浙江大学微积分一习题解答 第十三章(秋冬)
- 格式:pdf
- 大小:525.36 KB
- 文档页数:20
习题十三13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。
已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。
导线框长为a ,宽为b ,求导线框中的感应电动势。
解:无限长直电流激发的磁感应强度为02IB rμ=π。
取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。
取回路的绕行正方向为顺时针。
由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。
通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭ 012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。
13-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中(B =0.5T )。
圆形线圈可绕通过圆心的轴O 1O 2转动,转速1600r min n -=⋅。
求圆线圈自图示的初始位置转过题图13-1题图13-2解图13-1/2π时,(1) 线圈中的瞬时电流值(线圈的电阻为R =100Ω,不计自感); (2) 圆心处磁感应强度。
浙江大学2013 — 2014学年 秋冬 学期《微积分I 》课程期末考试试卷课程号: 061B0170 ,开课院系: 理学院 数学系 考试形式:闭卷,允许带 笔 入场考试日期: 年 月 日,考试时间: 120 分钟.第1~9,14题,每题均为6分;第10~13题,每题均为10分。
解题时写出必要的解答过程。
1. 设()y y x =是由方程2tan()x y x y +=-所确定,且(0)0y =,求(0)(0).y y ''':和2. 设函数()y y x =是由参数方程20202d cos d t s txe sy s s-⎧=⎪⎨⎪=⎩⎰⎰所确定,求:22d .d t y x3. 求极限:20cos 2lim .x xx→4. 求极限:101lim .xxx e x →⎛⎫-⎪⎝⎭5. 求极限:22011lim .sin x x x →⎛⎫- ⎪⎝⎭6. 求积分:21ln(1)d .x x x+∞+⎰7. 求积分:312221(2)(1)d .x x x -+-⎰8. 证明:当0x ≤<+∞时,arctan3ln(14)x x ≤+,当且仅当0x =时等号成立。
9.求幂级数220(1)4(21)(22)n nn n x n n +∞+=-++∑的收敛半径、收敛域,并计算其和函数。
10.设常数0a >,31()3f x ax x =-,试求()f x 在1[0]a,的最大值和最小值。
11.求曲线22y x =+与直线y x =所围区域绕直线2x =旋转一周的体积。
12.证明如下“”型的洛必达(L ‘Hosptial )法则: 设(1)0lim ()lim ()0x x x x f x g x →→==;(2)()()f x g x 、在去心邻域0()U x 內可导,且()0.g x '≠(3)0()lim ()x x f x A g x →'='(或∞)。
《微积分Ⅰ》期末试卷(2013-2014学年秋冬学期)第 1 页 共 2 页浙江大学2013 — 2014学年 秋冬 学期《微积分I 》课程期末考试试卷课程号: 061B0170 ,开课院系: 理学院 数学系 考试形式:闭卷,允许带 笔 入场考试日期: 年 月 日,考试时间: 120 分钟.第1~9,14题,每题均为6分;第10~13题,每题均为10分。
解题时写出必要的解答过程。
1. 设()y y x =是由方程2tan()x y x y +=-所确定,且(0)0y =,求(0)(0).y y ''':和2. 设函数()y y x =是由参数方程20202d cos d t s tx e sy s s-⎧=⎪⎨⎪=⎩⎰⎰所确定,求:22d .d t y x3. 求极限:20cos 2lim .x xx→ 4. 求极限:101lim .xxx e x →⎛⎫-⎪⎝⎭5. 求极限:22011lim .sin x x x →⎛⎫-⎪⎝⎭ 6. 求积分:21ln(1)d .x x x +∞+⎰ 7. 求积分:312221(2)(1)d .x x x -+-⎰8. 证明:当0x ≤<+∞时,arctan3ln(14)x x ≤+,当且仅当0x =时等号成立。
9.求幂级数220(1)4(21)(22)n nn n x n n +∞+=-++∑的收敛半径、收敛域,并计算其和函数。
10.设常数0a >,31()3f x ax x =-,试求()f x 在1[0]a,的最大值和最小值。
《微积分Ⅰ》期末试卷(2013-2014学年秋冬学期)第 2 页 共 2 页11.求曲线22y x =+与直线y x =所围区域绕直线2x =旋转一周的体积。
12.证明如下“”型的洛必达(L ‘Hosptial )法则: 设(1)0lim ()lim ()0x x x x f x g x →→==;(2)()()f x g x 、在去心邻域0()U x 內可导,且()0.g x '≠(3)0()lim ()x x f x A g x →'='(或∞)。
微积分(一)_浙江大学中国大学mooc课后章节答案期末考试题库2023年1.设【图片】均为非负数列,且【图片】,则必有( )参考答案:极限不存在2.设函数【图片】,则【图片】在【图片】处的参考答案:左导数存在,右导数不存在3.设常数【图片】,函数【图片】在【图片】内零点个数为( )参考答案:24.设【图片】为【图片】内不恒为零的可导奇函数,则【图片】参考答案:一定是内的偶函数5.设【图片】,则使【图片】存在的最高阶数【图片】为( )参考答案:26.【图片】在【图片】连续,求常数a.参考答案:-27.当【图片】时,函数【图片】的极限()参考答案:不存在但也不为8.设【图片】是奇函数,除【图片】外处处连续,【图片】是其第一类间断点,则【图片】是( )参考答案:连续的偶函数9.设【图片】 , 则在点【图片】处参考答案:取得极大值10.设【图片】,则在点【图片】处函数【图片】( )参考答案:不连续11.函数【图片】的图形,在参考答案:是凹的12.设函数【图片】, 其中【图片】是有界函数,则【图片】在【图片】处参考答案:可导13.设函数【图片】,则在【图片】处参考答案:当且仅当时才可微14.设【图片】在【图片】处连续,则下列命题错误的是()。
参考答案:若存在,则存在15.若【图片】, 则方程【图片】参考答案:有唯一的实根16.设【图片】,则在【图片】处,有()成立。
参考答案:在处连续,但不可导17.函数【图片】不可导点的个数是( )参考答案:218.设【图片】在闭区间【图片】连续,则下列选项错误的是()。
参考答案:存在,使19.要使函数【图片】在【图片】处的导函数连续,则【图片】可取值\参考答案:320.当【图片】时,曲线【图片】( )参考答案:有且仅有水平渐近线21.曲线【图片】渐近线的条数为参考答案:322.设函数【图片】连续,且【图片】 ,则存在【图片】, 使得参考答案:对任意的, 有23.若函数【图片】有【图片】,则当【图片】时,该函数在【图片】处的微分【图片】是( )参考答案:与同阶的无穷小24.函数【图片】不可导点的个数为参考答案:225.设【图片】, 则参考答案:,但在处不连续26.设【图片】, 则【图片】是()参考答案:偶函数27.设【图片】,则在【图片】处,【图片】()。
第 十 三 章 习 题1、在293K 时,把半径为1mm 的水滴分散成半径为1μm 的小水滴,问比表面增加了多少倍?表面吉布斯自由能增加了多少?完成该变化时,环境至少需做功若干?已知293K 时水的表面张力为0.07288N ·m -1。
解 设半径为1mm 水滴的表面积为A 1,体积为V 1,半径为R 1;半径为1μm 小水滴的表面积为A 2,体积为V 2,半径为R 2。
大水滴分散成小水滴后,设分散成小水滴后的数目为N ,则V 1=N V 2,所以32313434R N R ππ=, 9363321101010=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=--m m R R N1000101010442639212212=⎪⎪⎭⎫ ⎝⎛==--m m R R N A A ππJ m N R NR m N A G A 442122110145.910145.9)(407288.0---⨯=⋅⨯=-⨯⋅=∆=∆πγJ G W A f 410145.9-⨯-=∆-=。
2、已知汞溶胶中粒子(设为球形)的直径为22nm ,每dm 3溶胶中含Hg 为8×10-5kg ,试问每1cm 3的溶胶中粒子数为多少?其总表面积为若干?把8×10-5kg 的汞滴分散成上述溶胶时表面吉布斯自由能增加多少?已知汞的密度为13.6kg ·dm -3,汞-水界面张力为0.375N ·m -1。
解 直径为22nm 的汞的粒子的体积为32439310576.5102223434m m R V --⨯=⎪⎭⎫ ⎝⎛⨯⨯==ππ每1cm 3的溶胶中粒子数N(为每1cm 3的溶胶中含汞的体积再除以直径为22nm 的汞的粒子的体积)123243333510054.110576.516.13101108⨯=⨯⨯⋅⨯⨯⋅⨯=-----m dm kg dm dm kg N232912210603.110222410054.14m m R N A --⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⋅=ππ总8×10-5kg 的汞滴的半径R 0,m dm dm kg kg V R 32313531001012.11012.14)]6.13/(108[343----⨯=⨯=⎪⎪⎭⎫ ⎝⎛⋅⨯⨯=⎪⎭⎫ ⎝⎛=ππ JR NR m N A G A 420211095.5)(4375.0--⨯=-⨯⋅=∆=∆πγ。