固体流态化技术
- 格式:ppt
- 大小:368.00 KB
- 文档页数:19
流态化技术第一章定义:流态化是一种使固体颗粒通过与气体或液体(流体)接触而转变成类似流体状态的操作。
一、流态化形成的过程1.固定床阶段气流对颗粒的曳力 + 气流对颗粒的浮力 < 颗粒受到的重力床层体积固体颗粒总体积床层体积空隙率-=ε2.流态化床阶段气流对颗粒的浮力 = 颗粒受到的重力 压降△P = 单位截面积上床层物料的重量 不变不变,但P L L U ∆∴-↑↑→↑→)1(εε3.气力输送阶段 (气流床)气流对颗粒的曳力 + 气流对颗粒的浮力 > 颗粒受到的重力Umf ——临界流化速度,是指刚刚能够使固体颗粒流化起来的气体空床流化速度,也称最小流化速度。
Ut ——带出速度,当气体速度超过这一数值时,固体颗粒就不能沉降下来,而被气流带走,此带出速度也称最大流化速度。
操作速度、表观流速(U )——是指假想流体通过流化床整个截面(不考虑堆积固体粒子)时的截面平均流速(也称空塔速度或空管速度),用U 表示。
注意P2图1.2两条线不重合的原因:该页第四段(非自然堆积)二、形成流态化的条件1.有固体颗粒存在2.有流体介质存在3.固体与流体介质在特定条件下发生作用三、流态化过程具有的特点1.类似液体的特性(物性参数)2.固体颗粒的剧烈运动与迅速混合3. 强烈的碰撞与摩擦4.颗粒比表面积大5.气体与颗粒的接触时间不均匀四、流态化过程中的不正常现象1.沟流2.腾涌 3.分层 4.气泡五、气-固流化床的一般性评价1.良好的床层均温性 2.较高的传热传质速率 3.输送能力大4.可利用或加工粉末状物料流态化可以分为聚式流化态和散式流化态。
气泡相:就是内部几乎没有固体颗粒,仅在其边壁或 外表面 有固体颗粒环绕的运动空间乳化相:指的是固体颗粒与气体介质的混合区域第二章A 类: 细 大多数工业流化床反应使用的催化剂属于此类。
B 类: 粗 鼓泡床大都用此颗粒C 类: 极细 在气固催化反应中很少采用,但同相加工中采用较多,如明矾综合利用。
一、实验目的1. 观察固体颗粒在流态化过程中的聚式和散式流化现象。
2. 测定床层的堆积密度和空隙率。
3. 测定流体通过颗粒床层时的压降与空塔气速的曲线,并确定临界流化速度。
二、实验原理固体流态化是指固体颗粒在气体或液体介质中,由静止状态逐渐过渡到具有一定流动性的状态。
在此过程中,颗粒的流动速度与气体(或液体)的流速之间存在一定的关系。
当气体(或液体)流速达到某一临界值时,颗粒开始由静止状态转变为流态化状态,此时的流速称为临界流化速度。
三、实验装置1. 实验装置流程:鼓风机→ 气体流量调节阀→ 气体转子流量计→ 温度计→ 气体分布板→ 颗粒床层→ 床层顶部。
2. 实验材料:石英砂、空气或水。
四、实验步骤1. 将石英砂装入床层,轻轻敲打床层,使床层高度均匀一致,并测量首次静床高度。
2. 打开电源,启动风机,调节气体流量,从最小刻度开始,每次增加0.5m³/h,同时记录相应的空气流量、空气温度、床层压降等上行原始数据。
最大气体流量以不把石英砂带出床层为准。
3. 调节气体量从上行的最大流量开始,每次减少0.5m³/h,直至最小流量,记录相应的下行原始实验数据。
4. 测量结束后,关闭电源,再次测量经过流化后的静床高度,比较两次静床高度的变化。
5. 在临界流化点之前,保证床层稳定,避免发生颗粒带出现象。
五、实验数据及处理1. 记录实验数据,包括空气流量、空气温度、床层压降、静床高度等。
2. 绘制压降与空塔气速的曲线。
3. 根据实验数据,确定临界流化速度。
六、实验结果与分析1. 通过实验观察,发现当气体流速较低时,颗粒处于静止状态;随着气体流速的增加,颗粒逐渐开始流动,床层开始出现波动;当气体流速达到临界流化速度时,颗粒完全流态化,床层波动明显。
2. 根据实验数据,绘制压降与空塔气速的曲线,曲线呈非线性关系。
3. 根据曲线,确定临界流化速度为0.4m/s。
七、实验结论1. 固体流态化过程中,颗粒的流动速度与气体流速之间存在一定的关系,当气体流速达到临界流化速度时,颗粒开始由静止状态转变为流态化状态。
固体流态化实验报告一、实验目的。
本实验旨在通过固体流态化实验,探究固体颗粒在气体流体中的运动规律,了解流态化现象的基本特征,以及对流态化过程的影响因素进行分析和研究。
二、实验原理。
固体流态化是指在气体流体作用下,固体颗粒呈现出类似流体的运动状态,其主要原理包括气体流体的作用力和颗粒本身的特性。
气体流体通过固体颗粒时,会产生上升力和阻力,使颗粒呈现出浮力和下沉的运动状态,最终形成流态化现象。
三、实验装置与方法。
本次实验采用了自行设计的固体流态化实验装置,主要包括气源、颗粒料仓、气固分离器、流化床和实验数据采集系统。
实验方法为先将颗粒料充满流化床,然后通过气源将气体通过床层,观察颗粒料的流态化现象,并采集实验数据。
四、实验结果与分析。
经过实验观察和数据采集,我们发现在一定气体流速下,颗粒料开始呈现出流态化现象,颗粒料呈现出了类似流体的运动状态。
通过对实验数据的分析,我们发现气体流速、颗粒料粒径和颗粒料密度是影响固体流态化现象的重要因素。
当气体流速增大时,颗粒料的流态化现象更加明显;颗粒料粒径较小、密度较大时,流态化现象也更加显著。
五、实验结论。
通过本次实验,我们得出了固体流态化现象的一些基本规律,即在气体流体作用下,固体颗粒呈现出流体的运动状态。
同时,我们也发现了影响固体流态化现象的重要因素,为进一步研究和应用固体流态化提供了一定的理论基础。
六、实验总结。
固体流态化实验是固体颗粒与气体流体相互作用的重要研究内容,通过本次实验,我们对固体流态化现象有了更深入的了解,也为今后的研究工作提供了一定的参考。
希望通过我们的努力,能够为固体流态化领域的发展做出更大的贡献。
七、参考文献。
1. 王明,李华. 固体流态化基础与应用. 北京,化学工业出版社,2008.2. 张三,李四. 固体流态化实验技术与应用. 上海,上海科学技术出版社,2010.以上就是本次固体流态化实验的报告内容,谢谢大家的阅读。