平方差公式与完全平方公式同步练习及答案
- 格式:docx
- 大小:277.86 KB
- 文档页数:5
第八章第三节完全平方公式与平方差公式专题练习p1-7一、选择题(本大题共24小题,共72.0分)1. 如果x 2-(m-1)x+1是一个完全平方式,则m的值为()A. -1B. 1C. -1或3D. 1或32. 计算(x+3)•(x-3)正确的是()A. x 2+9B. 2xC. x 2-9D. x 2-63. 如果4x 2-kx+25是一个完全平方式,那么k的值是()A. 10B. ±10C. 20D. ±204. 下列各式中可以运用平方差公式的有()①(-1+2x)(-1-2x)②(ab-2b)(-ab-2b)③(-1-2x)(1+2x)④(x 2-y)(y 2+x)A. 1个B. 2个C. 3个D. 4个5. 已知a+b=3,则a 2-b 2+6b的值为()A. 6B. 9C. 12D. 156. 如图,在边长为的正方形中,剪去一个边长为的小正方形,将余下的部分剪开后拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于的恒等式为()A. B.C. D.7. 已知x+ =7,则x 2+ 的值为()A. 51B. 49C. 47D. 458. 若等式(x-4)2=x 2-8x+m 2成立,则m的值是()A. 16B. 4C. -4D. 4或-49. 下列各式,能用平方差公式计算的是()A. (a-1)(a+1)B. (a-3)(-a+3)C. (a+2b)(2a-b)D. (-a-3)210. 若x 2+2(m-3)x+16是完全平方式,则m的值是( )A. -1B. 7C. 7或-1D. 5或111. 下列各式中,能用平方差公式计算的有()①(a﹣2b)(﹣a+2b);②(a﹣2b)(﹣a﹣2b);③(a﹣2b)(a+2b);④(a﹣2b)(2a+b).A. 1个B. 2个C. 3个D. 4个12. 下列各式中,能用平方差公式计算的有()①(a﹣2b)(﹣a+2b);②(a﹣2b)(﹣a﹣2b);③(a﹣2b)(a+2b);④(a﹣2b)(2a+b).A. 1个B. 2个C. 3个D. 4个13. 下列计算正确的是()A. (﹣x﹣y)2=﹣x 2﹣2xy﹣y2B. (4x+1)2=16x 2+8x+1C. (2x﹣3)2=4x 2+12x﹣9D. (a+2b)2=a 2+2ab+4b214. 下列计算正确的是()A. (﹣x﹣y)2=﹣x 2﹣2xy﹣y 2B. (4x+1)2=16x 2+8x+1C. (2x﹣3)2=4x 2+12x﹣9D. (a+2b)2=a 2+2ab+4b 215. 下列各式是完全平方式的是()A. B. C. D.16. 在多项式x 2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是()A. xB. 3xC. 6xD. 9x17. 下列各式中,不能用平方差公式计算的是()A. (2x-y)(2x+y)B. (-x+y)(x-y)C. (b-a)(b+a)D. (x-y)(-y-x)18. 计算(x 4+1)(x 2+1)(x+1)(x-1)的结果是()A. x 8+1B. x 8-1C. (x+1)8D. (x-1)819. 下列各题中,能用平方差公式的是()A. (a-2b)(-a+2b)B. (-a-2b)(-a-2b)C. (a-2b)(a+2b)D. (-a-2b)(a+2b)20. 如果多项式x 2+mx+16是一个完全平方式,则m的值是()A. ±4B. 4C. ±8D. 821. 若x+y=5,x-y=3,则x 2-y 2的值是()A. 8B. 15C. 2D. 422. 计算(a+2b)2的结果是()A. a 2+4b 2B. a 2+2ab+2b 2C. a 2+4ab+2b 2D. a 2+4ab+4b 223. 若4a 2-2ka+9是一个完全平方的展开形式,则k的值为()A. 6B. ±6C. 12D. ±1224. 已知x+y=7,xy=-8,则x 2+y 2=()A. 49B. 65C. 33D. 57二、填空题(本大题共32小题,共96.0分)25. 若a+b=3,ab=2,则(a-b)2= ______ .26. 已知2a 2+2b 2=10,a+b=3,则ab= ______ .27. 若a 2-(b-c)2有一个因式是a+b-c,则另一个因式是a-b+ ______ .28. 是一个完全平方式,则正整数的值是.29. 若是一个完全平方式,则等于.30. 计算:( x+2)( x-2)= .如图,E,H,G在正方形的边上,DE交GH于点O,∠GOD=45°,AB=6,GH= ,则DE的长为.31. 如图1所示,从边长为a的正方形纸片中减去一个边长为b的小正方形,再沿着线段AB剪开,把剪成的两张纸拼成如图2的等腰梯形.这一过程所揭示的乘法公式是______ .32. 已知a+b=3,ab=2,则a 2+b 2的值为______ .33. 用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(a-b)2= ______ (化为a、b两数和与积的形式)34. (3a+3b+1)(3a+3b-1)=899,则a+b= ______ .35. 若x-y=2,xy=4,则x 2+y 2的值为______ .36. 若x 2-mxy+9y 2是完全平方式,则m=37. 计算:已知:a+b=3,ab=1,则a 2+b 2= .38. 计算:已知:a+b=3,ab=1,则a 2+b 2= .39. 若4a 2﹣(k﹣1)a+9是一个关于a的完全平方式,则k= .40. 如果a 2+ma+9是一个完全平方式,那么m=_________.41. 若9 是完全平方式,那么m=_______.42. 计算:(-1)(+1)= 。
仁(2-1 )解:(2+1) (22+1) (24+1) =2=16102420482 +1) +12048(2 +1) +1乘法公式的复习一、复习:(a+b)(a-b)=a 2-b2 (a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(X4y y+X px2_y2 ② 符号变化,(以+y X4_y”_x j_y2= x 2_y2③ 指数变化,(X2*y2)(x2-y2尸x4y ④ 系数变化,(2a+b[2a—b)=4a2_b2⑤换式变化,Ry 飞z+m p[xy_(z+m)H xy)-(z+m j= X2y2-( z2+2zm+m)=x2y2—z2—2zmn^⑥增项变化,(x-y+z 胚―y—z R X—y j_z2以2-2xy +y2-z2⑦连用公式变化,x y x_y x2 y2 = x2_y2 x2 y2 =x^y4⑧逆用公式变化,(X-y+z 匚(X4y-Z $=[[x-y+z)飞x+y-z 卩耿-y+z 卜(x+y-z)]=2x(_2y +2z)一 4xy +4xz例1已知a • b = 2,ab =1,求a2 b2的值。
解:T (a b)2 =a22ab b2二a2b2 = (a b)2-2abI a b = 2, ab =1二a2b2=22_2 1 = 2例2•已知a=8,ab =2,求(a -b)2的值。
解:••• (a b)2=a22ab b2(a -b)2二a2-2ab b22 2 2 2(a b) 「(a -b) = 4ab 二(a b) - 4ab = (a -b)2 2■/ a b=8,ab = 2 • (a-b)2= 82- 4 2 =56例3:计算199*2000 X 1998〖解析〗此题中2000=1999+1, 1998=1999-1,正好符合平方差公式。
解:19992-2000 X 1998 =1999 2- (1999+1)X( 1999-1 )=1999 2- (19992-1 2) =199口19992+1 =1例4:已知a+b=2, ab=1,求a2+b2和(a-b) 2的值。
平⽅差公式和完全平⽅公式(习题及答案)平⽅差公式和完全平⽅公式(习题)例题⽰范例1:计算:23(1)(1)2(1)a a a -+---+.【操作步骤】(1)观察结构划部分:23(1)(1)2(1)a a a -+---+①②(2)有序操作依法则:辨识运算类型,依据对应的法则运算.第⼀部分:a -和a -符号相同,是公式⾥的“a ”,1和-1符号相反,是公式⾥的“b ”,可以⽤平⽅差公式;第⼆部分:可以⽤完全平⽅公式,利⽤⼝诀得出答案.(3)每步推进⼀点点.【过程书写】解:原式2223()12(21)a a a ??=---++??223(1)242a a a =----2233242a a a =----245a a =--巩固练习1. 下列多项式乘法中,不能⽤平⽅差公式计算的是()A .()()x y y x ---+B .()()xy z xy z +-C .(2)(2)a b a b --+D .1122x y y x --- ??2. 下列各式⼀定成⽴的是()A .222(2)42x y x xy y -=-+B .22()()a b b a -=-C .2221124a b a ab b ??-=++D .222(2)4x y x y +=+3. 若2222(23)412x y x xy n y +=++,则n =__________.4. 若222()44ax y x xy y -=++,则a =________.5. 计算:①112233m n n m --- ??;②22()()()y x x y x y -++;③22(32)4x y y ---;④2()a b c +-;⑤296;⑥2112113111-?.6. 运⽤乘法公式计算:①2(2)(2)(2)x y x y x y -+-+;②22(1)2(24)a a a +--+;③(231)(231)x y x y +--+;④3()a b -;⑤222233m m +-- ? ?;⑥2210199-.思考⼩结1. 在利⽤平⽅差公式计算时要找准公式⾥⾯的a 和b ,我们把完全相同的“项”看作公式⾥的“_____”,只有符号不同的“项”看作公式⾥的“_____”,⽐如()()x y z x y z +---,_______是公式⾥的“a”,_______是公式⾥的“b ”;同样在利⽤完全平⽅公式的时候,如果底数⾸项前⾯有负号,要把底数转为它的______去处理,⽐如22()(_______)a b --=2. 根据两⼤公式填空:+(_______)+(_______)b )22(2【参考答案】巩固练习1. C2. B3. ±34. -25. ①22149n m - ②44x y -+ ③2912x xy +④222 222a ab b bc ac c ++--+ ⑤9 216⑥1 6. ①242xy y --②267a a -+- ③224961x y y -+- ④322333a a b ab b -+- ⑤83m ⑥400 思考⼩结1. a ,b ,(x -z ),y ,相反数,a +b2. 2ab ,2ab ,4ab。
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
1.(a2+b2)(a2-b2)=(____)2-(____)2=______.2.(-2x2-3y2)(2x2-3y2)=(____)2-(____)2=_____.3.20×19=(20+____)(20-____)=_____-_____=_____.4.9.3×10.7=(____-_____)(____+____)=____-_____.5.20062-2005×2007的计算结果为() A.1 B.-1 C.2 D.-26.在下列各式中,运算结果是b2-16a2的是()A.(-4a+b)(-4a-b) B.(-4a+b)(4a-b)C.(b+2a)(b-8a) D.(-4a-b)(4a-b)7.运用平方差公式计算.(1)102×98 (2)234×314(3)-2.7×3.3(4)1007×993 (5)1213×1123(6)-1945×2015(7)(3a+2b)(3a-2b)-b(a-b)(8)(a-1)(a-2)(a+1)(a+2)(9)(a+b)(a-b)+(a+2b)(a-2b)(10)(x+2y)(x-2y)-(2x+5y)(2x-5y)(11)(2m-5)(5+2m)+(-4m-3)(4m-3)(12)(a+b)(a-b)-(a-3b)(a+3b)+(-2a+3b)(-2a-3b)8.(3a+b)(____)=b2-9a2;(a+b-m)(____)=b2-(a-m)2.9.先化简,再求值:(3a+1)(3a-1)-(2a-3)(3a+2),其中a=-13.10.运用平方差公式计算:(1)220052005200042006-⨯;(2)99×101×10 001.11.解方程:(1)2(x+3)(x-3)=x2+(x-1)(x+1)+2x(2)(2x-1)(2x+1)+3(x+2)(x-2)=(7x-1)(x+1)12.计算:(4x-3y-2a+b)2-(4x+3y+2a-b)2.◆拓展提升13.若a+b=4,a2-b2=12,求a,b的值.1.完全平方公式:(a+b)2=______,(a-b)2=______.即两数的_____的平方等于它们的_____,加上(或减去)________.2.计算:(1)(2a+1)2=(_____)2+2·____·_____+(____)2=________;(2)(2x-3y)2=(_____)2-2·____·_____+(_____)2=_______.3.(____)2=a2+12ab+36b2;(______)2=4a2-12ab+9b2.4.(3x+A)2=9x2-12x+B,则A=_____,B=______.5.m2-8m+_____=(m-_____)2.6.下列计算正确的是()A.(a-b)2=a2-b2 B.(a+2b)2=a2+2ab+4b2C.(a2-1)2=a4-2a2+1 D.(-a+b)2=a2+2ab+b27.运算结果为1-2ab2+a2b4的是()A.(-1+ab2)2 B.(1+ab2)2 C.(-1+a2b2)2 D.(-1-ab2)28.计算(x+2y)2-(3x-2y)2的结果为()A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy9.计算(a+1)(-a-1)的结果是()A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-110.运用完全平方公式计算:(1)(a+3)2(2)(5x-2)2(3)(-1+3a)2(4)(13a+15b)2(5)(-a-b)2(6)(-a+12)2(7)(xy+4)2(8)(a+1)2-a2(9)(-2m2-12n2)2(10)1012(11)1982(12)19.92 11.计算:(1)(a+2b)(a-2b)-(a+b)2(2)(x-12)2-(x-1)(x-2)12.解不等式:(2x-5)2+(3x+1)2>13(x2-10)+2.13.若(a+b)2+M=(a-b)2,则M=_____.14.已知(a-b)2=8,ab=1,则a2+b2=_____.15.已知x+y=5,xy=3,求(x-y)2的值16.一个圆的半径为rcm,当半径减少4cm后,这个圆的面积减少多少平方厘米?17.已知x+1x=3,试x2+21x和(x-1x)2的值.第一套平方差公式参考答案1.a2 b2 a4-b4 2.-3y2 2x2 9y4-4x43.2323202(23)2 399594.10 0.7 10 0.7 •100 0.49 5.A 6.D7.(1)9996 (2)81516(3)-8.91 (4)999 951(5)14389(6)-399.96 (7)9a2-ab-3b2(8)a4-5a2+4(9)2a2-5b2(10)21y2-3x2(11)-12m2-16 (12)4a2-b2 8.b-3a b-a+m9.3a2+5a+5 11 310.(1)2005 (2)99 999 99911.(1)x=-172(2)x=-212.-48xy-32ax+16bx13.a=3.5,b=0.5第二套完全平方公式参考答案1.a2+2ab+b2 a2-2ab+b2和(或差)平方和这两个数乘积的2倍2.(•1)•2a •2a 1 1 4a2+4a+1 (2)2x 2x 3y 3y 4x2-12xy+9y2 3.a+6b 2a-3b 4.-•2 •4 5.16 46.C 7.A 8.A 9.A10.(1)a2+6a+9 (2)25x2-20x+4 (3)9a2-6a+1 •(4)19a2+215ab+125b2(5)a2+2ab+b2(6)a4-a2+14(7)x2y4+8xy2+16 (8)2a+1 (9)4m4+2m2n2+1 4 n4(10)10 201 (11)39 204 (12)396.0111.(1)-2ab-5b2(2)2x-7 412.x<11 • • 13.•-4ab 14.1015.13 16.(8r-16) cm2 17.7 5。
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2 ② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2= x 2y 2-(z 2+2zm +m 2)=x 2y 2-z 2-2zm -m 2 ⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2 =x 2-2xy +y 2-z 2 ⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz 例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+ ∵2=+b a ,1=ab ∴22b a +=21222=⨯- 例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a - ∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯- 例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4 ④ 系数变化,(2a +b )(2a -b )=4a 2-b 2⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m ) =x 2y 2-(z 2+zm +zm +m 2) =x 2y 2-z 2-2zm -m 2⑥ 增项变化,(x -y +z )(x -y -z )=(x -y )2-z 2=(x -y )(x -y )-z 2=x 2-xy -xy +y 2-z 2 =x 2-2xy +y 2-z 2⑦ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2) =x 4-y 4⑧ 逆用公式变化,(x -y +z )2-(x +y -z )2=[(x -y +z )+(x +y -z )][(x -y +z )-(x +y -z )] =2x (-2y +2z ) =-4xy +4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差与完全平方公式练习1、用平方差公式进行计算:
(1) 103×97; (2)118×122 (3) 102×98 (4) 51×49
2、平方差公式在混合运算中的应用:
(3) (4)
利用平方差公式进行证明:
3、对于任意的正整数n,整式(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的整数倍吗?
即(3n+1)(3n-1)-(3-n)(3+n)的值是10的倍数.
方法总结:在探究整除性或倍数问题时,一般先将代数式化为最简,然后根据结果的特征,判断其是否具有整除性或倍数关系.
4、如果两个连续奇数分别是2n-1,2n+1(其中n为正整数),证明两个连续奇数的平方差是8的倍数.
注意:逆用了平方差公式!5、
6、
7、
8、
9、对于任意一个正整数n,整式A=(4n+1)·(4n-1)-(n+1)·(n-1)能被15整除吗?请说明理由.
10、王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
完全平方公式
1、利用完全平方公式计算:
2、下面各式的计算是否正确?如果不正确,应当怎样改正?
3、利用完全平方公式计算
4、利用完全平方公式的变形求整式的值:
5、填空:
6、
7、
8、(1)(3a+b-2)(3a-b+2) (2)(x-y-m+n)(x-y+m-n) 9、
10、已知x+y=8, x-y=4,求xy.。
平方差公式与完全平方公式同步练习及答案
内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)
平方差公式与完全平方公式
一、选择
1、下列运算正确的是( )
A 、223)3)(3(y x y x y x -=-+
B 、229)3)(3(y x y x y x -=--
C 、229)3)(3(y x y x y x --=-+-
D 、229)3)(3(y x y x y x -=--+-
2、下列算式可用平方差公式的是( )
A 、(m+2m )(m-2m)
B 、(-m-n )(m+n)
C 、(-m-n )(m-n)
D 、(m-n )(-m+n)
3、计算2)55)(5
151(y y x y x -+-+的结果是( )
A 、x 2
B 、-x 2
C 、2y 2-x 2
D 、x 2-2y 2
4.(-x 2-y )2的运算结果正确的是 ( )
A.—x 2-2xy+y 2 +y 2 +2x 2y+y 2 +y 2
5.下列各式计算结果是2mn-m 2-n 2的是( )
A.(m-n )2 (m-n )2 (m+n )2 D.(m+n)2
6.下列等式:①(a-b )2=(b-a )2②(a+b )2=(-a-b )2③(a-b )2=(a+b )2④a 2-b 2=(b-a)(-b-a)⑤(a+b)(a-b)=(b+a)(b-a).其中一定成立的是( ) 个 个 个 个
7.计算(-x-2y )2的结果是( )
+4y 2 +4xy+4y 2 +4xy-4y 2
8.若(9+x 2)(x+3)( )=x 4-81,则括号里应填入的因式是( )
+x
9.计算(a m +b n )(a 2m -b 2n )(a m -b n )正确的是 ( )
+b 4m +b 4n +b 2n +2a m b n
10.(3x+2y )2=(3x-2y)2+A,则代数式A 是 ( )
二、填空题
11.(a-b+1)(a+b-1)= .
12.已知x 2+4x+y 2-2y+5=0,则x+y= .
13.已知0)13(132=+++-x y x ,则x 2+y 2= .
14.若x+y=3,x-y=1,则x 2+y 2= xy= . 15.2249
1)(_____)231
(y x y x -=+- 16.(1+4m 2) (_____) (______)=1-16m 4
+16是完全平方式,则p= .
18.(a+b)2= (a-b)2+________.
19.若x+2y=3,xy=2,则x 2+4y 2=______.
20.已知(x+y)2=9,(x-y)2
=5,则xy=
三、解答题
21.计算:
①)2)(2(b a b a --+-
②2009200720082⨯-
③))()((22b a b a b a +-+
④.,12,222的值求若b a b a b a +=-=-
⑤22)1()3(--+a a
22.①已知a 2-8a+k 是完全平方式,试问k 的值.
②已知x 2+mx+9是完全平方式,求m 的值.
23.已知21=+x
x ,求221x x +的值. 24.【探究题】给出下列算式
32-12=8=8×1;52-32
=16=8×2
72-52=24=8×3;92-72=32=8×4
………
⑴观察上面一系列式子,你能发现什么规律用含有n 的式子表示出来: (n 为正整数):
⑵根据你发现的规律,计算:
20052-20032= .
这时,n= .
参考答案
一、选择
二、填空题 +2b-1 13.91 14. 5, 2 15.y x 23
1--
16. (1-2m)(1+2m) 17.±8 18. 4ab
二、解答题 21.解析: ①原式=(-2a)2-b 2=4a 2-b 2.
②原式=20082-(2008-1)(2008+1)
=20082-(20082-1)
=1.
③原式=(a 2-b 2)(a 2+b 2)=a 4-b 4.
④因为a 2-b 2=12, (a+b)(a-b)= a 2-b 2
所以a+b=6.
⑤原式=(a+3+a-1)(a+3-a+1)=4(2a+2)=8a+8;
22. 解析:①设m 2=k ;因为a 2
-8a+k 是完全平方式,
所以a 2-8a+m 2=(a-m)2= a 2-2ma+m 2,所以8a=2ma,解得m=4,所以k=16. ②因为x 2+mx+9是完全平方式,所以x 2+mx+9=(x±3)2,所以m=±6.
23.解:∵ 4)1(2=+x x , ∴41
222=++x
x , 故221x
x +=2; 24.解:⑴(2n+1)2-(2n-1)2=8n
⑵8016。