摄氏度,则可以得到:解得冷却介质的流量m为641.76千克/小时。
三、冷却风量计算冷却塔利用气流将冷却介质中的热量带走,所以需要计算冷却风量。
冷却风量的计算公式为:Q = ρ * Qa * (h - 1) / (ρa * Cp * (Tout - Tin))其中,Q为热负荷,ρ为冷却介质的密度,Qa为冷却介质的流量,h 为感温系数,ρa为空气密度,Cp为冷却介质的比热容,Tout为出口温度,Tin为进口温度。
假设冷却介质的密度为1000千克/立方米,空气的密度为1.225千克/立方米,则可以得到:解得感温系数h为0.743四、塔高计算根据冷却风量的计算结果和冷却介质的温度变化,可以通过查表或者利用经验公式计算出塔高。
假设根据经验公式计算得到塔高为20米。
五、填料选择填料可以增加冷却面积,提高冷却效果。
根据冷却塔的设计参数,可以选择适合的填料。
假设选择波纹板填料。
六、风机功率计算风机功率的计算公式为:P = Qa * h * ρ * (Pout - Pin)其中,P为风机功率,Qa为冷却介质的流量,h为感温系数,ρ为冷却介质的密度,Pout为塔顶的绝对压力,Pin为塔底的绝对压力。
假设塔顶的绝对压力为101.325千帕,塔底的绝对压力为101.425千帕,则可以得到:P=641.76*0.743*1000*(101.325-101.425)解得风机功率P为739.32千瓦。
冷却塔设计计算参考方法本文简述了冷却塔、冷却塔的选型,校核计算,模拟计算方法等,供大家参考。
一、简述如上图,冷却塔放于层间,运行时冷却塔进/排风大致可分为6个区间(图中箭头表示风向,其长度表示风量大小);它们分别是:a 区——冷却塔在A轴方向的主要进风面,该处装有1250mm高百叶3层。
b1/b2——冷却塔入风回流区,在这两个区很可能出现负压;回流在b2区会较多出现。
c 区——冷却塔高速排风区。
d 区——冷却塔在1/A轴方向通风区,该区为负压区,风速较a区高,且以乱流出现居多。
e 区——热风扩散区;冷却塔排风经过一段距离(冷却塔排风口到建筑顶部百叶约4000mm)后,动压明显下降,静压上升,该区属正压区,其间大部分热风经建筑顶部百叶排入大气,少部分弥散后排风受阻会滞留一段时间,但,由于上下(e 区~b区)空间随机存在着压差,使得部分e区弥散的热风回流。
二、冷却塔的选型1、设计条件温度:38℃进水,32℃出水,27.9℃湿球;水量:1430M³/H;水质:自来水;耗电比:≤60Kw/台,≤0.04Kw/M³·h,场地:23750mm×5750mm;通风状况:一般。
2、冷却塔选型符合以上条件的冷却塔为:LRCM-H-200SC8×1台。
(冷却塔[设计基准]37-32-28℃,此条件下冷却塔处理水量为名义处理水量)其中,LRC表示良机方形低噪声冷却塔,M表示大陆性气候适用,H表示加高型,200表示冷却塔单元名义处理水量200M³/H,S表示该机型区别于一般冷却塔,C8表示该塔共由8个单元并联组合而成,即名义处理总水量为1600M³/H。
冷却塔的外观尺寸为:22630×3980×4130。
冷却塔配电功率:7.5Kw×8=60Kw,耗电比为60÷1600=0.0375Kw/M³·h。
冷却塔设计选型与计算,收藏一、关于冷却塔冷却塔是利用空气同水的接触(直接或间接)来冷却水的设备。
是以水为循环冷却剂,从一个系统中汲取热量并排放至大气中,从而降低塔内温度,制造冷却水可循环使用的设备。
冷却塔的结构构成及功能:支架和塔体:外部支撑;填料:为水和空气供给尽可能大的换热面积;冷却水槽:位于冷却塔底部,接收冷却水;收水器:回收空气流带走的水滴;进风口:冷却塔空气入口;百叶窗:平均进气气流,保留塔内水分;淋水装置:将冷却水喷出;风机:向冷却塔内送风;轴流风扇用于诱导通风冷却塔;轴流/离心风扇用于强制通风冷却塔。
二、冷却塔的选型与计算01选型须知1、请注明冷却塔选用的实在型号,或每小时处理的流量。
2、冷却塔进塔温度和出塔水温。
3、请说明给什么设备降温、现场是否有循环水池,现场安装条件如何。
4、若需要备品备件及其他配件,有无其他要求等请注明。
5、特别条件使用请说明使用环境和实在情况,以便选择适当的冷却塔型号。
6、特别情况、型号订货时请标明,以双方合同、技术协议商定专门进行设计。
冷却塔认真选型:1、首先要确定冷却塔进水温度,从而选择标准型冷却塔、中温型冷却塔还是高温型冷却塔。
2、确定使用设备或者可以依照现场情况对噪声的要求,可以选择横流式冷却塔或者逆流式冷却塔。
3、依据冷水机组或者制冷机的冷却水量进行选择冷却塔流量,一般来讲冷却塔流量要大于制冷机的冷却水量。
(一般取1.2—1.25倍)。
4、多台并联时尽量选择同一型号冷却塔。
其次,冷却塔选型时要注意:1、冷却塔的塔体结构材料要稳定、经久耐用、耐腐蚀,组装搭配精准明确。
2、配水均匀、壁流较少、喷溅装置选用合理,不易堵塞。
3、冷却塔淋水填料的型式符合水质、水温要求。
4、风机匹配,能够保证长期正常运行,无振动和异常噪声,而且叶片耐水侵蚀性好并有充足的强度。
风机叶片安装角度可调,但要保证角度一致,且电机的电流不超过电机的额定电流。
5、电耗低、造价低,中小型钢骨架玻璃冷却塔还要求质量轻。
1.设备组成1.1设备原产地及制造厂家广东省广州市/斯必克(广州)冷却技术有限公司。
1.2供货明细NC玻璃钢冷却塔/NC8330F/4台SR玻璃钢冷却塔/SR-200/2台SR玻璃钢冷却塔/SR-40/2台1.3其他2.设备性能及技术参数2.1设备性能1)NC系列产品简介A、NC型横流式冷却塔系统性设计横流式冷却塔是马利公司工程师通过冷却塔多年热工测试试验,引进世界上最大的冷却塔生产商斯必克公司的先进技术和设备,对测试数据进行全面综合处理,参照美国冷却协会CTI标准和GB7190-1997等依据计算机运算得出的淋水填料的容积散质系数 xv,选择最佳的水气比,最佳截面水负荷,截面气负荷和填料的高度范围以确定填料体积,并以流体力学、空气动力学、材料学、建筑学等多种学科观点,综合设计塔的外型与结构,根据测试计算通风阻力,参考风机特性曲线和对测试数据进行优化,选择符合风量和噪音要求的风机和匹配的电机,使冷效、能耗、噪音达到一个优化的系统设计效果。
B、NC型横流式冷却塔淋水填料马利NC方形横流式冷却塔采用的MX-75型高级薄膜式复合波淋水填料, 堪称世界上薄膜式淋水填料的佼佼者,此填料片用于横流冷却塔, 由热处理PVC多层片构成,厚度0.38mm, 表面成波纹式, 相邻两层填料片形成的间隔,保证气流的通畅,经美国冷却塔协会(CTI)测试分析,其阻力特性和热力特性远远优于现有国内填料,使用寿命15年以上。
一般冷却塔产品填料均采用竖直放置,且无明显收水端。
参考右下图,一般冷却塔的做法是布水盘偏向外侧安装,A、B、C、D、E、F这6个区域内充满了填料,而当冷却塔运行起来以后,由于风机向上排风,气流由外向内流经填料,在风力的带动下,实际冷却水流过的区域是C、D、E、F、G这5个区域,A、B两区无水。
那么按照一般冷却塔的做法,用,而有水的G区却又没有填料。
马利的工程师们对这个问题进行了深入的研究,在千百次的实验之后,提出了冷却塔填料倾斜悬挂式安装的方案,在马利冷却塔当中C、D、E、F、G区充满填料,A、B两区无填料,而倾斜的角度又根据不同的塔型有十分严格的要求,这种方法有效地解决了进风面下端“无水区”问题,且填料带有明显的收水端,克服了竖直放置填料的缺点。
冷却塔设计计算举例冷却塔是一种常用的工程设备,用于散热和冷却各种工业流体、空调系统和发电设备等。
它通常由填料层、风机和水流动系统组成,通过水和空气之间的传热与传质来降低流体的温度。
冷却塔的设计计算主要包括三个方面:热力计算、传质计算和水流动计算。
第一部分:热力计算热力计算主要涉及到冷却塔的冷却效果和功率计算。
设计师首先要确定流体的热负荷,即流体所携带的热量。
热量可以通过下面的公式计算得到:Q = mcΔT其中,Q是热负荷,m是流体的质量流量,c是流体的比热容,ΔT是流体的温度差。
设计师可以根据设备的工作条件和要求来选取合适的传热系数,将其代入下面的公式计算冷却塔的表面积:A=Q/(U×ΔTm)其中,A是冷却塔的表面积,U是传热系数,ΔTm是流体的平均温度差。
根据冷却塔的工作原理,可以通过下面的公式计算塔排的风量:V=m/(ρ×W)其中,V是风量,m是流体的质量流量,ρ是空气的密度,W是空气的相对湿度。
第二部分:传质计算传质计算主要涉及到冷却塔中水和空气之间的传质过程。
设计师可以采用质量平衡方程和传质方程来计算塔内水的蒸发量。
质量平衡方程可以表达为:mw × Xw = ma × Xa + me × Xm其中,mw是水的质量流量,Xw是水的质量分数,ma是空气的质量流量,Xa是空气的质量分数,me是蒸发的水的质量流量,Xm是水蒸汽的质量分数。
传质方程可以表达为:me = K × A × (Xw - Xa)其中,K是传质系数,A是传质面积。
通过上述两个方程,可以求解出水的蒸发量me。
第三部分:水流动计算水流动计算主要涉及到水在填料层中的流动和冷却效果。
设计师可以根据填料的性质和流体的流动特点来选择合适的公式和计算方法。
通常可以采用经验公式来计算填料层的有效面积:A′=α×A其中,A′是填料层的有效面积,α是填料的有效系数,A是填料层的表面积。