微积分习题册(精华版)
- 格式:doc
- 大小:1.81 MB
- 文档页数:35
练习题第六章 定积分1.1()(2(0)xF x dt x =->⎰的单调增加区间为_____. 1(,)4+∞2. 函数0()xt F x te dt -=⎰在点x =____处有极值. 03.设sin 201()sin ,()sin 2x f x t dt g x x x ==-⎰,则当0x →时有( A ). (A) ()~()f x g x (B) ()f x 与()g x 同阶,但()f x 不等价于()g x (C) ()(())f x o g x = (D) ()(())g x o f x =4.计算3523220sin sin 2sin cos . []3515x x x xdx ππ⋅-=⎰5.计算21e ⎰1)6.求函数dt t t x x I )ln 1(1)(-=⎰在],1[e 上的最大值与最小值. 最大值()3412-e ,最小值07.设函数⎪⎩⎪⎨⎧≥=<<-+01 2cos 110 )(2x xx xe x f x ,计算⎰-41)2(dx x f .()11tan 214-+e 8.2sin ()xt dt tπ'=⎰( C ) (其中2x π>).(A)sin x x (B)sin xC x+ (C)sin 2x x π- (D) sin 2x C x π-+ 9. 设()f x 是连续函数,且3()x f t dt x =⎰,则(8)f =_____.11210. xdt t x x cos 1)sin 1ln(lim-+⎰→=___1__ ;)1ln(cos lim202x tdtx x +⎰→=__1__ .11. 设()()()bad d I f x dx f x dx f x dx dx dx '=+-⎰⎰⎰存在,则(C ). (A) ()I f x = (B) ()I f x C =+ (C) I C = (D) 0I =12. 已知1(2),(2)02f f '==,及20()1f x dx =⎰,则120(2)x f x dx ''⎰ = 0__ .13. 若sin 0()cos xf t dt x x =+⎰(0)2x π<<,则()f x ___.第五章 不定积分1. 若()()F u f u '=,则(sin )cos f x xdx =⎰__ _. (sin )F x C +2. 若()sin 2,f x dx x C =+⎰则()f x =__ _. 2cos 2x3.2()1xf x dx C x =+-⎰,则sin (cos )xf x dx =⎰_ __. 2cos sin x C x-+ 4. 若()()f u du F u C =+⎰.则211()f dx x x⋅=⎰__ _. 1()F C x -+5.求sin cos sin cos x xdx x x -=+⎰_____. ln sin cos x x C -++6. 求ln(ln )x dx x ⎰. ln (ln ln 1)x x C -+7. 已知()f x 的一个原函数为xe -,求(2)xf x dx '⎰. 211()22x e x C--++8.计算⎰+dx xx2cos 12. tan ln cos x x x C ++9.求dx ex⎰-11. ln 1xx e C --+10.计算⎰+dx x xe x2)1(. 1xx xe e C x -+++ 11.计算 ⎰++dx x xx )1(21222. 1arctan x C x-++ 12.求⎰dx x x 2sin 2cos 2. 12sin 2Cx -+13.求ln(x x C -+第四章 导数应用1.计算极限 (1)0ln lim ln sin x xx+→=___1___. (2) cot20lim(1)xx x →+ =___2e ___(3) 01lim(ln )xx x +→=___1___ (4) sin 0lim(cot)x x +→ =__1__(5) +1ln(1)lim arccot x x x →∞+=___1___2. 函数()(1)(2)(3)(4)f x x x x x x =----的二阶导函数有_____个零点. 33. 下列极限计算中,不能使用罗必塔法则的是( B ). (A) 111lim xx x-→ (B)201sinlimsin x x x x→(C) limx lim ln x x ax x a→+∞-+4. 设()y f x =满足方程sin 0xy y e'''+-=,且0()0f x '=,则()f x 在( A ).(A) 0x 处取得极小值 (B) 0x 处取得极大值 (C) 0x 的某个邻域内单调增加 (D) 0x 的某个邻域内单调减少 5. 若()f x 与()g x 可导,lim ()lim ()0x ax af xg x →→==,且()lim()x af x Ag x →=,则( C ). (A)必有()lim()x af x Bg x →'='存在,且A B = (B) 必有()lim()x af x Bg x →'='存在,且A B ≠ (C) 如果()lim()x af x Bg x →'='存在,则A B = (D) 如果()lim()x af x Bg x →'='存在,不一定有A B = 6. 设偶函数()f x 具有连续的二阶导数,且()0f x ''≠,则0x =( B ). (A) 不是函数()f x 的驻点(B) 一定是函数()f x 的极值点(C) 一定不是函数()f x 的极值点 (D) 是否为函数()f x 的极值点还不能确定7.求曲线22x y -=的单调区间、极值、拐点并研究图形的凹向.8.求函数32)1()4()(+⋅-=x x x f 的极值和拐点并讨论函数图形的单调性与凹向.9. 证明不等式:13(0)x x≥->.10. 证明方程5510x x -+=在(0,1)内有且仅有一个实根. (提示:设5()51f x x x =-+,利用零点存在定理和罗尔中值定理.) 11. 证明不等式:ln(1)1xx x x<+<+ (0x >). (提示:对()ln(1)f t t =+在[0,]x 上使用拉格朗日中值定理.)第三章 导数1.设函数()f x 依次是,,sin x ne x x ,则()()n fx =____ ,!,sin()2x ne n x π+.2.若直线12y x b =+是抛物线2y x =在某点处的法线,则b =_____.32 3.设)(x f 是可导函数,则220()()limx f x x f x x∆→+∆-=∆( D ).(A) 0 (B) 2()f x (C) 2()f x ' (D) 2()()f x f x '4.若0()sin 20ax e x f x b x x ⎧<=⎨+≥⎩ 在0x = 处可导,则,a b 值应为( A ).(A) 2,1a b == (B) 1,2a b == (C) 2,1a b =-= (D) 1,2a b ==- 5.设函数()y f x =有01()3f x '=,则0x ∆→ 时,该函数在0x x =的微分dy 是( B ).(A) 与x ∆等价的无穷小(B) 与x ∆同价的无穷小,但不是等价无穷小 (C) 比x ∆低阶的无穷小 (D) 比x ∆高阶的无穷小6.曲线21y ax =+在点1x =处的切线与直线112y x =+垂直,则a =__ _. -1 7.设()2xf x =,则0()(0)limx f x f x→''-=____. 2ln 28.)(x f =21sin00x x xx ⎧≠⎪⎨⎪=⎩ 在点x=0处 D .A.连续且可导B.连续,不可导C.不连续D .可导,但导函数不连续9.设()f x ''存在,求函数()f x y e-=的二阶导数. ()2[(())()]f x y ef x f x -'''''=-10.2ln(1)x y e =+,求dy . 2222ln(1)1x xx e x dy e dx dx e⋅'=+=+.11.arctanyxe =确定y 是x 的函数,求导数x y '.第一、二章 函数极限与连续1. )(x f 定义域是[2,3],则)9(2x f -的定义域是___. ]5,5[-2. 设x x g -=2)(,当1≠x 时,[]1)(-=x xx g f ,则=)23(f _ _. -13. 设函数)(x f 和)(x g ,其中一个是偶函数,一个是奇函数,则必有( D ). (A))()()()(x g x f x g x f -=-+- (B) )()()()(x g x f x g x f +-=-+-(C) )()()()(x g x f x g x f ⋅=-⋅- (D) )()()()(x g x f x g x f ⋅-=-⋅-4.()()()10201521213lim16x x x x →∞+++. 53()25.()()111lim 13352121n n n →∞⎛⎫+++⎪ ⎪••-+⎝⎭. 12 6. 231sin 53limxx x x -∞→. 37. 设⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<+=0sin01)1()(1x e x x x x x x f x ,求)(lim 0x f x →. e8. 0x →512。
微积分的应用专项练习60题(有答案)本文档包含60道微积分的应用专项练题目,每道题目均附有答案。
通过解答这些题目,您可以进一步巩固和应用微积分的知识,加深对微积分的理解。
以下是题目和答案的列表:1. 问题一(答案:A)2. 问题二(答案:B)3. 问题三(答案:C)4. 问题四(答案:D)5. 问题五(答案:A)6. 问题六(答案:B)7. 问题七(答案:C)8. 问题八(答案:D)9. 问题九(答案:A)10. 问题十(答案:B)11. 问题十一(答案:C)12. 问题十二(答案:D)13. 问题十三(答案:A)14. 问题十四(答案:B)15. 问题十五(答案:C)16. 问题十六(答案:D)17. 问题十七(答案:A)18. 问题十八(答案:B)19. 问题十九(答案:C)20. 问题二十(答案:D)21. 问题二十一(答案:A)22. 问题二十二(答案:B)23. 问题二十三(答案:C)24. 问题二十四(答案:D)25. 问题二十五(答案:A)26. 问题二十六(答案:B)27. 问题二十七(答案:C)28. 问题二十八(答案:D)29. 问题二十九(答案:A)30. 问题三十(答案:B)31. 问题三十一(答案:C)32. 问题三十二(答案:D)33. 问题三十三(答案:A)34. 问题三十四(答案:B)35. 问题三十五(答案:C)36. 问题三十六(答案:D)37. 问题三十七(答案:A)38. 问题三十八(答案:B)39. 问题三十九(答案:C)40. 问题四十(答案:D)41. 问题四十一(答案:A)42. 问题四十二(答案:B)43. 问题四十三(答案:C)44. 问题四十四(答案:D)45. 问题四十五(答案:A)46. 问题四十六(答案:B)47. 问题四十七(答案:C)48. 问题四十八(答案:D)49. 问题四十九(答案:A)50. 问题五十(答案:B)51. 问题五十一(答案:C)52. 问题五十二(答案:D)53. 问题五十三(答案:A)54. 问题五十四(答案:B)55. 问题五十五(答案:C)56. 问题五十六(答案:D)57. 问题五十七(答案:A)58. 问题五十八(答案:B)59. 问题五十九(答案:C)60. 问题六十(答案:D)这些题目的难度各不相同,涵盖了微积分应用的不同方面,包括导数、积分、微分方程等内容。
微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。
在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。
下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。
一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。
答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。
答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。
答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。
答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。
答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。
答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解微分方程dy/dx = e^x。
答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。
3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。
答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。
练习题1、质量为2kg 的某物体在平面直角坐标系中运动,已知其x 轴上的坐标为x=3+5cos2t,y 轴上的坐标为y=—4+5sin2t ,t 为时间物理量,问:⑴物体的速度是多少?()'10sin(2)x dx V x t t dt===- ()'10cos(2)y dy V y t t dt===10V ==⑵物体所受的合外力是多少?222(3)(4)5x y -+-=运动轨迹是圆,半径为5,所以是做匀速圆周运动 22*100405mv F N r === ⑶该物体做什么样的运动?匀速圆周运动⑷能否找出该物体运动的特征物理量吗?圆心(3,4),半径52、一质点在某水平力F 的作用下做直线运动,该力做功W 与位移x 的关系为W=3x-2x 2,试问当位移x 为多少时F 变为零. 34dW F x dx==- ,所以当x=3/4时,F=0 3、已知在距离点电荷Q 为r 处A点的场强大小为E=错误!,请验证A点处的电势公式为:U = 错误!.规定无穷远处电势为零,A 处的电势即为把单位正电荷缓慢的从无穷远处移到A 点所做的功我们认为在r 变化dr 时,库仑力F 是不变的, 则2kQq dW F dr dr r=-•=-• 所以20W r kQq dW dr r ∞=-⎰⎰ 即 21r q kQq dr rϕ∞=⎰ 所以1|r kQ kQ r rϕ∞=-=4、某复合材料制成的一细杆OP 长为L ,其质量分布不均匀。
在杆上距离O 端点为x 处取点A,令M 为细杆上OA 段的质量。
已知M 为x 的函数,函数关系为M=kx 2,现定义线密度ρ=错误!,问当x=错误!处B 点的线密度为何? 2dM kx dxρ== ,2L x kL ρ∴==5、某弹簧振子的总能量为2×10-5J ,当振动物体离开平衡位置错误!振幅处,其势能E P = ,动能E k = 。
首先推导弹簧的弹性势能公式,设弹簧劲度系数为k,伸长量为x 时的势能为E(x )弹簧所具有的弹性势能即为将弹簧从原长拉长x 时所做的功dW F dx kx dx =•=• 00W xdW kx dx ∴=•⎰⎰ 2()2kx E x ∴= 所以在距平衡位置错误!振幅处的弹性势能为总能量的14,即655*10, 1.5*10p k E J E J --== 6、取无穷远处电势为零。
微积分练习册练习五 (A )1、 解下列各题:(1) 一曲线通过点(e 2,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该曲线的方程。
(2) 一物体由静止开始运动,经七妙后的速度是3t 2(m/s ),问:1。
T =3(秒)时物体离开出发点的距离时多少?2。
物体走完360m 需要多少时间? 2、求下列不定积分(1)⎰2x dx(2)dx x x ⎰(3)⎰xdx (4)⎰xx dx 2(5)dxx mn⎰6)dxx 22)2(+⎰(7)dx x x x ⎰+++11332248)dx e x x ⎰3(9)dx x⎰⋅⋅32532x-x10)⎰-dx x x x )tan (sec sec 11)⎰+xdx 2cos 1(12)dx xx x⎰⋅22sin cos 2cos 13)dxxe e x x)1(⎰--14)dx x x x⎰-)11(2 3、在下列各式等号右端的空白处填入适当的系数,使等式成立(例如dx=)23(31+x d ): 1)dx=d(ax+b)2)dx=d(7x-3) 3)xdx=d(x 2+2)4)xdx=d(5x 2+1) 5)xdx=d(1-x 2)6)x 2dx=d(2x 3+4) 7)e 2xdx=d(x 2x+b)8)2x e -dx=d(1+2x e -)9)sin x 23dx=d(cos x 23)10)xdx d(5lnx) 11)xdx d(5-3lnx)12)291x dx +d(2arctan3x+2)13)21x dx -d(2-3arcsinx)14)21x xdx -d(21x -) 15)sinxdx=d(2+3cosx)16)sec 2xdx=d(3tanx) 17)xdx 2sin d(2ctanx)18)xdx d x19)2x dx d(x1) (20)xdx2cos = d(3tanx) 4、求下列不定积分(1)⎰dt e bt (2)⎰-dx x 8)53( (3)⎰-332xdx (4)⎰dt tt sin(5)⎰x x x dx ln ln ln (6)⎰xx dxcos sin (7) ⎰dx x x )cos(2(8) ⎰++dt w wt )sin()(cos 2ϕϕ (9)⎰dx xx3cos sin (10) ⎰dx x )(cos 3(11) ⎰+dt wt )(cos 2ϕ (12) ⎰xdx x 3cos 2cos (13) ⎰xdx x 7sin 5sin (14) ⎰xdx x 4cos 3sin (15) ⎰xdx x sec tan 3 (16) ⎰+dx x x x )1(arctan(17) ⎰-221)(arcsin xx dx(18) ⎰-dx xx2arccos 2110 (19) ⎰+dx x x 239 (20) ⎰+dx x x x2)ln (ln 1 5、求下列不定积分 (1) ⎰++311x dx (2) ⎰+xdx 21 (3)⎰++dx xx 11)(3 (4) ⎰++-+dx x x 1111(5)x dx x x ⨯+-11 (6)⎰-222xa dx x (a>0) (7) ⎰+32)1(x dx (8) dx x x ⎰-92 6.求下列不定积分(1)dx x ⎰ln (2) ⎰xdx arcsin (3) dx xe x ⎰- (4) dx x e x ⎰-cos (5) dx x x ⎰arctan 2 (6) dx x ⎰2)(ln (7) dx x x ⎰cos 2 (8) dx x x )1(ln -⎰(9) dx x x ⎰2cos 22 (10) dx xx⎰23ln (11) dx x ⎰2)(arcsin (12) dx e x ⎰37、求下列有理分式的积分(1) ⎰+dx x x 33 (2) ⎰-++dx x x x 103322 (3) ⎰+)1(2x x dx(4) ⎰++))(1(22x x x dx (5) x d x x x ⎰+-+22)1)(1(1(6) ⎰+++)3)(2)(1(x x x xdx 8、求下列不定积分 (1) ⎰+x dx 2sin 3 (2) ⎰+x dx cos 3 (3) ⎰+x edx1 (4) ⎰⋅dx x x sin (5) x d x x ⎰32cos sin (6) ⎰+dx x x 283)1( (7) x d e e e e x x x x ⎰+-+1243 (8) ⎰+dx e xe x x2)1( (9) ⎰-dx x x x 231arccos (10) ⎰+dx xx xx cos sin cos sin9、已知)(x f 的一个原函数为xxsin ,求dx x xf ⎰)(/ 10、试求满足下面等式的系数A 、B :⎰+2)cos (x b a dx=⎰+++x b a Bdx x b a x A cos cos sin(B )1、有人说,连续函数x x F =)(是函数)(x f =-1 x<01 x ≥0的原函数,其证明如下:当x ≥0时x =x,故x /=1,而当x<0时,x =-x ;故(-x)/=-1,这种说法是否正确?说明你的理由? X+1 x≤1 2、设=)(x f2x x>1 求⎰dx x f )(。
可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
高等数学微积分练习题集2(含答案)1.求抛物线2x y =与直线02=--y x 之间的最短距离。
2.求点)8,2(到抛物线x y 42=的最短距离。
3.求过点31,1,2(的平面,使它与三个坐标面在第一卦限内所围成的立体体积最小。
4.计算二重积分dxdy xy I D ⎰⎰=2,其中D 是由直线2,==x x y 及双曲线1=xy 所围成的区域。
5.计算二重积分dxdy e I D y ⎰⎰-=2,其中区域D 由y 轴,直线x y y ==,1所围成。
6.求dxdy y xy I D ⎰⎰+=31,其中D 由2,1,0x y y x ===所围成。
7.求dy e dx x I x y ⎰⎰-=11022。
8.求dxdy y x I D ⎰⎰+=)(,其中D 为224,x y xy ==及1=y 所围成的区域。
9.求σd y x I D⎰⎰+=)|(|,其中D 为:1||||≤+y x 。
10.求dxdy y x I D⎰⎰--=221,其中D :y y x ≤+22。
11.求dxdy y x x I D ⎰⎰--=)2(22,其中D :1)1(22≤+-y x 。
12.设{}x y x y x D ≤+=22),(,求dxdy x D ⎰⎰。
13.计算二重积分dxdy yx y x D ⎰⎰++--222211,其中D 是由圆周122=+y x 及坐标轴所围成的在第一卦限内的闭区域。
14.求ds y x c ⎰+)(,其中c 是以)0,0(O ,)0,1(A ,)1,0(B 为顶点的三角形边界。
15.设L 是半圆周24y x -=上由点)2,0(A 到点)2,0(-B 之间的一段弧。
计算⎰++L ds y x )1(。
16.计算ds y x L ⎰+22,其中L 为圆周222a y x =+(0>a )。
17.计算曲线积分⎰+L ds y x 22,其中L 为圆周x y x =+22。
18.计算曲线积分:dy y x dx y x I L )653()42(-++--=⎰,其中L 是从点)0,0(O 到点)2,3(A 再到点)0,4(B 的折线段。
微积分基本练习题集在学习微积分的过程中,掌握基本的练习题非常重要。
本文将为你提供一些微积分的基本练习题,帮助巩固你的微积分知识。
1. 导数计算题(1) 计算函数 f(x) = 3x^2 + 2x - 1 的导数。
解:我们可以按照导数的定义,对函数 f(x) = 3x^2 + 2x - 1 进行求导。
首先,我们需要知道求导的基本公式:(d/dx) x^n = nx^(n-1)根据这个公式,我们可以求出 f(x) = 3x^2 + 2x - 1 的导数:f'(x) = (d/dx) (3x^2 + 2x - 1)= 2 * 3x^(2-1) + 1 * 2x^(1-1) + 0= 6x + 2所以,f(x) = 3x^2 + 2x - 1 的导数等于 6x + 2。
(2) 计算函数 g(x) = sin(2x) 的导数。
解:函数 g(x) = sin(2x) 是一个复合函数,我们需要利用链式法则来求导。
链式法则的公式如下:(d/dx) f(g(x)) = f'(g(x)) * g'(x)对于函数 g(x) = sin(2x),我们可以令 f(u) = sin(u),然后求导:f'(u) = cos(u)g'(x) = (d/dx) (2x) = 2根据链式法则,我们可以得到 g(x) 的导数:g'(x) = f'(g(x)) * g'(x)= cos(g(x)) * 2= 2cos(2x)所以,g(x) = sin(2x) 的导数等于 2cos(2x)。
2. 积分计算题(1) 计算函数 h(x) = 2x 的不定积分。
解:不定积分表示函数的原函数。
对于函数 h(x) = 2x,我们可以直接应用积分的基本公式来计算:∫h(x)dx = ∫2xdx= x^2 + C所以,h(x) = 2x 的不定积分为 x^2 + C(C为常数)。
(2) 计算函数 k(x) = 3x^2 的定积分,区间为 [0, 2]。
微积分练习题册第一章函数1. 1y x=是无穷小量; 2. 奇函数与偶函数的和是奇函数;3. 设arcsin y u =,u =2arcsin 2+=x y ;4. 函数 1lg lg y x= 的定义域是 1x > 且 10x ≠; 5. 函数 2x y e -= 在 (0,)+∞ 内无界;6. 函数 211y x =+ 在 (0,)+∞ 内无界;7. 21()cos x f x x-= 是奇函数;8. ()f x x = 与2()g x = 是相同函数 ; 9. 函数 x y e = 是奇函数;10. 设 ()sin f x x = ,且2[()]1f x x ϕ=-,则()x ϕ的定义域是 (0,1); 11. y x = 与y 是同一函数; 12. 函数 31y x x =++ 是奇函数;13. 函数 1arcsin 2x y -= 的定义域是(1,3)- ;14. 函数 cos3y x = 的周期是 3π ;15. y x = 与 2x y x= 不是同一个函数;16. 函数 cos y x x =是偶函数 .填空题1. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________;2. 设cos 0()0xx f x x ≤⎧⎪=⎨>⎪⎩ ,则 (0)f = __________;3. 设 x x x f --=24)(2,则 )2(-f = _______ ;4. 设 xx f 1)(=,x x g -=1)( ,则 )]([x g f = _______ ;5. 复合函数2(sin )x y e =是由 ________, ________, _______函数复合而成的; 6. 函数 43y x =- 的反函数是 _______ ;7. 已知 11()1f x x =- ,则 (2)f = __________ ;8.y =,其定义域为 __________ ; 9. 设函数 2()1x f x x -=- ,则 (1)f -= __________;10. 考虑奇偶性,函数 ln(y x = 为 ___________ 函数 ;11. 函数 2x y e = 的反函数是 1ln 2y x = ,它的图象与 2x y e = 的图象关于________ 对称 .选择题1. 函数 32--=x x y 的定义域是 ( ) (A) (2,)+∞ (B) [2,]+∞(C) (,3)(3,)-∞+∞ (D) [2,3)(3,)+∞ 2. 函数 22)1(-=x x y 在区间 (0,1) 内 ( )(A) 单调增加 (B) 单调减少 (C) 不增不减 (D)有增有减 3. 下列函数中,是奇函数的是 ( )(A)42y x x =- (B) 2y x x =- (C)22x x y -=- (D)22x x y -=+4. 已知函数 20()10ax bx f x x x +<⎧=⎨+≥⎩,则(0)f 的值为 ( )(A) a b + (B) b a - (C) 1 (D) 2第二章 极限与连续判断题1. 函数在点 0x 处有极限,则函数在 0x 点极必连续;2. 0x → 时,x 与 sin x 是等价无穷小量;3. 若 00(0)(0)f x f x -=+,则 )(x f 必在 0x 点连续;4. 当 0x → 时,2sin x x +与 x 相比是高阶无穷小;5. 函数 221y x =+ 在 (,)-∞+∞ 内是单调的函数;6. 设 )(x f 在点 0x 处连续,则 00(0)(0)f x f x -=+ ;7. 函数 21sin ,0()0,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 在 0x = 点连续; 8. 1=x 是函数 122--=x x y 的间断点; 9.()sin f x x = 是一个无穷小量;10. 当 0→x 时,x 与 )1ln(2x + 是等价的无穷小量; 11. 若 )(lim 0x f x x → 存在,则 )(x f 在 0x 处有定义;12. 若x 与y 是同一过程下两个无穷大量,则x y -在该过程下是无穷小量;13. 22--=x y 是一个复合函数;14. 21sin lim 0=+→x x x x ;15. 01lim sin 1x x x→= ;16. 22lim(1)x x e x-→∞+= ;17. 11,0,,0,,0,481数列收敛2;18. 函数 1sin y x= 在0x = 点连续;19. 当0x +→x ;20. 函数 1()cos f x x x= ,当 x →∞ 时为无穷大;21. 当 1x → 时, ln x 与 1x - 是等价无穷小量;22. 0x = 是函数 ln(2)x y x-= 的间断点;23. 以零为极限的变量是无穷小量;24. sin lim 1x xx→∞= ;25. 0sin 25lim sin 52x x x →= ;26. 无穷大量与无穷小量的乘积是无穷小量; 27. ln(1)x +~x ;28. 1lim sin 1x x x→∞= ;29. 110lim(1)xx x e -→-= ;30. 0tan lim1x xx→= .填空题1. sin lim x xx→∞= _______ ;2. 711lim 1x x x →-=- ______ ; 3. xx xx sin lim+∞→ = _______ ; 4. 函数 922-+=x x y 在 _______ 处间断;5.1253lim 22-+∞→n n n n = _______; 6. 函数 x y ln = 是由 ______, ______ ,______复合而成的;7. 22111arcsin xx y -+-= 的定义域是 ______ ;8. 当 0x → 时,1cos x - 是比 x ______ 阶的无穷小量;9. 当 0x → 时, 若 sin 2x 与 ax 是等价无穷小量,则 a = ______;10.0lim x +→= __________ ;11. 设 sin 2,0(),0xx f x x a x ⎧≠⎪=⎨⎪=⎩ 连续,则 a = _________ ;12.0limh h→=___________ ; 13. 函数 y x = 在点 _________连续,但不可导;14. 2lim(1)x x x →∞-=________;15. 0ln(13)lim sin 3x x x →+=_________ ;16. 设 21,0()0,0x e x f x x -⎧⎪≠=⎨⎪=⎩ 在 0x = 处________(是、否)连续;17. 当0x →23是______(同阶、等价)无穷小量.选择题1. 当 0x →时,xy 1sin = 为 ( )(A) 无穷小量 (B) 无穷大量 (C) 有界变量但不是无穷小量 (D) 无界变量 2. 1x +→ 时,下列变量中为无穷大量的是 ( )(A) 113-x (B) 112--x x (C) x 1(D) 112--x x3.已知函数2,()1,f x x ⎧-⎪=-⎨11001x x x ≤--<<≤<,则1l im ()x f x →- 和 0lim ()x f x →( )(A) 都存在 (B) 都不存在(C) 第一个存在,第二个不存在 (D) 第一个不存在,第二个存在4. 函数 ()12xf x ⎧⎪=⎨⎪⎩ 11x x ≠= 的连续区间是 ( ) (A)(,1)-∞ (B)(1,)+∞ (C)(,1)(1,)-∞⋃+∞ (D) (,)-∞+∞ 5. 函数 4cos 2y x = 的周期是 ( )(A) 4π (B) 2π (C) π (D) 2π6. 设 232,0()2,0x x f x x x +≤⎧=⎨->⎩ ,则 0lim ()x f x +→= ( ) (A) 2 (B) 0 (C) 1- (D) 2-7. 函数 1,0()1,0x f x x ≥⎧=⎨-<⎩ ,在 0x = 处 ( )(A) 左连续 (B) 右连续 (C) 连续 (D) 左、右皆不连续8. 当 n →∞ 时,1sin n n是 ( )(A)无穷小量 (B) 无穷大量 (C) 无界变量 (D) 有界变量9. 02lim 5arcsin x xx→= ( )(A) 0 (B) 不存在 (C) 25(D) 110. ()f x 在点 0x x = 处有定义,是 ()f x 在 0x x =处连续的 ( )(A) 必要条件 (B) 充分条件 (C) 充分必要条件 (D) 无关条件 11. 下列极限存在的有 ( )(A)2(1)lim x x x x →∞+ (B) 01lim 21x x →- (C) 10lim xx e →(D) x计算与应用题1. 设 )(x f 在点 2x =处连续,且232,2(),x x x f x a ⎧-+⎪-⎪⎪=⎨⎪⎪⎪⎩22=≠x x ,求 a2. 求极限 20cos 1lim 2x x x→-3. 求极限 121lim()21x x x x +→∞+-4. 512lim 43-+-∞→x x x x5. x x x10)41(lim -→6. 2)211(lim -∞→-x x x7. 20cos 1lim x xx -→8. 求 2111lim()222n n →∞+++9. 求极限 22lim(1)n n n→∞-10. 求极限 lim()1xx x x →∞+11. 求极限 211lim ln x x x→-12. 201lim x x e x x →--13. 21002lim(1)x x x +→∞+14. 求lim x →-15. 21lim()1xx x x →∞-+16. 求 3131lim()11x x x→---第三章 导数与微分判断题1. 若函数)(x f 在0x 点可导,则00()[()]f x f x ''=;2. 若)(x f 在0x 处可导,则 )(lim 0x f x x → 一定存在;3. 函数 x x x f =)( 是定义区间上的可导函数;4. 函数 x x f =)( 在其定义域内可导;5. 若 )(x f 在 [,]a b 上连续,则 )(x f 在 (,)a b 内一定可导;6. ()(),()f x f x y e y e f x ''''==已知则;7. 函数 22,1()ln ,014x x f x x x ⎧≥⎪=⎨<<⎪⎩ 在 1x = 点可导;8. 若 (),n f x x = 则 ()(0)!n f n = ;9. 2()2d ax b ax += ;10. 若 ()f x 在 0x 点不可导,则 ()f x 在 0x 不连续; 11. 函数 ()f x x x = 在点 0x = 处不可导 .填空题1.()f x = ,则 (0)f '= _________ ;2. 曲线 3y x = 在点 (1,1) 处的切线方程是 ________ ;3. 设 ln e x e y x e x e =+++,则 y '= ______ ;4. sin(1)x y e =+ ,dy =_______ ;5. 设 222e x y x += ,则 y ' = ________ ;6. 设 e x y n += ,则 ()n y = ________ ;7. 曲线 x e x y += 在点 (0,1) 的处的切线方程是_______;8. 若 )(x u 与 )(x v 在 x 处可导,则 ])()(['x v x u = _________ ; 9. ()x x ' = _______;10. 设 )(x f 在 0x 处可导,且 A x f =')(0,则 hh x f h x f h )3()2(lim000--+→用A 的代数式表示为_______ ;11. 导数的几何意义为 ________________________ ;12. 曲线y = 在 (1,1) 处的切线方程是 ___________ ;13. 曲线 31y x =+ 在 (1,0)- 处的切线方程是 ___________ ; 14. 函数 32sin(1)y x x =+ 的微分 dy =__________ ; 15. 曲线 2y x = 在点 (0,0)处切线方程是_________ ; 16. dy y -∆ 的近似值是 _________ ;17. n y x =(n 是正整数)的 n 阶导数是 ________ .选择题1. 设)(x f 在点0x 处可导,则下列命题中正确的是 ( )(A) 000()()lim x x f x f x x x →-- 存在 (B) 000()()lim x x f x f x x x →--不存在(C) 00()()lim x x f x f x x →+-存在 (D) 00()()lim x f x f x x∆→-∆不存在2. 设)(x f 在点0x 处可导且0001lim(2)()4x x f x x f x →=--,则0()f x '等于( )(A) 4 (B) –4 (C) 2 (D) –23.设 21,10()1,02x x f x x ⎧+-<≤=⎨<≤⎩ ,则)(x f 在点x = 0 处 ( )(A) 可导 (B) 连续但不可导 (C) 不连续 (D) 无定义 4.设 ()y f x = 可导,则 (2)()f x h f x -- = ( ) (A) ()()f x h o h '+ (B) 2()()f x h o h '-+ (C) ()()f x h o h '-+ (D) 2()()f x h o h '+5.设 (0)0f = ,且 0()lim x f x x → 存在,则 0()lim x f x x→= ( )(A) ()f x ' (B) (0)f ' (C) (0)f (D) 1(0)2f '6.函数 )(x f e y =,则 ="y ( )(A) )(x f e (B) )(")(x f e x f(C) 2)()]('[x f e x f (D) )}(")]('{[2)(x f x f e x f + 7.函数 x x x f )1()(-=的导数为 ( )(A)x x x )1(- (B)1)1(--x x (C)x x x ln (D))]1ln(1[)1(-+--x x xx x8.函数)(x f 在 0x x =处连续,是 )(x f 在 0x 处可导的 ( )(A) 充分不必要条件 (B) 必要不充分条件(C) 充分必要条件 (D) 既不充分也不必要条件 9. 已知 ln y x x = ,则 (10)y = ( )(A) 91x - (B) 91x (C) 98!x (D) 98!x-10. 函数 xxx f =)( 在 0=x 处 ( )(A) 连续但不可导 (B) 连续且可导(C) 极限存在但不连续 (D) 不连续也不可导11. 函数 1,0()1,0x f x x ≥⎧=⎨-<⎩ ,在 0x = 处 ( )(A) 左连续 (B) 右连续 (C) 连续 (D) 左、右皆不连续 12. 设 x x y e e -=+ ,则 y ''=( )(A) x x e e -+ (B) x x e e -- (C) x x e e --- (D) x x e e --+13. 函数 0,0()1,0x f x x x≤⎧⎪=⎨>⎪⎩ ,在点 0x = 不连续是因为 ( ) (A) (00)(0)f f +≠ (B) (00)(0)f f -≠ (C) (00)f +不存在 (D) (00)f -不存在14. 设 1(2)1f x x +=+ ,则 ()f x '= ( )(A) 21(1)x -- (B) 21(1)x -+ (C) 11x + (D) 11x -- 15. 已知函数 2ln y x = ,则 dy =( )(A) 2dx x (B) 2x (C) 21x (D) 21dx x16. 设 21cos ,0()0,01tan ,0x x x f x x x x x⎧<⎪⎪==⎨⎪⎪>⎩ ,则 ()f x 在 0x =处( )(A) 极限不存在 (B) 极限存在,但不连续 (C) 连续但不可导 (D) 可导 17. 已知 sin y x = ,则 (10)y = ( )(A) sin x (B) cos x (C) sin x - (D) cos x -计算与应用题1. 设 f(x) = xaa a x arccos 22-- (0a >), 求 (2)f a '-2. 设 ln()y xy = 确定 y 是 x 的函数,求 dxdy3. 设 xx y 1cos 1ln += ,求 dy4. 设 21(1)arctan cos 2y x x x =++,求 y '5. 设 x y e y ln = 确定 y 是 x 的函数,求 dxdy6. 设 )ln(ln x y =,求 dy7. 221arcsin x y e x x=+-y , 求 'y 及 dy8. ln tan 2xy = ,求 'y 及 dy9. sin()y x y =+ ,求 'y 及 dy10. 221cos 5ln x x y -+= ,求 y ' 及 dy11. y e =,求 y ' 及 dy12. xy e y x -= ,求 y ' 及 dy13. 已知 2cos 3y x =,求 y '14. 设 22sin 0y x y --=, 求 y '15. 求 13cos x y e x -= 的微分16. 设 ln(y x x =,求 y '17. 设 cos 2x y e = ,求 dy 18. 方程 0y x e e xy -+= 确定 y 是 x 的函数,求 y '19. 设 22arctan()1xy x=- ,求 y ' 20. 方程 2cos 0y y x e += 确定 y 是 x 的函数,求 y '21. 3cos cos x y x x e =+ ,求 dy22. ln y x x = ,求 y ''23. 已知 ln(y x = ,求 y '24. 设 x y x = ,求 y '25. 已知 ()sin3f x x = ,求 ()2f π''26. 求 2xe y x= 的微分第四章 导数的应用判断题1. y 轴是曲线 24(1)2x y x+=- 的铅垂渐近线; 2. 曲线 3y x x =- 在(,0)-∞是下凹的,在(0,)+∞是上凹的;3. 1x = 是 31()3f x x x =- 在 [2,2]-+ 上的极小值点;4. 曲线 y =在 0x = 点没有切线;5.函数可导,极值点必为驻点;6. 函数的极值只可能发生在驻点和不可导点;7. 直线 2y =- 是曲线2)1(42-+=x x y 的水平渐近线;8. 12x = 是曲线 234161x x y -= 的拐点;9. 若 )(x f 在 [,]a b 上连续,在 (,)a b 内可导,12a x x b <<<,则至少存在一点 12(,)x x ξ∈,使得 ))(()()(a b f a f b f -'=-ξ; 10. 若 0)(0='x f ,0)(0<''x f ,则 )(0x f 是 )(x f 的极大值;11. 函数 )12ln()(+=x x f 在 [0,2] 上满足拉格朗日定理; 12. 若 0x x = 是函数)(x f 的极值点,则0)('0=x f ; 13. 函数 )(x f 在 [,]a b 上的极大值一定大于极小值; 14. 当 x 很小时,ln(1)x x +≈ ;15. 30sin 1lim 3x x x x →-= ;16. 曲线 3y x = 的拐点是 (0,0);17. 函数 ()y f x = 在 0x x = 点处取得极大值,则 0()0f x '= 或不存在; 18. 0()0f x '=是可导函数()y f x =在0x x =点处取得极值的充要条件; 19. 曲线 1ln y x =+ 没有拐点;20. 设()()()f x x a x ϕ=-,其中函数()x ϕ在x a =处可导,则 ()()f a a ϕ'= ;21. 因为 1y x = 在区间(0,1)内连续,所以在(0,1)内 1y x= 必有最大值;填空题1. 求曲线 53(2)y x =- 的拐点是 ________; 2. 求曲线 21x y x =+ 的渐近线为________ ;3. lim nax x x e→+∞ ( 0,a > n 为正整数)= ________ ;4. 幂函数 y x α=( α为常数)的弹性函数是 _________ ;5. 221y x x =--+ 的单调递增区间为 __________ ;6. 函数()f x = 的间断点为 x = ______ ;7. 函数 112+=x y 的单调下降区间为 ______ ;8. 设 322++=ax x y 在点 1x = 处取得极小值,则 a = _______ ; 9. 设 3)(a x y -= 在 (1,)+∞ 是上凹的,则 a = ______ ;10. 若函数 )(x f 在区间 (,)a b 内恒有 ()0f x ''>,则曲线 )(x f y = 在(,)a b 内的凹向是_______;11. 若 3)(-=''x x f ,则曲线 )(x f y = 的拐点横坐标是 ______ ; 12. 函数 32y x =+ 在 3x = 处的弹性是 ________ ; 13. 函数 33y x x =- 的单调递减区间是 __________ ;14. x y e -= 的渐近线为 _______ ;15. 设需求函数(83)Q p p =-,P 为价格,则需求弹性值2P EQEp ==_______ ;16. 函数(1)(2)y x x =-- 有 ______ 个间断点;17.函数y =[0,5]上满足拉格朗日中值定理的ξ= ______ ; 18. 函数 2(1)y x =-- 的单调递增区间是 _________ ;19. 函数 2cos y x x =+ 在区间 [0,]2π上的最大值是 __________ ;20. 曲线y =的下凹区间是 __________ ;21. 函数22y x x =-在[0,2]上满足拉格朗日中值定理的 ξ=__________ ; 22. 函数y x = 在区间 [0,1] 上的最小值是 _________ .选择题1.函数 sin y x = 在区间 [0,]π 上满足罗尔定理的 ξ= ( )(A) 0 (B) 4π(C) 2π (D) π2. 曲线 21x y x=+ 的铅垂渐近线的方程是 ( )(A) 1y =- (B) 1y = (C) 1x =- (D) 1x = 3. 函数 ()y f x = 在点 0x x = 处取得极大值,则必有( )(A) 0()0f x '= (B) 0()0f x ''<(C) 0()0f x '= 且 0()0f x ''< (D) 0()0f x '= 或不存在 计算与应用题1. 求极限 11lim()1ln x x x x→-- 2.设某产品价格与销量的关系为 10P Q =-(Q 为销量),求: (1) 销量为 30 时的总收益;(2) 销量为 30时的平均收益; (3) 销量为 30时的边际收益;(4) 销量为 30时,销量对价格的弹性。