自控原理习题答案
- 格式:doc
- 大小:853.50 KB
- 文档页数:30
⾃动控制原理习题与答案解析精⼼整理课程名称: ⾃动控制理论(A/B卷闭卷)⼀、填空题(每空 1 分,共15分)1、反馈控制⼜称偏差控制,其控制作⽤是通过给定值与反馈量的差值进⾏的。
2、复合控制有两种基本形式:即按输⼊的前馈复合控制和按扰动的前馈复合控制。
为8、PI控制器的输⼊-输出关系的时域表达式是,其相应的传递函数为,由于积分环节的引⼊,可以改善系统的性能。
⼆、选择题(每题 2 分,共20分)1、采⽤负反馈形式连接后,则 ( )A 、⼀定能使闭环系统稳定;B 、系统动态性能⼀定会提⾼;C 、⼀定能使⼲扰引起的误差逐渐减⼩,最后完全消除;D 、需要调整系统的结构参数,才能改善系统性能。
2、下列哪种措施对提⾼系统的稳定性没有效果 ( )。
A 、增加开环极点;B 、在积分环节外加单位负反馈;C 、增加开环零点;D 、引⼊串联超前校正装置。
3、系统特征⽅程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平⾯闭环极点数2=Z 。
4、系统在2)(t t r =作⽤下的稳态误差∞=ss e ,说明 ( ) A 、型别2C 、输⼊幅值过⼤;D 、闭环传递函数中有⼀个积分环节。
5、对于以下情况应绘制0°根轨迹的是( )A 、主反馈⼝符号为“-” ;B 、除r K 外的其他参数变化时;C 、⾮单位反馈系统;D 、根轨迹⽅程(标准形式)为1)()(+=s H s G 。
6、开环频域性能指标中的相⾓裕度γ对应时域性能指标( ) 。
A 、超调%σB 、稳态误差ss eC 、调整时间s tD 、峰值时间p t 7 系统①系统②系统③图2A 、系统①B 、系统②C 、系统③D 、都不稳定8、若某最⼩相位系统的相⾓裕度0γ>o,则下列说法正确的是 ( )。
A 、不稳定;B 、只有当幅值裕度1g k >时才稳定;C 、稳定;D 、不能判⽤相⾓裕度判断系统的稳定性。
自控练习题答案一、选择题1. D2. A3. C4. B5. D6. A7. C8. B9. A 10. D二、填空题1. 自律2. 集中注意力3. 目标4. 执行力5. 推迟满足感6. 时间管理7. 自我约束8. 内在动机9. 意志力 10. 时间三、判断题1. 正确2. 错误3. 正确4. 错误5. 错误6. 正确7. 正确8. 错误9. 正确10. 错误四、简答题1. 什么是自控力?自控力是指个体自觉且有效地控制自己的想法、情绪和行为,以实现长远目标,并抵制诱惑和延迟满足的能力。
2. 自控力为什么重要?自控力是个人成功和幸福的关键因素之一。
它能帮助我们更好地管理时间、保持健康的生活方式、建立良好的人际关系、克服困难和挫折,以及实现个人目标。
3. 自控力如何培养?- 树立明确的目标:明确自己想要实现的目标,并将其分解为小步骤,有计划地逐步实现。
- 锻炼意志力:通过日常生活中的小练习,如控制睡眠时间、克制购物欲望等,逐渐增强意志力。
- 建立良好习惯:通过坚持良好的习惯,如定期锻炼、读书学习等,养成自律的生活方式。
- 寻找内在动机:激发内在动机,找到自己行动的内在意义和价值,这将有助于提高自控力。
- 与他人互助:与身边有自控力的人交流和分享经验,互相鼓励和监督,相互促进自控力的提高。
4. 如何处理自控力不足的情况?- 分析原因:找到自己自控力不足的原因,是因为外界诱惑太多还是自我约束能力不足等。
- 制定策略:根据不同的原因,制定对应的应对策略,如减少外界诱惑、进行时间管理等。
- 寻求支持:向身边的人求助,如朋友、家人或专业人士,获得支持、鼓励和指导。
- 培养耐心:自控力的培养是一个长期的过程,需要耐心和坚持,不要因一时的失败而灰心。
五、综合题自控力对个人发展的影响自控力对个人的发展具有重要的影响。
首先,自控力能帮助人们更好地管理时间,合理分配精力和资源,提高工作效率和学习成绩。
其次,自控力有助于保持健康的生活方式,如健康饮食、规律作息和适量运动,从而增强身体素质和提升生活质量。
第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。
用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。
(2) 缺点:不能自动调节被控量的偏差。
因此系统元器件参数变化,外来未知扰动存在时,控制精度差。
2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。
它是一种按偏差调节的控制系统。
在实际中应用广泛。
⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。
1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。
闭环控制系统常采用负反馈。
由1-1中的描述的闭环系统的优点所证明。
例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。
1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++= (6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dt dt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。
自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。
解:(1) 设输入为y r ,输出为y 0。
弹簧与阻尼器并联平行移动。
(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。
(3) 写中间变量关系式 (4) 消中间变量得 (5) 化标准形 其中:215K K T +=为时间常数,单位[秒]。
211K K K K +=为传递函数,无量纲。
例2-2 已知单摆系统的运动如图2-2示。
(1) 写出运动方程式 (2) 求取线性化方程解:(1)设输入外作用力为零,输出为摆角? ,摆球质量为m 。
(2)由牛顿定律写原始方程。
其中,l 为摆长,l ? 为运动弧长,h 为空气阻力。
(3)写中间变量关系式 式中,α为空气阻力系数dtd lθ为运动线速度。
(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。
(5)线性化由前可知,在? =0的附近,非线性函数sin ? ≈? ,故代入式(2-1)可得线性化方程为例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。
解:(1)设输入量作用力矩M f ,输出为旋转角速度? 。
(2)列写运动方程式 式中, f ?为阻尼力矩,其大小与转速成正比。
(3)整理成标准形为 此为一阶线性微分方程,若输出变量改为?,则由于代入方程得二阶线性微分方程式例2-4 设有一个倒立摆安装在马达传动车上。
如图2-4所示。
图2-2 单摆运动图2-3 机械旋转系统倒立摆是不稳定的,如果没有适当的控制力作用在它上面,它将随时可能向任何方向倾倒,这里只考虑二维问题,即认为倒立摆只在图2-65所示平面内运动。
控制力u 作用于小车上。
1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
看到别人设定的下载币5块钱一个,太黑了。
为了方便各位友友都有享受文档的权利,果断现在下来再共享第六章控制系统的校正及综合6-1什么是系统的校正?系统的校正有哪些方法?6-2试说明超前网络和之后网络的频率特性,它们各自有哪些特点?6-3试说明频率法超前校正和滞后校正的使用条件。
6-4相位滞后网络的相位角滞后的,为什么可以用来改善系统的相位裕度?6-5反馈校正所依据的基本原理是什么?6-6试说明系统局部反馈对系统产生哪些主要影响。
6-7在校正网络中,为何很少使用纯微分环节?6-8试说明复合校正中补偿的基本原理是什么?6-9选择填空。
在用频率法设计校正装置时,采用串联超前网络是利用它的(),采用串联滞后校正网络利用它的()。
A 相位超前特性B 相位滞后特性C 低频衰减特性D 高频衰减特性6-10 选择填空。
闭环控制系统因为有了负反馈,能有效抑制()中参数变化对系统性能的影响。
A 正向通道 B反向通道 C 前馈通道6-11 设一单位反馈系统其开环传递函数为W(s)=若使系统的稳态速度误差系数,相位裕度不小于,增益裕量不小于10dB,试确定系统的串联校正装置。
解:→所以其对数频率特性如下:其相频特性:相位裕度不满足要求设校正后系统为二阶最佳,则校正后相位裕度为,增益裕量为无穷大。
校正后系统对数频率特性如下:校正后系统传递函数为因为所以串联校正装置为超前校正。
6-12设一单位反馈系统,其开环传递函数为W(s)=试求系统的稳态加速度误差系数和相位裕度不小于35的串联校正装置。
解:所以其对数频率特性如下:其相频特性:相位裕度不满足要求,并且系统不稳定。
设校正后系统对数频率特性如上(红线所示):则校正后系统传递函数为因为在时(见红线部分),,则→选取,则校正后系统传递函数为其相频特性:相位裕度满足要求。
校正后的对数频率曲线如下:因为所以校正装置为滞后-超前校正。
6-13设一单位反馈系统,其开环传递函数为W(s)=要求校正后的开环频率特性曲线与M=4dB的等M圆相切,切点频率w=3,并且在高频段w>200具有锐截止-3特性,试确定校正装置。
1.1解:(1)机器人踢足球:开环系统输入量:足球位置输出量:机器人的动作(2)人的体温控制系统:闭环系统输入量:正常的体温输出量:经调节后的体温(3)微波炉做饭:开环系统:输入量:设定的加热时间输出量:实际加热的时间(4)空调制冷:闭环系统输入量:设定的温度输出量:实际的温度1.2解:开环系统:优点:结构简单,成本低廉;增益较大;对输入信号的变化响应灵敏;只要被控对象稳定,系统就能稳定工作。
缺点:控制精度低,抗扰动能力弱闭环控制优点:控制精度高,有效抑制了被反馈包围的前向通道的扰动对系统输出量的影响;利用负反馈减小系统误差,减小被控对象参数对输出量的影响。
缺点:结构复杂,降低了开环系统的增益,且需考虑稳定性问题。
1.3解:自动控制系统分两种类型:开环控制系统和闭环控制系统。
开环控制系统的特点是:控制器与被控对象之间只有顺向作用而无反向联系,系统的被控变量对控制作用没有任何影响。
系统的控制精度完全取决于所用元器件的精度和特性调整的准确度。
只要被控对象稳定,系统就能稳定地工作。
闭环控制系统的特点:(1)闭环控制系统是利用负反馈的作用来减小系统误差的(2)闭环控制系统能够有效地抑制被反馈通道保卫的前向通道中各种扰动对系统输出量的影响。
(3)闭环控制系统可以减小被控对象的参数变化对输出量的影响。
1.4解输入量:给定毫伏信号被控量:炉温被控对象:加热器(电炉)控制器:电压放大器和功率放大器系统原理方块图如下所示:工作原理:在正常情况下,炉温等于期望值时,热电偶的输出电压等于给定电压,此时偏差信号为零,电动机不动,调压器的滑动触点停留在某个合适的位置上。
此时,炉子散失的热量正好等于从加热器获取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉温由于某种原因突然下降时,热电偶的输出电压下降,与给定电压比较后形成正偏差信号,该偏差信号经过电压放大器、功率放大器放大后,作为电动机的控制电压加到电动机上,电动机带动滑线变阻器的触头使输出电压升高,则炉温回升,直至达到期望值。
4-1 根轨迹法使用于哪类系统的分析?4-2 为什么可以利用系统开环零点和开环极点绘制闭环系统的根轨迹?4-3 绘制根轨迹的依据是什么?4-4 为什么说幅角条件是绘制根轨迹的充分必要条件?4-5 系统开零环、极点对根轨迹形状有什么影响?4-6 求下列各开环传递函数所对应的负反馈系统的根轨迹。
(1))2)(1()3()(+++=s s s K s W g K (2))2)(3()5()(+++=s s s s K s W g k (3) )10)(5)(1()3()(++++=s s s s K s W g k解:第(1)小题 由系统的开环传递函数)2)(1()3()(+++=s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 11-=-p 、22-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,两条,一条终止于开环零点,另一条趋于无穷远。
4. 实轴上的根轨迹区间为3~-∝-和1~2--5. 分离点与会合点,利用公式0312111=+-+++d d d ()()()()()()()()()0321213132=+++++-+++++d d d d d d d d d 即:0762=++d d解上列方程得到:586.11-=d ,414.42-=d根据以上结果画出根轨迹如下图:解:第(2)小题 由系统的开环传递函数)2)(3()5()(+++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 00=-p 、21-=-p 、32-=-p2. 终点:=∝g K 时,终止于开环零点,51-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。
4. 实轴上的根轨迹区间为3~5--和0~2-5. 分离点与会合点,利用公式05131211=+-++++d d d d 8865.0-=d6. 根轨迹的渐进线 渐进线倾角为:0009013)21(180)21(180 =-+=-+=μμϕm n 渐进线的交点为:01352311=--+=---=-∑∑==m n z p m i in j j k σ 根据以上结果画出根轨迹如下图:解:第(3)小题 由系统的开环传递函数)10)(5)(1()3()(++++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 10-=-p 、51-=-p 、102-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。
第一章1.开环控制和闭环控制的主要区别是什么?是否利用系统的输出信息对系统进行控制 2. 电加热炉炉温控制中,热电阻丝端电压U 及炉内物体质量M 的变化,哪个是控制量?哪个是扰动?为什么?3. 简述自动控制所起的作用是什么?在没有人直接参与的情况下,利用控制装置,对生产过程、工艺参数、目标要求等进行自动的调节与控制,使之按照预定的方案达到要求的指标。
4. 简述自动控制电加热炉炉温控制的原理。
解答:一、工作原理:系统分析:受控对象——炉子;被控量——炉温;给定装置——电位器干扰——电源U ,外界环境 ,加热物件 ; 测量元件——热电偶; 执行机构——可逆电动机 工作过程:静态 ∆U=0动态 ∆U ≠0工件增多(负载增大)↑↑→↑→↑→∆↓→↓→↑→T U U U U T c a f (负载减小)↓↓→↓→↓→∆↑→↑→↓→T U U U U T c a f二、 温控制系统框图5.比较被控量输出和给定值的大小,根据其偏差实现对被控量的控制,这种控制方式称为 。
6.简述控制系统主要由哪三大部分组成?7.反馈控制系统是指:a.负反馈 b.正反馈 答案a.负反馈8.反馈控制系统的特点是:答案 控制精度高、结构复杂 9.开环控制的特点是:答案 控制精度低、结构简单10.闭环控制系统的基本环节有:给定、比较、控制、对象、反馈11.自控系统各环节的输出量分别为: 给定量、反馈量、偏差、控制量输出量。
第二章1. 自控系统的数学模型主要有以下三种:微分方程、传递函数、频率特性 2. 实际的物理系统都是:a.非线性的 b.线性的 a.非线性的 3. 传递函数等于输出像函数比输入像函数。
4. 传递函数只与系统结构参数有关,与输出量、输入量无关。
5. 惯性环节的惯性时间常数越大,系统快速性越差。
6.由laplace 变换的微分定理,(())L x t ''= 。
7.如图质量、弹簧、摩擦系统,k 和r 分别为弹簧系数和摩擦系数,u(t)为外力,试写出系统的传递函数表示()()/()G s y s u s =。
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。
1—2 题1—2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1—2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
4-1 根轨迹法使用于哪类系统的分析4-2 为什么可以利用系统开环零点和开环极点绘制闭环系统的根轨迹4-3 绘制根轨迹的依据是什么4-4 为什么说幅角条件是绘制根轨迹的充分必要条件4-5 系统开零环、极点对根轨迹形状有什么影响4-6 求下列各开环传递函数所对应的负反馈系统的根轨迹。
(1))2)(1()3()(+++=s s s K s W g K (2))2)(3()5()(+++=s s s s K s W g k (3) )10)(5)(1()3()(++++=s s s s K s W g k解:第(1)小题 由系统的开环传递函数)2)(1()3()(+++=s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 11-=-p 、22-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,两条,一条终止于开环零点,另一条趋于无穷远。
4. 实轴上的根轨迹区间为3~-∝-和1~2--5. 分离点与会合点,利用公式0312111=+-+++d d d ()()()()()()()()()0321213132=+++++-+++++d d d d d d d d d 即:0762=++d d解上列方程得到:586.11-=d ,414.42-=d根据以上结果画出根轨迹如下图:解:第(2)小题 由系统的开环传递函数)2)(3()5()(+++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 00=-p 、21-=-p 、32-=-p2. 终点:=∝g K 时,终止于开环零点,51-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。
4. 实轴上的根轨迹区间为3~5--和0~2-5. 分离点与会合点,利用公式05131211=+-++++d d d d 8865.0-=d6. 根轨迹的渐进线 渐进线倾角为:0009013)21(180)21(180 =-+=-+=μμϕm n 渐进线的交点为:01352311=--+=---=-∑∑==m n z p m i in j j k σ 根据以上结果画出根轨迹如下图:解:第(3)小题 由系统的开环传递函数)10)(5)(1()3()(++++=s s s s K s W g K 得知1. 起点:0=g K 时,起始于开环极点,即 10-=-p 、51-=-p 、102-=-p2. 终点:=∝g K 时,终止于开环零点,31-=-z3. 根轨迹的条数,三条,一条终止于开环零点,另两条趋于无穷远。
自动控制原理课后答案1. 根据反馈控制原理,系统的控制目标是通过比较输出信号与参考信号之间的差异,对系统的输入进行调整,使系统达到期望的状态或行为。
2. 控制系统一般包括传感器、执行器和控制器三个基本组成部分。
传感器用于收集系统的实时数据,执行器用于执行调整系统输入的指令,控制器则根据传感器采集的数据来计算和调整控制信号。
3. 反馈控制系统中,控制器根据系统的输出信号和参考信号之间的差异进行调整。
比例控制器(P控制器)只根据差异的大小,线性比例地调整控制信号;积分控制器(I控制器)不仅考虑差异的大小,还考虑差异的累积量;微分控制器(D控制器)则考虑差异的变化率。
4. P控制器适用于稳态差异较大的系统,可以快速调整系统输出至参考信号附近,但容易产生超调现象;I控制器适用于存在稳态差异的系统,可以逐渐消除稳态差异,但容易产生震荡现象;D控制器适用于存在瞬态差异的系统,可以抑制系统的瞬态响应,但无法消除稳态差异。
5. 比例积分微分控制器(PID控制器)是一种综合了P、I和D控制器的控制器。
通过合理地调整比例、积分和微分系数,可以实现系统的快速响应和稳定。
6. 开环控制系统和闭环控制系统都可以实现对系统的控制,但闭环控制系统更加稳定和鲁棒。
开环控制系统中,控制器不根据系统的反馈信号来调整控制信号,容易受到外部干扰和参数变化的影响。
7. 可以使用根据控制对象的动态特性设计的控制器来提高系统的控制性能。
常见的控制器设计方法包括根据稳态误差的允许范围来选取比例、积分和微分系数,以及根据系统传递函数进行校正和补偿。
8. 多变量控制系统可以同时控制多个输入和多个输出。
常见的多变量控制系统包括串级控制、并联控制和内模控制等。
9. 控制系统的稳定性是指当系统接受一定的输入时,输出是否趋于稳定。
稳定性的判断可以通过判断系统的传递函数的极点位置来确定。
10. 控制系统的仿真和实验可以通过使用计算机软件进行模拟仿真,或搭建实际的物理实验平台进行。
第七章7-1 什么是非线性系统?它是什么特点?7-2 常见的非线性特征有哪些?7-3 非线性系统的分析设计方法有哪些?7-4 描述函数分析法的实质是什么?试描述函数的概念及其求取方法。
7-5 试述相平面分析法的实质。
为什么它是分析二阶系统的有效方法?7-6 试确定3xy表示的非线性元件的描述函数。
7-7 一放大装置的非线性特性示于图p7-1,求其描述函数。
7-8 图p7-2为变放大系数非线性特征,求其描述函数。
7-9 求图p7-3所示非线性环节的买书函数。
7-10 某死区非线性特性如图p7-4所示,试画出该环节在正弦输入下的输出波形,并求出其描述函数N{A}。
7-11 图p7-5给出几个非线性特性。
试分别写出其基准描述函数公式,并正在复平面上大致画出其基准描述函数的负倒数特性》7-12 判断图p7-6所示各系统是否稳定?-1/N。
与K。
W(jw)的交点是稳定工作点还是不稳定工作点?解:(a)是稳定工作点(b)是稳定工作点(c)a点不是稳定工作点b点是稳定工作点(d)不是稳定工作点(e)是稳定工作点7-13 图p7-7所示为继电器控制系统的结构图,其线性部分的传递函数为 )11.0)(15.0)(1(10)(+++=s s s s W 试确定自持振荡的角频率和振幅。
解:该系统非线性部分为具有滞环的两位置继电器,其描述函数为(见教材P343 公式(7-25)):)(414)(22h A A Mh jA h A M A N ≥-⎪⎭⎫⎝⎛-=ππ则)(414141*********)(1222222222h A M h j A h M A A h j A h M A A h A h A h jA h M A A h j A h A h j A h A h jA h M AA h jA h MAA N ≥-⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛--=-⎪⎭⎫⎝⎛-=-ππππππ由图可得:2=M ,1=h 代入到)(1A N -中,)(8118)(12h A j A A A N ≥-⎪⎭⎫ ⎝⎛--=-ππ线性部分相频为:)1.01)(5.01)(1()05.06.165.01(10)1.01)(5.01)(1()1.01)(5.01)(1(10)1.01)(5.01)(1)(11.0)(15.0)(1()1.01)(5.01)(1(10)11.0)(15.0)(1(10)(222223222222ωωωωωωωωωωωωωωωωωωωωωωωωω+++---=+++---=---+++---=+++=j j j j j j j j j j j j j j j j j j W因为)(ωj W 曲线与)(1A N -曲线相交,则虚部8)1.01)(5.01)(1(5.016222223πωωωωωj j j -=+++--即8)1.01)(5.01)(1(5.016222223πωωωωω=++++ ωωωωω2832.6194.0126.12625.00025.03246+=+++即012832.626.1194.02625.00025.02346=+-+-+ωωωωω 解上述方程得到:1645.01=ω,4256.22=ω00198.1494.07.434.91645.01.0arctan 1645.05.0arctan 1645.0arctan )(-=---=⨯-⨯--=ωϕ显然不符合题义。
第一章 习题答案1-11-21-3 闭环控制系统主要由被控对象,给定装置,比较、放大装置,执行装置,测量和变送装置,校正装置等组成。
被控对象:指要进行控制的设备和过程。
给定装置:设定与被控量相对应给定量的装置。
比较、放大装置:对给定量与测量值进行运算,并将偏差量进行放大的装置。
执行装置:直接作用于控制对象的传动装置和调节机构。
测量和变送装置:检测被控量并进行转换用以和给定量比较的装置。
校正装置:用以改善原系统控制性能的装置。
题1-4 答:(图略)题1-5 答:该系统是随动系统。
(图略) 题1-6 答:(图略)第二章习题答案题2-1 解:(1)F(s)=12s 1+-Ts T(2)F(s)=0.5)421(2+-s s(3)F(s)=428+⋅s es sπ (4)F(s)=25)1(12+++s s(5)F(s)=32412ss s ++ 题2-2 解:(1) f(t)=1+cost+5sint(2) f(t)=e -4t(cost-4sint) (3) f(t)=t t t te e e 101091811811----- (4) f(t)= -t t tte e e ----+-3118195214 (5) f(t)= -t te e t 4181312123--+++ 题2-3 解:a)dtduu C R dt du R R c c r 22111=++)( b)r c c u CR dt du R R u C R dt du R R 1r 12112111+=++)( c) r r r c c c u dtdu C R C R dtu d C C R R u dtdu C R C R C R dtu d C C R R +++=++++)()(1211222121122111222121 题2-4 解:a) G(s)=1)(212++s T T sT (T 1=R 1C, T 2=R 2C )b) G(s)=1)(1212+++s T T s T (T 1=R 1C, T 2=R 2C )c) G(s)= 1)(1)(32122131221+++++++s T T T s T T s T T s T T (T 1=R 1C 1, T 2=R 1C 2, T 3=R 2C 1, T 4=R 2C 2 ) 题2-5 解:(图略) 题2-6 解:33)(+=Φs s 题2-7 解:a) ksf ms s +-=Φ21)(b) )()()(1))(1)(()(21221s G s G s G s G s G s +++=Φc) )()(1)())()(()(31321s G s G s G s G s G s ++=Φd) )()()()(1))()()(323121s G s G s G s G s G s G s -+-=Φe) G(s)=[G 1(s)- G 2(s)]G 3(s)f) )()()()()()()()()()(1)()()()()(43213243214321s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +-++=Φg) )()()()()()()()(1)()()()(43213212321s G s G s G s G s G s G s G s G s G s G s G s -+-=Φ题2-8 解:102310)1()()(k k s s T Ts k k s R s C ⋅++++⋅=1023101)1()()(k k s s T Ts k k s N s C ⋅++++⋅=1023102)1()()(k k s s T Ts s T k k s N s C ⋅++++⋅⋅⋅= 题2-9 解:)()()()(1)()()(4321111s G s G s G s G s G s R s C +=)()()()(1)()()(4321222s G s G s G s G s G s R s C +=)()()()(1)()()()()(432142121s G s G s G s G s G s G s G s R s C +=)()()()(1)()()(4321412s G s G s G s G s G s R s C +=题2-10 解:(1)3212321)()(k k k s k k k s R s C +=3212032143)()()(k k k s s G k k k s k k s N s C +⋅+=(2) 2140)(k k sk s G ⋅-= 题2-11 解:122212211111)()1()()(z z s T s T T C s T T s T k k s s m m d e L ⋅++⋅+++⋅=ΘΘ (T 1=R 1C, T 2=R 2C, T d =L a /R a , T m =GD 2R a /375C e C m )第三章 习题答案3-1. s T 15=(取5%误差带) 3-2. 1.0=H K K=2 3-3.当系统参数为:2.0=ξ,15-=s n ω时,指标计算为:%7.52%222.0114.32.01===-⨯---e eξξπσs t ns 352.033=⨯==ξωs t n p 641.02.01514.3122=-⨯=-=ξωπ当系统参数为:0.1=ξ,15-=s n ω时,系统为临界阻尼状态,系统无超调,此时有:st ns 95.057.10.145.67.145.6=-⨯=-=ωξ3-4.当110-=s K 时,代入上式得:110-=s n ω,5.0=ξ,此时的性能指标为:%3.16%225.0114.35.01===-⨯---e eξξπσs t ns 6.0105.033=⨯==ξωs t n p 36.05.011014.3122=-⨯=-=ξωπ当120-=s K 时,代入上式得:11.14-=s n ω,35.0=ξ,此时的性能指标为:%5.30%2235.0114.335.01===-⨯---e eξξπσs t ns 6.01.1435.033=⨯==ξω由本题计算的结果可知:当系统的开环放大倍数增大时,其阻尼比减小,系统相对稳定性变差,系统峰值时间变短,超调量增大,响应变快,但由于振荡加剧,调节时间不一定短,本题中的调节时间一样大。
《自动控制原理》习题答案普通高等教育“十一五”国家级规划教材全国高等专科教育自动化类专业规划教材《自动控制原理》习题答案主编:陈铁牛机械工业出版社第一章习题答案1-11-21-3闭环控制系统主要由被控对象,给定装置,比较、放大装置,执行装置,测量和变送装置,校正装置等组成。
被控对象:指要进行控制的设备和过程。
给定装置:设定与被控量相对应给定量的装置。
比较、放大装置:对给定量与测量值进行运算,并将偏差量进行放大的装置。
执行装置:直接作用于控制对象的传动装置和调节机构。
测量和变送装置:检测被控量并进行转换用以和给定量比较的装置。
校正装置:用以改善原系统控制性能的装置。
题1-4 答:(图略)题1-5 答:该系统是随动系统。
(图略) 题1-6 答:(图略)第二章习题答案题2-1 解:(1)F(s)=12s 1+-Ts T(2)F(s)=0.5)421(2+-s s(3)F(s)=428+⋅s e s sπ(4)F(s)=25)1(12+++s s(5)F(s)=32412ss s ++ 题2-2 解:(1) f(t)=1+cost+5sint (2) f(t)=e -4t(cost-4sint) (3) f(t)=t t t te e e 101091811811----- (4) f(t)= -t t tte e e ----+-3118195214 (5) f(t)= -t te e t 4181312123--+++ 题2-3 解:a)dtduu C R dt du R R c c r 22111=++)( b)r c c u CR dt du R R u C R dt du R R 1r 12112111+=++)( c) r rr c c c u dtdu C R C R dtu d C C R R u dtdu C R C R C R dtu d C C R R +++=++++)()(1211222121122111222121题2-4 解:a) G(s)=1)(212++s T T sT (T 1=R 1C, T 2=R 2C )b) G(s)=1)(1212+++s T T s T (T 1=R 1C, T 2=R 2C )c) G(s)= 1)(1)(32122131221+++++++s T T T s T T s T T s T T (T 1=R 1C 1, T 2=R 1C 2, T 3=R 2C 1, T 4=R 2C 2 )题2-5 解:(图略) 题2-6 解:33)(+=Φs s 题2-7 解:a) ksf ms s +-=Φ21)(b) )()()(1))(1)(()(21221s G s G s G s G s G s +++=Φc) )()(1)())()(()(31321s G s G s G s G s G s ++=Φd) )()()()(1))()()(323121s G s G s G s G s G s G s -+-=Φe) G(s)=[G 1(s)- G 2(s)]G 3(s)f) )()()()()()()()()()(1)()()()()(43213243214321s G s G s G s G s G s G s G s G s G s G s G s G s G s G s +-++=Φg) )()()()()()()()(1)()()()(43213212321s G s G s G s G s G s G s G s G s G s G s G s -+-=Φ题2-8 解:102310)1()()(k k s s T Ts k k s R s C ⋅++++⋅=1023101)1()()(k k s s T Ts k k s N s C ⋅++++⋅=1023102)1()()(k k s s T Ts s T k k s N s C ⋅++++⋅⋅⋅= 题2-9 解:)()()()(1)()()(4321111s G s G s G s G s G s R s C +=)()()()(1)()()(4321222s G s G s G s G s G s R s C +=)()()()(1)()()()()(432142121s G s G s G s G s G s G s G s R s C +=)()()()(1)()()(4321412s G s G s G s G s G s R s C += 题2-10 解:(1)3212321)()(k k k s k k k s R s C +=3212032143)()()(k k k s s G k k k s k k s N s C +⋅+= (2) 2140)(k k sk s G ⋅-= 题2-11 解:122212211111)()1()()(z z s T s T T C s T T s T k k s s m m d e L ⋅++⋅+++⋅=ΘΘ (T 1=R 1C, T 2=R 2C, T d =L a /R a , T m =GD 2R a /375C e C m )第三章 习题答案3-1. s T 15=(取5%误差带) 3-2. 1.0=H K K=2 3-3.当系统参数为:2.0=ξ,15-=s n ω时,指标计算为:%7.52%222.0114.32.01===-⨯---e eξξπσs t ns 352.033=⨯==ξωs t n p 641.02.01514.3122=-⨯=-=ξωπ当系统参数为:0.1=ξ,15-=s n ω时,系统为临界阻尼状态,系统无超调,此时有:st ns 95.057.10.145.67.145.6=-⨯=-=ωξ3-4.当110-=s K 时,代入上式得:110-=s n ω,5.0=ξ,此时的性能指标为:%3.16%225.0114.35.01===-⨯---e eξξπσs t ns 6.0105.033=⨯==ξωs t n p 36.05.011014.3122=-⨯=-=ξωπ当120-=s K 时,代入上式得:11.14-=s n ω,35.0=ξ,此时的性能指标为:%5.30%2235.0114.335.01===-⨯---e eξξπσs t ns 6.01.1435.033=⨯==ξω由本题计算的结果可知:当系统的开环放大倍数增大时,其阻尼比减小,系统相对稳定性变差,系统峰值时间变短,超调量增大,响应变快,但由于振荡加剧,调节时间不一定短,本题中的调节时间一样大。
3-5. )3.24(1129)(+=s s s G3-6.3=K ,47.0=f K 3-7.1)系统稳定。
2)系统稳定。
3)系统不稳定。
4)系统不稳定,且有两个不稳定的根。
3-8.系统的闭环传递函数为:60070600)601101(12)]([)(2++=+-+==Φs s s s t k L s 将系统传递函数与二阶系统标准式:2222nn ns s ωξωω++比较可知: 15.24600-==s n ω; 43.1600270=⨯=ξ3-9.1)系统稳定的K 值为:0>K 2)系统稳定的条件为:30<<K 3)系统稳定的条件为:2000<<K3-10.(1)系统稳定域为:22)1)(11(0++<<n nK (2)当n=1时,系统稳定范围是:80<<K当n=0.5时,系统稳定范围是:25.110<<K 当n=0.1时,系统稳定范围是:21.1220<<K当n=0.01时,系统稳定范围是:0201.102020<<K 当n=0时,系统稳定范围是:∞<<K 0(3) 在系统时间常数相距越远时,稳定的K 值范围越大。
3-11.(1)a) 当)(1)(t t r =,)(1)(t t n =时,则误差为:11110K K e e e ssn ssr ss -=-+=+= b) 当t t r =)(,t t n =)(时,则误差为: ∞=+=ssn ssr ss e e e (2)a) 当)(1)(t t r =,)(1)(t t n =时,则误差为:0011=++=pss K eb) 当t t r =)(,t t n =)(时,则误差为: 11)(lim K s sE e s ss -==→ 3-12.1)当12=K 时,系统相当于0型。
2)当要求系统具有1型精度时,应有: 02>K3-13.ss s s s s s s s E 1.020********)1()(22⨯++-⨯+++=1.0)(lim 0-==→s sE e s ss3-14.1) 当:21)(s s R =时,0)(lim 0==→s sE e s ss2) 当:31)(s s R =时,020)(lim a a s sE e s ss==→ 3-15.证明:系统的误差为:)()()()()()()()(111111111110s R a s a s a s b a s b a s s R a s a s a s b s b s b s b s R s C s R s E nn n n m n m n nn n n n mm m m ++⋅⋅⋅++-+-+⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅++-=-=--------由于系统稳定,可用终值定理求稳态误差。
1) 当系统为阶跃输入时:sRs R =)(,则稳态误差为: s Ra s a s a sb a s b a s s s sE e nn n n m n m n n s s ss ⋅++⋅⋅⋅++-+-+⋅⋅⋅+==----→→1111100)()(lim )(lim ,可见稳态误差等于零的条件是:n m a b =2) 当系统为斜坡输入时:2)(s vs R =,则稳态误差为: s va s a s a sb a s b a s b a s sva s a s a sb a s b a s b a s s s sE e nn n n m n m n m n n s n n n n m n n n n n n s s ss ⋅++⋅⋅⋅++-+-+-+⋅⋅⋅+=⋅++⋅⋅⋅++-+-+-+⋅⋅⋅+==------→------→→11111212021111122200)()()(lim)()()(lim )(lim可见稳态误差为零的条件是:n m a b =;11--=n m a b3-16.应选取传函为:sbas s G +=)(的形式,在选择参数使系统稳定的条件下,当:s R s R =)(,sN s N =)(时求得系统的稳态误差为:0)(lim 0==→s sE e s ss3-17.系统的误差为:)()()(11)()()(11)()()()(s N s H s G s R s H s G s C s H s R s E +-+=-=可见干扰作用下的误差的大小与输入作用下的误差有相同的形式,为干扰值的)()(11s H s G +倍。