计量经济学分析框架共26页文档
- 格式:ppt
- 大小:3.18 MB
- 文档页数:26
EViews/Stata计量经济学入门:导论与第一、二章EViews/Stata操作知识点:介绍计量经济学的简史,为什么研究计量经济学,计量经济学的数据类型及因果关系;EViews与Stata操作入门。
学习指导:本部分的重点知识是:计量经济学的四种数据结构——横截面数据、时间序列数据、面板数据和混合数据;因果关系;对于四种数据结构的区别要清晰,本课程重点讲解横截面数据和面板数据的处理方法;而混合数据的处理方法与横截面数据相同,而对于考虑相关性的时间序列数据,可以在另开设一门课程来介绍。
因果关系是所有学科分析重要的内容。
但由于经济社会中各变量之间关系十分复杂,所以通常需要控制其他变量后再具体分析所关心自变量对于因变量的影响,而这正是计量经济学研究的重要的内容之一。
关于EViews与Stata的详细操作不是本课程的重点,可以不单独介绍,本课程将会在后续章节的应用例题中介绍与计量经济学密切相关的软件操作步骤。
第三章一元线性回归模型知识点:一元线性回归模型的假设、最小二乘估计及其估计量的性质、系数显著性检验和预测区间。
学习指导:本部分的重点知识是:模型的假设是确保模型可以估计和估计方法好坏的基础,所以要了解假设估计间的关系;最小二乘估计是计量经济学的最基本估计方法之一,所以要熟练掌握其求解过程和其估计量的统计性质;系数显著性检验是经济分析中的重要一环,要了解检验的步骤和意义;本章难点一是如何证明在本章假设下最小二乘估计量是最优的,对于要求较高的院校,可以介绍这里所使用的添项减项技巧,并指出证明的关键是使用线性无偏条件来证明交叉相乘项为0。
本章难点二是如何证明S2是方差的无偏估计量,这里证明的关键是注意到不同误差项之间的无关性对计算过程化简的重要性。
对于要求较低的院校也可以对证明做忽略处理,仅仅指出结论也是入门计量经济学的一种常见处理方法。
第四章多元线性回归模型知识点:多元线性回归模型的假设、最小二乘估计及其估计量的性质、决定系数与修正的决定系数、单系数与线性约束的检验、多重共线性的相关问题。
计量经济学的体系框架一、引言计量经济学是经济学的一个重要分支,通过运用统计学和数学的方法来研究经济现象。
它旨在通过建立经济模型、收集和分析数据,来验证经济理论以及对经济政策的评估和预测。
本文将介绍计量经济学的体系框架,包括经济模型的构建、数据的收集和处理、估计和推断、以及结果的解释和政策分析。
二、经济模型的构建经济模型是计量经济学分析的基础,它是对经济现象或经济行为的简化描述。
构建经济模型需要明确的理论基础,并根据研究问题选择适当的变量和关系形式。
模型的构建可以通过宏观经济模型、微观经济模型和计量经济模型等方法进行。
三、数据的收集和处理数据的收集是计量经济学的重要一环。
研究者需要根据研究问题明确需要收集哪些数据,并选择适当的数据来源和采样方法。
同时,数据的处理也是不可忽视的环节。
研究者需要对数据进行清洗、转换和整理,以保证数据的质量和可用性。
四、估计和推断估计和推断是计量经济学的核心任务。
研究者通过建立经济模型和利用收集到的数据,运用统计学的方法对模型的参数进行估计,并进行推断。
常用的估计方法包括最小二乘法、极大似然估计和仪器变量法等。
推断则通过假设检验和置信区间等方法对参数进行分析和解释。
五、结果的解释和政策分析结果的解释是计量经济学研究的重要一步。
研究者需要对估计结果进行解读和分析,以及对模型的合理性进行评估。
同时,研究者还需要将研究结果与经济理论相结合,进行经济政策的分析和评估。
通过研究结果的解释和政策分析,可以为决策者提供科学的建议和参考。
六、结论计量经济学的体系框架包括经济模型的构建、数据的收集和处理、估计和推断,以及结果的解释和政策分析等步骤。
它通过运用统计学和数学的方法来研究经济现象,并提供科学的经济政策建议。
在实际应用中,研究者需要结合具体问题和研究目标来选择适当的方法和模型,并进行合理的数据收集和处理,以获得可靠的研究结果。
计量经济学的发展为我们深入理解经济现象和解决实际问题提供了有力的工具和方法。
[经验分享]计量经济学思维导图及...
文/日新少年
来源:经管之家论坛,感谢作者授权转载
在经管之家论坛上,作者整理出来的[经验分享] 计量经济学思维导图及经典时间序列分析方法介绍(ARMA、ARIMA、ARCH、GARCH族)一文,深受广大朋友们的喜爱。
中心小编经过联系授权,今日与大家一起学习。
参照的书籍比较杂、包括一部分笔记,这里就不一一陈述了。
另外[学科前沿] 《金融时间序列分析》分章思维导图与简评一文,给作者了很多启发。
最终做成这份思维导图,现分享给大家:
可以放大查看原图
经典时间序列分析方法
经典时间序列分析方法操作步骤简介
AR、MA、ARMA的模型及阶数判定:。
计量经济学的体系框架引言:计量经济学是经济学中的一个重要分支,通过运用统计学和数学的方法,研究经济现象和经济理论的实证分析。
计量经济学的研究对象包括个体、家庭、企业、市场等经济主体,旨在通过建立经济模型和运用经济数据的分析,揭示经济规律和解决实际经济问题。
一、计量经济学的基本原理1.1 经济理论与计量模型计量经济学的基本原理是建立在经济理论的基础上的。
经济理论提供了计量经济学研究的框架和理论基础,而计量模型则是根据经济理论构建的具体数学模型,用来解释经济现象和预测经济变量。
1.2 经济数据的获取与处理计量经济学的研究需要大量的经济数据支持,而经济数据的获取与处理是计量经济学的基础。
经济数据可以通过各种渠道获取,例如统计局、调查问卷、实地调研等。
在处理经济数据时,需要进行数据清洗、变换和分析,以确保数据的准确性和可靠性。
二、计量经济学的方法与技术2.1 单变量分析单变量分析是计量经济学中最基础的分析方法,主要研究一个变量的变化规律。
常用的单变量分析方法包括描述统计、概率分布、假设检验等。
2.2 多变量分析多变量分析是计量经济学中较为复杂的分析方法,主要研究多个变量之间的关系。
常用的多变量分析方法包括回归分析、面板数据分析、时间序列分析等。
2.3 计量经济模型计量经济模型是计量经济学中的重要工具,用来描述经济现象和预测经济变量。
常用的计量经济模型包括线性模型、非线性模型、时间序列模型等。
三、计量经济学的应用领域3.1 宏观经济学宏观经济学是计量经济学的一个重要应用领域,研究整体经济现象和经济政策对经济增长、通货膨胀、失业率等宏观变量的影响。
通过建立宏观经济模型和运用宏观经济数据的分析,可以预测经济走势和评估政策效果。
3.2 微观经济学微观经济学是计量经济学的另一个重要应用领域,研究个体、家庭、企业、市场等微观经济主体的行为和决策。
通过建立微观经济模型和运用微观经济数据的分析,可以揭示个体行为和市场交互的规律,为决策者提供决策依据。
(完整word版)计量经济学知识点总结第一章:1计量经济学研究方法:模型设定,估计参数,模型检验,模型应用2.计量经济模型检验方式:①经济意义:模型与经济理论是否相符②统计推断:参数估计值是否抽样的偶然结果③计量经济学:是否复合基本假定④预测:模型结果与实际杜比3.计量经济学中应用的数据类型:①时间序列数据(同空不同时)②截面数据(同时不同空)③混合数据(面板数据)④虚拟变量数据(学历,季节,气候,性别)第二章:1.相关关系的类型:①变量数量:简单相关/多重相关(复相关)②表现形式:线性相关(散布图接近一条直线)/非线性相关(散布图接近一条直线)③变化的方向:正相关(变量同方向变化,同增同减)/负相关(变量反方向变化,一增一减不相关)2.引入随机扰动项的原因:①未知影响因素的代表(理论的模糊性)②无法取得数据的已知影响因素的代表(数据欠缺)③众多细小影响因素综合代表(非系统性影响)④模型可能存在设定误差(变量,函数形式设定)⑤模型中变量可能存在观测误差(变量数据不符合实际)⑥变量可能有内在随机性(人类经济行为的内在随机性)3.OLS回归线数学性质:①剩余项的均值为零②OLS回归线通过样本均值③估计值的均值等于实际观测值的均值④被解释变量估计值与剩余项不相关⑤解释变量与剩余项不相关4.OLS估计量”尽可能接近”原则:无偏性,有效性,一致性5.OLS估计式的统计性质/优秀品质:线性特征,无偏性特征,最小方差性特征第三章:1.偏回归系数:控制其他解释变量不变的条件下,第j个解释变量的单位变动对被解释变量平均值的影响,即对Y平均值直接或净的影响2.多元线性回归中的基本假定:①零均值②同方差③无自相关④随机扰动项与解释变量不相关⑤无多重共线性⑥正态性…一元中有123463. OLS回归线数学性质:同第二章34. OLS估计式的统计性质:线性特征,无偏性特征,最小方差性特征5.为什么用修正可决系数不用可决系数?可决系数只涉及变差没有考虑自由度,如果用自由度去校正所计算的变差,可纠正解释变量个数不同引起的对比困难第四章:1.多重共线性背景:①经济变量之间具有共同变化趋势②模型中包含滞后变量③利用截面数据建立模型可出现..④样本数据自身原因2.后果:A完全①参数估计值不确定②csgj值方差无限大B不完全①csgj量方差随贡献程度的增加而增加②对cs区间估计时,置信区间区域变大③假设检验用以出现错误判断④可造成可决系数较高,但对各cs 估计的回归系数符号相反,得出错误结论3.检验:A简单相关系数检验法:COR 解释变量.大于0.8,就严重B方差膨胀因子法:因子越大越严重;≥10,严重C直观判断法:增加或剔除一个解释变量x,估计值y发生较大变化,则存在;定性分析,重要x标准误差较大并没通过显著性检验时,则存在;x回归系数所带正负号与定性分析结果违背,则存在;x相关矩阵中,x之间相关系数较大,则存在D逐步回归检验法:将变量逐个引入模型,每引入一个x,都进行F检验,t检验,当原来引入的x由于后面引入的x不显著是,将其剔除.以确保每次引入新的解释变量之前方程种植包含显著变量.4.补救措施:①剔除变量法②增大样本容量③变换模型形式:自相关④利用非样本先验信息⑤截面数据与时序数据并用:异方差⑥变量变换第五章:1.异方差产生原因:①模型中省略了某些重要的解释变量②模型设定误差③数据测量误差④截面数据中总体各单位的差异2.后果:A参数估计统计特性:参数估计的无偏性仍然成立;参数估计方差不再是最小B参数显著性检验:t统计量进行参数检验失去意义C 预测影响:将无效3检验:A图示①相关图形分析data x y,看散点图,quick→graph→x,y→OK→scatter diagram→OK,可以看到x,y散点图②残差图形分析data x y,sort x;ls y c x;再回归结果的子菜单点resid,可以看残差分析图Bgoldfeld-quanadt:data x y;sort x;smpl 1 n1;ls y c x(RSS1);smpl n2 n;ls y c x(RSS2);计算F*=RSS2/RSS1,取α=0.05,查F分布表,得F0.05((n-c)/2,(n-c)/2),将F值与此对比.若F*>F(0.05),拒绝原假设,存在异方差Cwhite:data x y;ls y c x;在回归结果的子菜单中点击view-residual test-white heteroskedasticity,可以看到辅助回归模型的估计结果D arch;E:glejser:data x y;ls y c x;genr E1=resid;genr E2=abs(E1);genr XH=X^h;ls E2 c xh;依次根据XH的T值判断E2与XH之间是否存在异方差4.补救措施:A模型变换法:genr y1=y/根号x^h; genr x2=1/根号x^h ; genr x3=x/根号x^h;ls y1 x2 x3;B加权最小二乘法wls:权数:w1t=1/xt;w2t=1/xt^2;w3t=1/根号xt.电脑操作:genr w1=1/x;genr w2=1/(x^2);genr w3=1/sqr(x);ls (w=w1t) y c x;ls (w2=w2t) y c x;ls (w3=w3t) y c x. 第六章:1.自相关产生原因:①经济系统的惯性②经济活动的滞后效应③数据处理造成的相关④蛛网现象⑤模型设定偏误2.表现形式:自相关性质可以用自相关系数符号判断.即ρ<0为负相关, ρ>0为正相关.当|ρ|接近1时,表示相关的程度很高.自相关形式:见公式.3.后果:见公式.4.检验:A图示检验:data x y;ls y c x;再回归模型的子菜单点击resids,可以看到模型残差分布图;genr e=resid;data e e(-1);view-graph-scatter-simple scatter.B.DW检验:data x y;ls y c x;根据回归结果得出DW值,然后判断是否自相关.(正相关0~dl,无法判断dl~du,正相关du~2~4-du,无法判断4-du~4-dl,负相关4-dl~4).5.补救:A广义差分法:data x y;ls y c x;根据DW求ρ尖>(ρ尖=1-DW/2);smpl 2 n;genr yi=y-ρ尖*y(-1); genr xi=x-ρ尖*x(-1);ls y1 c x1;运用DW检验判断是否消除了自相关B:Cochrane orcutt迭代法:data x y;la y c x ar(1);运用DW检验判断C其他方法:①一阶差分法:data x y;ls y c x;smpl 2 n;genr y1=y-y(-1); genr x1=x-x(-1);ls y1 c x1; 运用DW检验判断②德宾两步法:data x y;smpl 2 n;ls y c y(-1)根据输出结果看y(-1)前系数,求出ρ尖; genr yi=y-ρ尖*y(-1); genr xi=x-ρ尖*x(-1);ls y1 c x1;运用DW检验判断第七章:1.虚拟变量0和1选取原则:0基期,比较的基础,参照物;1报告期:被比较类型2.虚拟变量数量的设置规则:①若定性因素具有m≥2个相互排斥属性,当回归模型有截距项时,只能引入m-1个变量②当回归模型无截距项时,引入m个变量3.虚拟解释变量的回归:加法截距:①解释变量只有一个分为两种相互排斥类型的定性变量而无定量变量②解释变量包含一个定量变量和一个分为两种类型的定性变量③解释变量包含一个定量变量和一个两种以上类型的定性变量④解释变量包含一个定量变量和两个定性变量.乘法斜率:①截距不变情形②结局斜率均发生变化③分段回归分析描述的精度.。
计量经济学逻辑框架
计量经济学是一门研究经济现象和经济政策效果的科学,它使用数理统计和经济理论的方法来建立经济模型,并利用样本数据来估计和验证这些模型。
计量经济学的逻辑框架主要包括以下几个步骤:
1. 问题陈述:明确研究的问题和目的,例如:研究某种经济政策的效果、分析某个市场的竞争结构等。
2. 确定模型:根据问题的特点和目的,选择相应的经济理论模型,例如:用供求模型分析市场的均衡价格和数量,用消费函数和生产函数模型分析某项政策的影响等。
3. 形成假设:根据模型的理论假设和实证研究的背景,提出相应的经济假设,例如:某个市场是完全竞争市场,消费者的收入和价格是影响消费的主要因素等。
4. 收集数据:根据研究的问题和模型,收集相应的样本数据,例如:收集某个市场的价格、数量和市场结构等数据。
5. 估计模型:利用收集的样本数据,使用数理统计的方法来估计模型的参数,例如:利用OLS估计供求模型中的弹性系数等。
6. 检验假设:根据估计得到的结果,对研究假设进行检验,例如:利用假设检验方法检验市场是否是完全竞争市场等。
7. 得出结论:根据检验结果,对研究问题的答案进行解释并得出结论,例如:政策A对B市场的价格和数量有显著的影响,市场结构的特点是影响价格和数量变化的主要因素等。
以上就是计量经济学的逻辑框架,通过这一框架,可以对经济现象和政策进行科学的定性和定量分析,从而得出科学且可靠的结论。