梁的强度校核
- 格式:ppt
- 大小:4.98 MB
- 文档页数:126
2011年课程考试复习题及参考答案工程力学计算题:1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。
2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。
已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件校核梁的强度。
3.传动轴如图所示。
已知F r=2KN,F t=5KN,M=1KN·m,l=600mm,齿轮直径D=400mm,轴的[σ]=100MPa。
试求:①力偶M的大小;②作AB轴各基本变形的内力图。
③用第三强度理论设计轴AB的直径d。
4.图示外伸梁由铸铁制成,截面形状如图示。
已知I z=4500cm4,y1=7.14cm,y2=12.86cm,材料许用压应力[σc]=120MPa,许用拉应力[σt]=35MPa,a=1m。
试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
5.如图6所示,钢制直角拐轴,已知铅垂力F1,水平力F2,实心轴AB的直径d,长度l,拐臂的长度a。
试求:①作AB轴各基本变形的内力图。
②计算AB轴危险点的第三强度理论相当应力。
6.图所示结构,载荷P=50KkN,AB杆的直径d=40mm,长度l=1000mm,两端铰支。
已知材料E=200GPa,σp=200MPa,σs=235MPa,a=304MPa,b=1.12MPa,稳定安全系数n st=2.0,[σ]=140MPa。
试校核AB杆是否安全。
7.铸铁梁如图5,单位为mm,已知I z=10180cm4,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa,试求:①画梁的剪力图、弯矩图。
②按正应力强度条件确定梁截荷P。
8.图所示直径d=100mm的圆轴受轴向力F=700kN与力偶M=6kN·m的作用。
平衡梁计算及校核3.5.2场地基础的处理1.在吊机定位,吊机作业周围的其他钢结构设备基础暂缓施工,待设备吊装结束后进行施工。
2.300吨吊机的每个支腿与处理过的路基上放上四块双面路基板,在此路基板上再设置300吨吊机的专用路基板。
3.300吨吊机与150吨吊行车范围及设备进场的场地道路应加固处理,采用换垫层法使其具有一定的地耐力,开挖一定的面积,开挖深度约1米,以除去松软的回填土,挖至老土为准,再在上面铺设大石块约800毫米厚,并用压路机压实压平,然后再在大石块上铺约200毫米厚,再用压路机来回数次的压实压平,表面一定要处理平整,具体要求详见(图8)。
4.150吨履带吊的定位与行走区域范围场地道路处理后,并在处理过的路基上要铺设双面路基板,以增强和扩大地基的承载能力和受力面。
5.根据吊机的有关资料及设备重量和吊索的重量300吨吊机每个支腿最大的承载148吨。
P1+P2+P3+P4+P5+P64(79+120+124.9+1+3.8+0.34)/ 4 = 329/4=82.3吨P1:主吊机的自重量79吨P2:主吊机的配重重量120吨P3:设备的重量124.9吨P4:吊索具的重量1吨P5:吊钩的重量 3.8吨P6:设备群座支撑用钢管的重量Ø219×10 0.34吨3.6吊机性能选用详见氧氯化反应器吊装立面图(6、7)3.6.1主吊机选用DEMAG-TC2000型300吨桁架式汽车吊。
1)吊装总重量的计算G1.设备重量G1 =124.9吨2.吊钩重量G2 =3.8吨3.主吊索具的重量Ø60.5-6×37-170 G3 =1.027吨4.群座支撑钢管的重量Ø219×10 G4 =0.35吨5.底部吊索具的重量Ø56-6×37-170 G5 =0.23吨6.卸扣的重量75吨级5只G6 =0.72吨7.吊梁重量G7=1.5吨8.G=G1+G2+G3+G4+G5+G6+G7=132.5吨符合吊机性能要求。
铝合金模板安全专项施工方案- 1 -.梁、楼板处铝合金模板抗弯强度以及挠度校核(1)结合本项目结构施工图,以及广亚铝模板特点,选出梁尺寸200mm*1000 m m ,跨度为1200mm 最不利情况进行梁底处铝合金模板抗弯强度以及挠度校核 梁截面(b*h )为200*1000mm ,跨度为1200mm 。
模板及支架的强度验算时按简支受力计算,计算简图如下:S=1.2(NG1k + NG2k )+0.9*1.4∑NQK P=1.2*(24*0. 2 +1.1*1)+0.9*1.4*(1+2) =10.86KN/m2梁底板处铝合金模板最大支撑间距为跨度1200,跨中弯矩M 为: M=1*ql2/8=2.17*0.82/8=0.173K.m其中,q 为恒荷载均布线荷载标准值;对于200mm 标准板均布线荷载q=10.86*0.2=2.17KN/m. 最大弯曲应力:f= M/W=0.173*106/12571=13.81 N/mm2 <[f]=200N/mm2, 模板及支架的强度满足设计要求。
铝合金模板挠度应满足: v=5qgL4/384EIx<= [v]其中,为恒荷载均布线荷载标准值;[v]为允许挠度。
由规范可知[v]=L/250=1200/250=4.8mm计算得v=5qgL4/384EIx=5*2.17*8004/(384*70000*609925) =0.27m m<4.8mm ,满足要求。
抗剪强度计算T=3Q/2bh<[T]由于是简支梁均布加载,故面板抗剪强度必定满足设计要求! (2)楼板处铝合金模板抗弯强度以及挠度校核针对广亚铝模板的特点,以及本项目的需要,这里主要校核:规格为P400,长度为1100 mm这种最不利的情况,楼板厚度取120m m。
楼板模板规格为P400,长度为1100mm。
模板及支架的强度验算时按简支受力计算,计算简图如下:S=1.2(NG1k + NG2k)+0.9*1.4∑NQKP=1.2*(24*0. 12 +1.1*0.12)+0.9*1.4*(1+2)=7.39KN/m2楼板处铝合金模板最大支撑间距为跨度1100,跨中弯矩M为:M=1*ql2/8=2.96*1.1^2/8=0.447 KN.m其中,q为恒荷载均布线荷载标准值;对于400mm标准板均布线荷载q=7.39*0.4=2.96 KN/m最大弯曲应力:f= M/W= 0.447*10^6/24786 =18.03 N/mm2 <[f]=200N/mm2,模板及支架的强度满足设计要求。
悬臂梁强度校核例题全文共四篇示例,供读者参考第一篇示例:悬臂梁是一种常见的结构梁,常用于桥梁、建筑以及机械设备等领域。
在工程设计中,对悬臂梁的强度进行校核是非常重要的一环,只有确保梁的强度满足要求,才能保证结构的安全性和稳定性。
下面我们就来看一个关于悬臂梁强度校核的例题:某桥梁工程中,需要设计一根悬臂梁用于支撑人行道。
该悬臂梁的长度为6m,截面形状为矩形,截面高度为500mm,宽度为300mm,梁材料为混凝土,抗压强度为20MPa,抗拉强度为2.5MPa。
设计荷载包括自重、行人荷载和雨水荷载,其中自重为10kN/m,行人荷载为5kN/m,雨水荷载为2kN/m。
设计要求悬臂梁在荷载作用下不发生破坏,且满足构件截面的极限承载能力。
我们需要计算悬臂梁受力情况。
根据力学原理,悬臂梁在荷载作用下会产生弯矩和剪力。
在支座处,弯矩最大,剪力为零;而在悬臂梁的自由端,剪力最大,弯矩为零。
我们需要计算悬臂梁在支座处的最大弯矩和最大剪力。
弯矩计算公式为:M = wl^2/2M为弯矩,w为单位长度荷载,l为悬臂梁长度。
代入数据可得:M = (10*6^2)/2 = 180kN/m悬臂梁在支座处的最大弯矩为180kN/m。
V = w*l代入数据可得:接下来,我们需要校核悬臂梁的弯曲和剪切强度。
根据混凝土梁的极限承载能力公式,弯曲承载能力为:Mn = 0.9*fc*b*h^2Mn为弯曲承载能力,fc为混凝土抗压强度,b为截面宽度,h为截面高度。
代入数据可得:Mn = 0.9*20*300*500^2 = 13.5MN悬臂梁的弯曲承载能力为13.5MN。
剪切承载能力为:我们比较计算结果和设计要求。
根据弯矩和剪力的计算结果,悬臂梁在支座处的最大弯矩为180kN/m,最大剪力为60kN。
经过弯曲和剪切强度校核,悬臂梁的弯曲承载能力为13.5MN,剪切承载能力为318.75kN。
由于弯矩和剪力小于承载能力,因此悬臂梁满足设计要求,具有足够的强度。
梁的强度校核概论梁的强度校核是结构工程中非常重要的一项计算工作。
梁作为承载结构的一部分,其强度的合理校核是保证结构安全可靠的基础。
本文将介绍梁的强度校核的概论,包括梁的受力特点、梁的强度计算方法和梁的强度校核的应用。
首先,我们来了解一下梁的受力特点。
梁一般是承受横向荷载和纵向荷载的结构件,其主要受力状态有弯曲、剪切和轴力。
在梁受外力作用下,会引起梁的弯曲变形和内力产生。
因此,梁的强度校核主要包括对弯曲承载力、剪切承载力和轴力承载力的校核。
其次,我们介绍一下梁的强度计算方法。
梁的强度计算主要依据结构力学的基本原理和材料力学的基本公式进行。
对于弯曲承载力的计算,常用弯曲应力与弯曲应变之间的线性关系,根据弯矩引起的应力和截面形状来计算梁的弯曲承载力。
对于剪切承载力的计算,一般采用材料剪切破坏准则来进行,根据剪应力和截面形状来计算梁的剪切承载力。
对于轴力承载力的计算,一般考虑材料的抗拉和抗压性能来计算梁的轴力承载力。
最后,我们来看一下梁的强度校核的应用。
梁的强度校核主要用于结构设计和结构施工中。
在结构设计中,需要根据设计荷载和计算结果对梁的强度进行校核,以保证结构的安全可靠。
在结构施工中,需要对梁的材料和截面形状进行检查和评定,以保证梁的强度满足设计要求。
此外,在梁的细部构造和连接设计中,也需要根据梁的强度校核结果进行合理的设计和选择。
总之,梁的强度校核是结构工程中非常重要的一项计算工作。
通过对梁的受力特点、强度计算方法和强度校核的应用进行了解,可以更好地理解和应用梁的强度校核。
在实际工程中,还需要根据具体的结构要求和设计规范进行具体的强度校核工作,以确保梁的安全可靠。
第五节 梁的刚度校核 提高梁弯曲刚度的措施一、梁的刚度条件在按强度条件选择了梁的截面后,往往还需要进一步按梁的刚度条件检查梁的变形是否在设计条件所允许的范围内。
因为当梁的变形超过一定限度时,梁的正常工作条件就会得不到保证,为此还应重新选择截面以满足刚度条件的要求。
根据工程实际的需要,梁的最大挠度和最大转角不超过某一规定值。
由此梁的刚度条件为m ax y≤][y (9-5)m ax θ≤][θ (9-6) 式中][y 为许可挠度,][θ为许可转角。
其数值可以从有关工程设计手册中查到。
例9-11 图9-18所示为一吊车梁,跨长m 10=l ,最大起重量30kN =W F ,梁为工字钢截面,许用应力=][σ140MP a ,许可挠度400][ly =,弹性模量a GP 200=E 。
试选择工字钢型号。
图9-18解 (1)按正应力强度条件设计截面,选择工字钢型号由于截面尺寸未定,暂不考虑梁的自重影响。
当起吊重物在跨中点C 时,C 截面将产生最大弯矩和最大挠度。
最大弯矩为4103041)(max ⨯==l F M W W kN ·m =75kN ·m根据强度条件得z W ≥63max 101401075][)(⨯⨯=σW M m 63107.535-⨯=m 33cm 7.535=查附录C 型钢表,初选32a 号工字钢,3cm 602=z W ,11100=z I cm 4。
(2)刚度校核389333max 102.281011100102004810103048--⨯=⨯⨯⨯⨯⨯⨯==z W EI l F y m 2.28=mm40010000400][==l y mm 25=mm由于m axy >][y ,则32a 号工字钢不能满足刚度要求,需根据刚度条件重新选择型号,由[]z W EI l F y 483=得3933310251020048101030][48-⨯⨯⨯⨯⨯⨯==y E l F I W z m 441025.1-⨯=m 412500=cm 4查型钢表得36a 号工字钢15800=z I cm 4,875=z W cm 3,单位长度自重588≈q N/m(3)按选得的工字钢考虑自重影响,对梁的强度和刚度进行校核如图9-18(c )所示,自重引起梁跨中最大弯矩22max 105888181)(⨯⨯==ql M q N ·m 35.7=kN ·m载荷和自重共同引起梁的最大弯矩为。