Mathematica表达式及其运算规则
- 格式:ppt
- 大小:586.00 KB
- 文档页数:45
Mathematica基本运算指令基本运算a+b+c 加a-b 减a b c 或 a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或 Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最后一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弧度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcS inh[x],ArcCosh[x],ArcTanh[x],…反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小于或等于x的最大整数Ceiling[x] 大于或等于x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的随机数(最新版本已经不用这个函数,改为使用RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值数值设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或 Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为 x^2 y次方运算子比乘法的运算子有较高的处理顺序四个处理指令Expand[expr] 将 expr展开Factor[expr] 将 expr因式分解Simplify[expr] 将 expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子多项式/分式转换ExpandAll[expr] 把算式全部展开Together[expr] 将 expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将 expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去分母/分子运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子多项式转换函数Collect[expr,x] 将 expr表示成x的多项式,如Collect[expr,{x,y,…}] 将 expr分别表示成x,y,…的多项式FactorTerms[expr] 将 expr的数值因子提出,如 4x+2=2(2x+1)FactorTerms[expr,x] 将 expr中把所有不包含x项的因子提出FactorTerms[exp r,{x,y,…}] 将 expr中把所有不包含{x,y,...}项的因子提出函数和指数运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpT oTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对 expr展开PowerExpand[expr] 将项次、系数最高次方Coefficient[expr,form] 于 expr中form的系数Exponent[expr,form] 于 expr中form的最高次方Part[expr,n] 或 expr[[n]] 在 expr项中第n个项代换运算子expr/.x->value 将 expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将 expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到 expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或 Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或 Part[p,i,j] p的第i项第j个元素缩短输出指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询物件Command 查询Command的语法及说明Command 查询Command的语法和属性及选择项Aaaa* 查询所有开头为Aaaa的物件定义之查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数f 查询函数f的定义Clear[f] 或 f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhs If指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]泰勒展开式Series[expr,{x,x0,n}] 对expr于x0点作泰勒级数展开至(x-x0)n 项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等于a>b 大于a>=b 大于等于aa<=b 小于等于a!=b 不等于逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot几种指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{?ylabel?},则为y轴之标记。
第9章定义函数与变换规则9.1 自定义函数9.1.1 自定义一元函数自定义一元函数方法如下:f[x_]:=自选表达式(1)先看x_与x功能上的差别(占位符,规则变量,模式变量)(2)再看“=”与“:=”功能上的差别(立即赋值,延时赋值)9.1.2 自定义多元函数自定义二元函数的一般形式是f[u_ ,v_]:=自选表达式Zhou er9.1.3自定义函数的保存与重新调出已经自定义好的函数,如果希望以后多次使用,这就需要妥善保存与重新调出,保存的方法如下:Save[“文件名”,自定义函数名序列f,g,…]Note:Save[“文件名”,变量名1,变量名2,…]查看内容:!!文件名显示已经使用的全部变量:?Global`*9.2纯函数在Mathematica中还常用到一种没有函数名字的函数,这种特殊形式的函数称为纯函数。
9.2.1纯函数的一般形式Function[自变量,函数表达式]9.2.2纯函数的缩写形式上面纯函数的一般形式与通常函数的书写形式相比还较麻烦,至少需要输入更多的字符,如果采用函数的缩写形式就会简便得多,缩写形式如下:函数表达式&另外,符号##表示所有的自变量,##n表示从第n个起往后的所有自变量。
f[##, ##2] & [x, y, z] f[x, y, z, y, z]Eg. a=Range[10]; Select[a, Mod[#, 2] == 0 &]9.3表达式求值与变换规则9.3.1表达式求值在Mathematica系统中,所有输入的实体都可称为表达式,系统对表达式的处理过程称为求值过程,求值的结果可能是一个数值、一个图形、一个表达式等等。
求值的对象是表达式,求值的结果也是表达式,因此可将求值过程看作是从表达式到表达式的一种变换,或者是一种映射。
Mathematica对表达式的处理系统是由一个求值系统和一个变换规则库组成。
变换规则库通常由系统内部已有的函数组成,用户也可新建一些函数加入到规则库中。
1表达式的含义M athematica 能处理数学公式,表以及图形等多多种数据形式。
尽管他们从形式上看起来不一样,但在Mathematica内部都被看成同种类型,即都把他们当作表达式的形式。
Mathematica 中的表达式是由常量、变量、函数、命令、运算符和括号等组成,他最典型的形式是f[x,y] 2.表达式的表示形式在显示表达式时,由于需要的不同,有时我们需要表达式的展开形式,有时又需要其因子乘积的形式。
在我们计算过程中可能得到很复杂的表达式,这时我们又需要对它们进行化简。
常用的处理这种情况的函数。
变换表达式表示形式函数表达式(x+y)^4(x+y^2)展开:还原上面的表达式为因子乘积的形式:多项式表达式的项数较多,比较复杂,在显示时显得比较杂乱,而且在计算过程中没有必要知道全部的内容;或表达式的项很有规律,没有必要打印全部的表达式的结果,Mathematica提供了一些命令,可将它缩短输出或不输出将表达式(1+x)^30展开,并仅显示一行有代表项的式子:将上式分成三行的形式展开:把代数表达式变换到你所需要的形式没有一种固定的模式,一般情况下,最好的办法是进行多次实验,尝试不同的变换并观察其结果,再挑出你满意的表示形式。
3.关系表达式与逻辑表达式我们已经知道“=”表示给变量赋值。
现在我们来学习一些其它的逻辑与关系算子。
关系表达式是最简单的逻辑表达式,我们常用关系表达式表示一个判别条件。
例如:x>0,y=0。
关系表达式的一般形式是:表达式+关系算子+表达式。
其中表达式可为数字表达式、字符表达式或意义更广泛的表达式,如一个图形表达式等。
在我们实际运用中,这儿的表达式常常是数字表达式或字符表达式。
下面出Mathematica中的各种关系算子。
给变量x,y赋值,输出后以变量的值,如:下面是比较两个表达式的大小用一个关系式只能表示一个判定条件,要表示几个判定条件胡组合,必须用逻辑运算符将关系表达式组织在一起,我们称表示判定条件的表达式为逻辑表达式。
mathematica中表达式运算的结合次序
Mathematica是一种强大的数学计算软件,它能够处理各种复杂的数值计算和符号计算任务。
在Mathematica中,表达式的运算是按照一定的结合次序进行的,这是确保计算的正确性
的重要因素。
在Mathematica中,运算的结合次序遵循通常的数学规则。
具体来说,Mathematica按照以下次序进行运算:
1. 指数运算:Mathematica首先计算指数运算,即计算表达式中的幂。
2. 乘法和除法:Mathematica接下来计算乘法和除法运算,按照表达式中出现的顺序进行计算。
3. 加法和减法:Mathematica最后计算加法和减法运算,同样按照表达式中出现的顺序进行计算。
需要注意的是,Mathematica会自动识别和处理括号和其他运算符。
如果表达式中使用了括号,则括号中的计算会优先进行。
此外,Mathematica还提供了控制运算次序的特殊符号和函数。
例如,可以使用符号“!”表示
阶乘运算,在计算过程中优先进行。
另外,可以使用函数Table、Sum和Product等来计算针对特定变量的迭代运算。
为了进一步控制运算次序,Mathematica还提供了不同级别的规则函数,例如:优先级运算规则、结合性运算规则和替换运算规则。
这些规则函数可以帮助用户自定义算法和优化运算过程。
总之,在Mathematica中,表达式的运算按照指数运算、乘法和除法运算,以及加法和减法运
算的顺序进行。
用户可以通过括号、特殊符号和函数,以及规则函数等来进一步控制运算次序,以满足复杂计算任务的需求。
Mathematica 基本运算a+mathematica数学实验(第2版)b+c 加a-b 减a b c 或a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最后一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弧度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcS inh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小于或等于x的最大整数Ceiling[x] 大于或等于x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的随机数(最新版本已经不用这个函数,改为使用RandomReal[])Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值数值设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为x^2 y次方运算子比乘法的运算子有较高的处理顺序四个处理代数指令Expand[expr] 将expr展开Factor[expr] 将expr因式分解Simplify[expr] 将expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子多项式/分式转换函数ExpandAll[expr] 把算式全部展开Together[expr] 将expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去分母/分子的运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子多项式二种转换函数Collect[expr,x] 将expr表示成x的多项式,如Collect[expr,{x,y,…}] 将expr分别表示成x,y,…的多项式FactorTerms[expr] 将expr的数值因子提出,如4x+2=2(2x+1)FactorTerms[expr,x] 将expr中把所有不包含x项的因子提出FactorTerms[expr,{x,y,…}] 将expr中把所有不包含{x,y,...}项的因子提出函数和指数运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpToTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对expr展开PowerExpand[expr] 将项次、系数与最高次方Coefficient[expr,form] 于expr中form的系数Exponent[expr,form] 于expr中form的最高次方Part[expr,n] 或expr[[n]] 在expr项中第n个项代换运算子expr/.x->value 将expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或Part[p,i,j] p的第i项第j个元素缩短输出指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询物件?Command 查询Command的语法及说明??Command 查询Command的语法和属性及选择项?Aaaa* 查询所有开头为Aaaa的物件函数定义、查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数?f 查询函数f的定义Clear[f] 或f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对expr于x0点作泰勒级数展开至(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等于a>b 大于a>=b 大于等于a<b 小于a<=b 小于等于a!=b 不等于逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开基本二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot几种指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{?ylabel?},则为y轴之标记。
Mathematica是一种强大的数学符号计算系统,它可以进行符号运算、数值计算、绘图和数据分析等多种数学操作。
作为一种专业的数学软件,Mathematica在科学研究、工程设计和教育教学中被广泛应用,它为用户提供了丰富的功能和简洁的操作界面。
本文将介绍Mathematica中的符号运算功能,包括基本运算、方程求解、微积分计算、矩阵运算等内容,帮助读者更好地了解和使用这一强大的数学工具。
一、基本运算在Mathematica中,可以使用基本的运算符号进行加减乘除等计算。
输入表达式"a + b",Mathematica会自动进行加法运算并给出结果。
除了基本的四则运算外,Mathematica还支持幂运算、取余运算等操作,可以满足用户在数学计算中的各种需求。
二、方程求解Mathematica能够对各种类型的方程进行求解,包括线性方程、二次方程、多项式方程、常微分方程等。
用户可以通过输入方程表达式,使用Solve或NSolve等函数进行求解,得到方程的解析解或数值解。
Mathematica还支持对方程组进行求解,可以解决多元方程的求解问题。
三、微积分计算微积分是数学中重要的内容,Mathematica提供了丰富的微积分计算功能,包括求导、积分、极限、级数等操作。
用户可以通过输入函数表达式,使用D、Integrate、Limit等函数进行微积分计算,得到函数的导数、不定积分、定积分等结果。
这些功能在科学研究和工程设计中具有重要的应用价值。
四、矩阵运算矩阵运算是数学中常见的运算方式,Mathematica为用户提供了丰富的矩阵运算功能,包括矩阵乘法、转置、逆矩阵、特征值等操作。
用户可以通过输入矩阵表达式,使用Dot、Transpose、Inverse、Eigenvalues等函数进行矩阵运算,得到矩阵的乘积、转置矩阵、逆矩阵、特征值等结果。
这些功能上线性代数和数值分析中具有重要的应用价值。
第3章符号运算求解析解(公式解)的主要工具是符号运算,所谓符号运算是指运算的主要对象是符号、文字或变量。所进行的运算自然是指精确解公式中所需要的各种运算了。比如二次方程求根,被运算的主要对象是文字a、b、c,而不是具体的数值1、2、3,所进行的运算是加、减、乘、除、平方、开平方等。在符号运算中,表达式的变换是最基本的也是最常见的运算,例如对多项式进行展开、分解、集项或者化简等。
3.1 表达式的变换这里的表达式主要是指多项式与有理式(分式多项式),有时也可以是三角多项式等。
化简Simplify[表达式] 设法化简表达式,寻求等价的最简形式化简FullSimplify[表达式] 使用更广泛的变换化简表达式展开Expand[表达式] 展开分子,每项除以分母展开ExpandAll[表达式] 分子与分母完全展开分解Factor[表达式] 将表达式分解因式,表示为最简因式的乘积通分Together[表达式] 用于通分,把所有的项放在同一分母上,并化简约分Cancel[表达式] 用于约分,消去分式中分子和分母的公因式分项Apart[表达式] 将有理分式分解为一些最简分式之和集项Collect[表达式,某一个(或某几个)变量] 将表达式按照某一个(或某几个)变量的幂次进行集项【例1】化简下面各表达式。3.2 函数的极限求函数的极限需分为两种情况,一种是当x→a(a为一有限实数)时,函数f(x)→?,另一种是当x→∞(∞为无穷大记号,包括+∞与-∞)时f(x)→?,在数学里记为lim x→a f(x)=?与lim x→∞f(x)=?,而在Mathematica里记为Limit[f(x),x→a]与Limit[f(x),x →Infinity]。【例1】【例2】【例3】Note:(1)对某些函数,极限虽然存在,但利用Mathematica系统不一定能够求出来。(2)对某些函数,利用Mathematica系统虽然求出了极限,但却不能保证所得结果的正确性。3.3 导函数与偏导数3.3.1求导函数D[f(x),x]D[f(x),{x,n}]上面第一式是将f(x)对x求一阶导数,而第二式是将f(x)对x求n阶导数,式中的D是求导符号。3.3.2求偏导数D[f(x,y),x,y] 将f(x,y)先对x求导,再对y求导。D[f(x,y),{x,m},{y,n}] 将f(x,y)先对x求m 阶导数,再对y求n阶导数。3.4不定积分与定积分3.4.1不定积分求不定积分在数学里的符号是∫f(x)dx=F(x)+c在Mathematica系统中的符号是Integrate[f(x),x]=F(x) ( 将常数c略去不写 )式中Integrate是求不定积分的符号,f(x)为被积函数,x为积分变量。Note:在初等函数范围内,不定积分有时是不存在的,亦即当f(x)为初等函数,而∫f(x)dx却不一定是初等函数.Zhou er3.4.2 定积分Integrate[f(x),{x,a,b}]3.5 将函数展开为幂级数Series[f(x),{x,x0,n}]式中f(x)为给定的函数,x0为展开点的坐标,n为展开的项数Note: Normal[Expr] 去掉余项3.6 求和与求积求和 Sum[u n,{n,n1,n2}]求积 Product[u n,{n,n1,n2}]式中u n为通项,n为通项的项数,n1为起始项,n2为终止项,n2可以取有限数,也可以取Infinity(即+∞)。3.7 方程求根在Mathematica系统中为我们提供了求解各类代数方程精确解的求解函数Solve,它的调用格式如下Solve[代数方程(或方程组),未知量]3.8 常微分方程求解在Mathematica系统中,利用符号运算求解常微分方程的调用函数是DSolve,它的求解对象自然也是以线性常微分方程,特别是常系数线性常微分方程为主。利用DSolve函数求解微分方程的调用格式如下:求通解 DSolve[微分方程或方程组,未知函数,自变量]求特解 DSolve[{微分方程,初始条件},未知函数,自变量]3.9 偏微分方程求解(略)。
mathematica 自定义规则
在Mathematica 中,可以通过定义函数和规则来创建自定义的运算和操作。
以下是一些关于自定义规则的示例:
1、定义函数:
mathematica
f[x_] := x^2
上述代码定义了一个名为 f 的函数,它接受一个参数x,并返回x 的平方。
要使用这个函数,只需输入f[x],其中x 是你想要平方的数值或表达式。
2、定义规则:
mathematica
a /.
b -> c
上述代码将a 中的所有b 都替换为c。
例如,如果你输入a = {1, 2, 3, 4},然后输入a /. b -> c,它会被替换为{c, c, c, c}。
3、定义复合规则:
mathematica
a /.
b -> c/d
上述代码将a 中的所有b 都替换为c/d。
例如,如果你输入a = {1, 2, 3, 4},然后输入a /. b -> c/d,它会被替换为{c/d, c/d, c/d, c/d}。
4、定义带有条件的规则:
mathematica
a /.
b :> If[b > 0, c, d]
上述代码将 a 中的所有 b 都替换为如果 b 大于0,则为c,否则为d。
例如,如果你输入a = {1, -2, 3, -4},然后输入a /. b :> If[b > 0, c, d],它会被替换为{c, d, c, d}。
以上示例只是自定义规则的一小部分,你可以根据需要进行更复杂的定义和操作。