专题:一次函数重难点题型专题讲练
- 格式:pdf
- 大小:398.56 KB
- 文档页数:4
学情分析基础较好,对于知识灵活运用需要训练课题一次函数导入专题学习目标与考点分析学习目标:1、对于一次函数的性质和图像的熟练运用和把握2、理解一次函数与二元一次方程组的联系3、理解一次函数和正比例函数的联系和区别考点分析:1、一次函数的性质和图像的把握2、正比例函数的性质和一次函数的区别学习重点重点:1、一次函数性质和图像的理解2、正比例函数图像与一次函数图像区别学习方法讲练结合练习巩固学习内容与过程一、知识点梳理一次函数(一)函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
第05讲一次函数的应用(6类热点题型讲练)1、掌握一次函数与一元一次方程之间的关系;2、掌握单个一次函数图象的应用;3、掌握两个一次函数图象的应用;4、能利用函数图象解决数学问题.知识点01 一元一次方程与一次函数的关系1)一元一次方程可转化为一般式:ax+b=02)一次函数为:y=kx+b的形式;当y=0时,一次函数x的值就是一元一次方程的解。
y=0时x的值,即一次函数与x轴的交点横坐标,就是对应一元一次方程的解3)每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这时的函数为何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标.知识点02 一次函数的实际应用1)数学建模的一般思路数学建模的关键是将实际问题数学化,从而得到解决问题的最佳方案、最佳策略.在建模的过程中,为了既合乎实际问题又能求解,这就要求在诸多因素中抓住主要因素进行抽象化简,而这一过程恰是我们的分析、抽象、综合、表达能力的体现.函数建模最困难的环节是将实际情景通过数学转化为什么样的函数模型. 2)正确认识实际问题的应用在实际生活问题中,如何应用函数知识解题,关键是建立函数模型,即列出符合题意的函数解析式,然后根据函数的性质综合方程(组)、不等式(组)及图象求解.注:要注意结合实际,确定自变量的取值范围,这是应用中的难点,也是中考的热门考点.3)选择最简方案问题分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.题型01 已知直线与坐标轴交点求一元一次方程的解22023()0y kx b k =+≠x y 题型02 利用图象法解一元一次方程【典例2】(2023春·河北石家庄·八年级校考期中)数形结合是解决数学问题常用的思想方法.如图,直线21y x =-与直线()0y kx b k =+≠相交于点()23P ,.根据图像可知,关于x 的方程21x kx b -=+的解是( )A .1x =B .2x =C .3x =D .4x =【变式1】(2023春·山东烟台·七年级统考期末)如图,直线5y x =+和直线y ax b =+相交于点(2025)P ,,则方程5x ax b +=+的解是( )A .25x =B .20xC .15x =D .5x =【变式2】(2023春·河南商丘·八年级统考期末)如图,直线4y x =+和直线y ax b =+相交于点P ,根据图像可知,关于x 的方程4x ax b +=+的解是( )A .16x =或20xB .20xC .16x =D .16x =-题型03 一次函数的应用——分配方案问题【典例3】(2023春·云南临沧·八年级统考期末)为全面推进乡村振兴,某省实行城市援助乡镇的政策.该省的A 市有120吨物资,B 市有130吨物资.经过调研发现该省的甲乡需要140吨物资,乙乡需要110吨物资.于是决定由A 、B 两市负责援助甲、乙两乡、已知从A 市往甲、乙两乡运送物资的运费分别为300元/吨、150元/吨,从B 市往甲、乙两乡运送物资的运费分别为200元/吨、100元/吨.(1)设从A 市往甲乡运送x 吨物资,从A 、B 两市向甲、乙两乡运送物资的总运费为y 元,求y 与x 的函数解析式.(2)请设计运费最低的运送方案,并求出最低运费.【变式1】(2023春·河南郑州·八年级河南省实验中学校考期中)4月23日是“世界读书日”,某书店在这一天举行了购书优惠活动,有两种优惠方案可以选择:方案一:享受当天购书按标价总额8折的普通优惠;方案二:50元购买一张“书香城市纪念卡”,当天凭卡购书,享受标价总额在普通优惠的基础上再打7.5折的优惠.设小明当天购书标价总额为x (50)x >元,方案一应付1y 元,方案二应付2y 元.(1)当150x =时,请通过计算说明选择哪种购书方案更划算;(2)直接写出12,y y 与x 的函数关系式;(3)小明如何选择购书方案才更划算?【变式2】(2023春·河南南阳·八年级统考阶段练习)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为1y (元),且11y k x b =+;按照方案二所需费用为2y (元),且22y k x =.其函数图象如图所示.(1)求k 1和b 的值,并说明它们的实际意义;(2)求打折前的每次健身费用和2k 的值;(3)八年级学生小华计划暑期前往该俱乐部健身7次,应选择哪种方案所需费用更少?请说明理由.题型04一次函数的应用——最大利润问题(1)求购进A,B两种模型每件分别需多少元?(2)若销售每件A种模型可获利润20元.每件B种模型可获利润30元.商店用1万元购进模型,且购进A 种模型的数量不超过B种模型数量的8倍,设总盈利为W元,购买B种模型b件,请求出W关于b的函数关系式,并求出当b为何值时,销售利润最大,并求出最大值.题型05一次函数的应用——行程问题【典例5】(2023春·山东淄博·七年级统考期中)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发开往乙地.如图,线段OA表示货车离甲地距离(y千米)与时间(x小时)之间的函数关系;折线BCD表示轿车离甲地距离(y千米)与(x小时)之间的函数关系.请根据图象解答下列问题:(1)求线段CD对应的函数解析式.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?(3)轿车到达乙地后,货车距乙地多少千米.【变式1】(2023·河北沧州·校考模拟预测)航模兴趣小组在操场上进行航模试验,甲型航模从距离地面20米处出发,以a米/分的速度匀速上升,乙型航模从距离地面50米处同时出发,以15米/分的速度匀速上升,经过6分钟,两架航模距离地面高度都是b米,两架航模距离地面的高度y米与时间x分钟的关系如图.两架航模都飞行了20分钟.(1)直接写出a、b的值;(2)求出两架航模距离地面高度y甲、y乙(米)与飞行时间x(分钟)的函数关系式;(3)直接写出飞行多长时间,两架航模飞行高度相差25米?【变式2】(2023春·江苏淮安·九年级校考期中)如图1,甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,甲车到达C地后因有事立刻按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图2,结合图像信息解答下列问题:(1)乙车的速度是千米/时,乙车行驶小时到达A地;(2)求甲车从C地按原路原速返回A地的过程中,甲车距它出发地的路程y与它出发的时间x的函数关系式;(3)求甲车出发多长时间两车相距60千米?题型06一次函数的应用——几何问题【典例6】(2023春·河南南阳·八年级校考阶段练习)如图,正方形ABCD的边长为4,P为正方形边上一动→→→,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则点,运动路线是D C B A下列图象能大致反映y与x的函数关系的是()A .B .C .D .【变式1】(2021春·福建漳州·七年级福建省漳州第一中学校考期中)如图,已知动点P 从B 点出发,以每秒2cm 的速度在图①的边(相邻两边互相垂直)上按B C D E F A →→→→→的路线移动,相应的ABP的面积()2cm S 与点P 的运动时间()t s 的图象如图②所示,且6cm AB =.当230cm S =时,t = .【变式2】(2023春·安徽宿州·七年级校考期中)如图,在长方形ABCD 中,8BC =,6CD =,点E 为边AD 上一动点,连接CE ,随着点E 的运动,DCE △的面积也发生变化.(1)写出DCE △的面积y 与AE 的长()08x x <<之间的关系式;(2)当3x =时,求y 的值.A .0x =B .3x =C .2x =-D .3x =-1A .湖水面大气压强为76.0cmHgB .湖水深23m 处的压强为230cmHg二、填空题5.(2022秋·江西景德镇·八年级统考期中)如图,一次函数y kx b =+的图象与x 轴、y 轴分别交于点()30A -,和点()0,2B ,则关于x 的一元一次方程0kx b +=的解为x = .6.(2023·辽宁葫芦岛·统考二模)如图,直线3y x 与直线y kx b =+交于点(),2A m ,则关于x 的方程3kx b x +=+的解为 ;7.(2023春·山东烟台·六年级统考期末)某菜农想围成一个如图所示的长方形ABCD 菜园,菜园的一边利用足够长的墙,已知长方形菜园ABCD 的另外三边总长度恰好为48米,设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间关系表达式是 .8.(2023春·浙江杭州·九年级校联考阶段练习)为运输一批医用物质,一辆货车先从甲地出发运送物资到乙地,稍后一辆轿车从甲地急送专家到乙地.已知甲、乙两地的路程是360km ,货车行驶时的速度是60/h km ,两车离甲地的路程s (km )与时间t (h )的函数图象如图,则=a ;轿车比货车早 小时到达乙地.三、解答题9.(2023春·山东聊城·八年级校考阶段练习)某健身体验中心为答谢新老会员举行春日大回馈活动,特推出两种“春季唤醒计划活动方案.方案1:顾客不购买会员卡,每次健身收费20元.方案2:顾客购买会员卡,每张会员卡100元,每张会员卡仅限本人使用一年,每次健身收费10元.设小宇一年来此健身体验中心健身的次数为x (次),使用方案1的费用为y 1(元),使用方案的费用为y 2(元).(1)请直接写出y 1,y 2与x 之间的函数表达式;(2)请根据小宇一年内前往该健身房训练的次数确定哪种方案比较合算.10.(2023春·陕西榆林·九年级校考期中)陕西周至,被誉为“猕猴桃之乡”,世界上最大的猕猴桃种植基地.某水果经销商计划从种植专业户李大爷处购进甲,乙两种新品猕猴桃进行销售.已知李大爷处乙种猕猴桃的进价为8元/千克:李大爷对甲种猕猴桃的价格根据进货量给予优惠,设该经销商购进甲种猕猴桃x 千克,购进甲种猕猴桃所需费用为y 元,y 与x 之间的函数关系如图所示.(1)求y 与x 之间的函数关系式;(2)若该经销商计划从李大爷处一次性购进甲,乙两种猕猴桃共200千克,且甲种猕猴桃不少于45千克,但又不超过80千克.如何分配甲,乙两种猕猴桃的购进量,才能使该经销商购进这两种猕猴桃付款总金额w (元)最少?11.(2023春·河南漯河·八年级校考期末)为响应习近平总书记的号召,鼓励学生多读书,某图书馆针对学生推出两种新的借阅优惠方案.甲方案:凭学生证办理借阅卡,充值超过20元时,超过多少送多少;乙方案:凭学生证办理会员卡,充值每满40元再送20元.设借阅时间为x 天,甲、乙两种方案每本书的借阅租金分别表示1y (元),2y (元)12y y ,关于x 的所数图象如图所示.(1)分别直接写出12y y ,与x 之间的函数关系式;(2)请求出图中线段AB 的长并说明它的实际意义;(3)八年级小兰准备用40元钱在该图书馆借阅一本书,选择哪种方案办卡更划算?说明理由.12.(2021春·福建漳州·七年级福建省漳州第一中学校考期中)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以小明3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.如图中线段AB ,OB 分别表示父子俩送票、取票过程中,离体育馆的路程s (米)与所用时间t (分钟)之间的图象,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变).(1)图中可知小明家离体育馆_____________米,父子俩在出发后_____________分钟相遇.(2)你能求出父亲与小明相遇时,距离体育馆还有多远?(3)小明能否在比赛开始之前赶回体育馆?13.(2023春·河南商丘·八年级校联考期末)2022年河南省全民健身(线上)运动会最终各奖项于12月20日公布,此次盛会充分展示疫情防控常态化下我省全民健身开展情况,某健身房于此推出“云健身”服务,针对特殊人群开展活动.活动方案如下:方案一:不购买“云VIP ”,每次收费10元;方案二:购买“云VIP ”,(1)k=;购买“云VIP”需元;B款汴绣打几折出售时,A,B两款沐绣的销售总额恰好实现盈亏平衡?。
第07讲类比归纳专题:一次函数与三角形综合问题(4类热点题型讲练)目录【类型一一次函数与三角形的面积问题】 (1)【类型二一次函数与三角形全等问题】 (3)【类型三一次函数与三角形存在问题】 (5)【类型四一次函数中折叠问题】 (9)【类型一一次函数与三角形的面积问题】例题:(2023春·福建福州·八年级福建省福州第一中学校考期中)在平面直角坐标系xOy中,一次函数()0y kx b k=+≠的图象经过点()0,5B.A-,()2,1(1)求这个一次函数的解析式;的面积.(2)若这个一次函数的图象与x轴的交点为C,求AOC【变式训练】4.(2023春·湖南长沙·八年级长沙市开福区青竹湖湘一外国语学校校考期中)将正比例函数3y x =的图象平移后经过点()1,4.(1)求平移后的函数表达式;(2)求平移后函数的图象与坐标轴围成的三角形的面积.5.(2023春·江西南昌·八年级统考期末)如图,直线24y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求A 、B 两点的坐标;(2)若在x 轴上有一点P ,使2OP OA =,求PAB 的面积.6.(2023春·上海静安·八年级上海市回民中学校考期中)在直角坐标xOy 中,直线1l 与23y x =-平行,且经过点()05,,将直线1l 向上平移3个单位,得到直线2l (1)求这两条直线的解析式;(2)如果直线2l 与x 轴、y 轴分别交于点A ,B ,求AOB 的面积.7.(2023春·全国·八年级专题练习)如图,直线2y kx =-与x 轴、y 轴分别交于B ,C 两点,其中1OB =.(1)求k 的值;(1)求A,B两点的坐标;(2)求AOF的面积S与x之间的函数关系式,并写出自变量(3)当AOF的面积12 S S =形,若存在,请求出点P【类型二一次函数与三角形全等问题】例题:(2023春·全国·八年级专题练习)直线AB:y x b=+分别与x,y轴交于A,B两点,点A的坐标为(3-,0),过点B的直线交x轴正半轴于点C,且:3:1OB OC=.(1)求点B的坐标及直线BC的函数表达式;(2)在坐标系平面内,存在点D ,使以点A ,B ,D 为顶点的三角形与ABC 全等,画出ABD ,并求出点D 的坐标.【变式训练】2.(2023春·全国·八年级专题练习)如图,直线绕点A 顺时针旋转90°得射线全等,试确定点Q 的横坐标.3.(2022秋·陕西西安·九年级校考开学考试)如图,直线(1)求直线l2的解析式;(2)若点M是直线l2上的点,过点M作MN⊥y轴于点N,要使以O、M、N为顶点的三角形与△AOD全等,求所有满足条件的点M的坐标.4.(2022·辽宁丹东·八年级期末)已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;(2)△AOB与△FOD是否全等,请说明理由;(3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.【类型三一次函数与三角形存在问题】(1)求直线2l的解析式;△的面积;(2)求ADC△的面积等于3,若存在请求出点P的坐标,若不存在请说明理由.(3)在直线1l上是否存在点P使得PAC【变式训练】(1)求点B和点C的坐标.(2)求OAC的面积.(3)是否存在点M,使OMC的面积是OAC 由.(1)写出点D的坐标,并求出直线△的面积;(2)连接BC,求BCD(3)直线2l上是否存在一点P,使得(1)求直线2l 的函数解析式;(2)求ADC △的面积;(3)在直线2l 是否存在点P ,使得CDP △面积是ADC △面积的2倍?如果存在,请求出P 坐标;如果不存在,请说明理由.5.(2023秋·山东济南·八年级统考期末)如图,在平面直角坐标系中,直线AB :y kx b =+与x 轴交于点()60A ,,与y 轴交于点()06B ,,与直线CD 交于点E .已知点D 的坐标为()02,,点C 在A 的左侧且12AC =.(1)分别求出直线AB 和直线CD 的表达式;(2)在直线CD 上,是否存在一点P ,使得8BEP S = ,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在坐标轴上,是否存在一点Q ,使得BEQ 是以BE 为直角边的直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【类型四一次函数中折叠问题】例题:(2023秋·山东济南·八年级统考期末)如图1,在同一平面直角坐标系中,直线AB :2y x b =+与直线AC :3y kx =+相交于点(,4)A m .与x 轴交于点(4,0)B -,直线AC 与x 轴交于点C .(1)填空:b =______,m =______,k =______;(2)如图2.点D 为线段BC 上一动点,将ACD 沿直线AD 翻折得到AED △,线段AE 交x 轴于点F .①求线段AE 的长度;②当点E 落在y 轴上时,求点E 的坐标;③若DEF 为直角三角形,请直接写出满足条件的点D 的坐标.【变式训练】3.(2023春·八年级课时练习)如图,在平面直角坐标系xOy 中,点O 为坐标原点,直线4y x =-+与x 轴交于点A ,与y 轴交于点B .(1)求点A ,B 的坐标;(2)在直线AB 上是否存在点P ,使OAP △是以OA 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将Rt AOB △折叠,使OB 边落在AB 上,点O 与点D 重合,折痕为BC ,求折痕BC 所在直线的表达式.4.(2023春·八年级课时练习)如图,直线y kx b =+与x 轴、y 轴分别交于点A 和点B ,点C 在线段AO 上,将ABC 沿BC 所在直线折叠后,点A 恰好落在y 轴上点D 处,若4OA =,2OD =.(1)求直线AB 的解析式.(1)点B的坐标是______;点A的坐标是(2)求直线BC的解析式;(3)在直线BC上是否存在一点P,使得存在,请说明理由.。
一次函数重难点题型专题讲练一次函数重难点题型专题讲练一次函数作为初中数学中的重要内容,是学生学习数学的基础。
在学习一次函数的过程中,有一些重难点题型,需要我们特别重视和练习。
本文将围绕一次函数的重难点题型展开讲练,以帮助学生更好地掌握和应用一次函数的知识。
一、一次函数概念复习1.1 一次函数的概念及性质一次函数是指形式为y=ax+b的函数,其中a和b是常数且a≠0。
一次函数的图像是一条直线,斜率为a,截距为b。
学生在学习一次函数时,首先要掌握一次函数的基本概念和性质,包括斜率、截距、自变量和因变量等概念及它们之间的关系。
1.2 一次函数的图像和性质一次函数的图像是一条直线,斜率a决定了直线的倾斜程度,截距b则决定了直线与y轴的交点。
学生需要通过绘制一次函数的图像来直观地感受斜率和截距对函数图像的影响,从而掌握一次函数图像的性质。
1.3 实际问题与一次函数的应用一次函数在实际问题中有着广泛的应用,比如描述直线运动、经济增长和人口增长等问题。
学生需要通过实际问题的分析和解决来理解一次函数的应用,掌握将实际问题转化为一次函数模型的方法和技巧。
二、一次函数的重难点题型2.1 斜率和截距的计算在一次函数的学习中,学生常常会遇到需要计算斜率和截距的题型。
这些题型是学生掌握一次函数基本概念和性质的关键,也是后续应用一次函数解决实际问题的基础。
2.2 函数关系的建立与解决一次函数的应用离不开函数关系的建立和解决,这需要学生通过实际问题提取相关信息,建立数学模型,并求解相应的问题。
这类题型锻炼了学生的实际问题建模能力和解决问题的逻辑思维能力。
2.3 一次函数的综合运用综合运用是一次函数学习的高阶题型,需要学生灵活运用所掌握的知识和方法解决复杂问题。
这类题型不仅考察了学生对一次函数知识的掌握程度,也培养了学生的分析和解决实际问题的能力。
三、个人观点和理解在学习和教学一次函数的过程中,我认为对于一次函数的重难点题型,学生应该重点进行训练和练习。
第01讲 一次函数的概念与图象目录考点一:识别一次函数考点二:一次函数图象考点三:一次函数图象与系数关系考点四:一次函数图象上的点的坐标特征考点五:一次函数图象与几何变换【基础知识】一、一次函数的概念(1) 一般地,解析式形如y kx b =+(k ,b 是常数,且0k ≠)的函数叫做一次函数;(2) 一次函数y kx b =+的定义域是一切实数;(3) 当0b =时,解析式y kx b =+就成为y kx =(k 是常数,且0k ≠),这时y 是x 的正比例函数,所以正比例函数是一次函数的特例;(4) 一般地,我们把函数y c =(为常数)叫做常值函数.它的自变量由所讨论的问题确定.二、一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线.三、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标(0)b ,.直线y kx b =+(0k ≠)的截距是b .四、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”)【考点剖析】一.一次函数的定义(共3小题)1.(2022春•杨浦区校级期中)以下函数中,属于一次函数的是()A.y=B.y=C.y=c(c为常数)D.y=kx+b(k、b为常数)2.(2022春•静安区校级期中)根据变量x、y的关系式,属于y是x的一次函数的是()①y=k(x﹣1)(k≠0)②y=1﹣(k≠0)③x﹣y=2(k≠0)④y=kx+(k≠0).A.①B.①②③C.①③D.全部都是.3.(2022春•闵行区校级月考)已知函数y=(m﹣3)x+3是一次函数,则m=.二.一次函数的图象(共6小题)4.(2022春•静安区校级期中)如图,若k•b>0,且b+k>0,则一次函数y=kx+b的大致图象是()A.B.C.D.5.(2021春•徐汇区期中)如图所示,一次函数y=mx+m的图象中可能是()A.B.C.D.6.(2021春•徐汇区校级月考)如图,已知一次函数y=kx+b(k、b为常数,k≠0)的图象,当y>﹣2时,x的取值范围为()A.x<1B.x>1C.x<0D.x>07.(2022春•徐汇区校级期中)一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2.8.(2022春•闵行区校级期中)在直角坐标平面内,一次函数y=ax+b的图象如图所示,那么下列说法正确的是()A.当x>0时,y>﹣2B.当x<1时,y>0C.当x<0时,﹣2<y<0D.当x≥1时,y≤09.(2022春•嘉定区期中)如图是一次函数y=kx+b的图象,当x时,函数图象在x轴的上方.三.一次函数图象与系数的关系(共7小题)10.(2022春•杨浦区校级期末)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.11.(2022春•闵行区校级期中)如果一次函数y=(m﹣3)x+m的图象过第一、二、四象限,那么m的取值范围是.12.(2022春•徐汇区校级期中)一次函数y=(k+1)x﹣2的函数值y随自变量x的增大而减小,那么k 的取值范围是.13.(2022春•静安区校级期中)已知直线y=(1﹣3m)x+(2m﹣1)经过第二、三、四象限,则m的取值范围为.14.(2022春•嘉定区期中)一次函数y=(4﹣k)x+3,y随x的增大而减小,则k的取值范围是.15.(2022春•黄浦区校级期中)已知一次函数y=(2k﹣1)x+k的函数值y随x的值增大而增大,那么k 的取值范围是.16.(2022春•杨浦区校级期中)已知一次函数y=kx+k﹣1(其中k为常数且k≠0)的图象不经过第二象限,则k的取值范围是.四.一次函数图象上点的坐标特征(共8小题)17.(2022春•徐汇区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.﹣1B.1C.﹣3D.318.(2022春•嘉定区校级期中)下列各点在直线y=﹣2x+1上的是()A.(1,0)B.(2,0)C.(0,1)D.(0,)19.(2021秋•金山区期末)已知正比例函数y=kx的图象经过点(2,﹣2),则y的值随着x的值增大而(填“增大”、“减小”、或“不变”).20.(2022春•杨浦区校级期中)一次函数y=3x+b的图象过坐标点(﹣2,4),则该函数的截距为.21.(2022春•普陀区校级期中)一次函数y=﹣4x﹣2的图象与x轴的交点坐标是.22.(2022春•浦东新区校级期中)已知一次函数y=x﹣1的图象上有点A(2,a)和点P,且PO=P A,则点P的坐标为.23.(2022春•普陀区校级期中)已知一次函数y=2x+4的图象与x轴、y轴分别相交于点A、点B,在直线x=4上有一点C,连接AC、BC,三角形ABC是等腰三角形,则点C的坐标为.24.(2022春•静安区校级期中)直线y=kx+b经过A(﹣20,5)、B(10,20)两点,求这条直线与两坐标轴围成的三角形的面积是.五.一次函数图象与几何变换(共8小题)25.(2022春•闵行区校级期末)将直线y=2x﹣3沿y轴向上平移6个单位后,所得直线的解析式是.26.(2022春•奉贤区校级期末)如果将函数y=2x﹣2的图象平移,且经过(0,3),那么所得图象的函数解析式是.27.(2022春•静安区期中)将直线y=﹣2x﹣4向上平移5个单位,所得直线的表达式是.28.(2022春•黄浦区校级期中)将直线y=3x+2沿y轴向下平移个单位,那么平移后直线就经过点(0,﹣1).29.(2022春•杨浦区校级期中)将直线y=﹣3x向上平移1个单位,则平移后的新直线一定不经过第象限.30.(2022春•浦东新区校级期中)将直线y=﹣x﹣1向上平移4个单位所得的直线表达式为.31.(2022春•静安区校级期中)已知:如图所示,直线y=﹣x+4的与x轴、y轴分别交于点B和点A,将这条直线平移后与x轴、y轴分别交于点C和点D,且BA=CB.(1)求点C的坐标;(2)求CD所在直线的函数解析式.32.(2022春•长宁区校级期中)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【过关检测】一.选择题(共7小题)1.(2022春•徐汇区校级期中)以下函数中,属于一次函数的是()A.y=x2+2B.y=kx+b(k、b是常数)C.y=D.y=2.(2022春•徐汇区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.﹣1B.1C.﹣3D.33.(2022春•静安区校级期中)如图,若k•b>0,且b+k>0,则一次函数y=kx+b的大致图象是()A.B.C.D.4.(2022春•嘉定区校级期中)下列各点在直线y=﹣2x+1上的是()A.(1,0)B.(2,0)C.(0,1)D.(0,)5.(2022春•徐汇区校级期中)函数y=x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2022春•嘉定区校级期中)已知一次函数y=kx+b,k<0,b>0,那么下列判断中,正确的是()A.图象不经过第一象限B.图象不经过第二象限C.图象不经过第三象限D.图象不经过第四象限7.(2022春•普陀区校级期中)一次函数y=kx+k(k<0)的图象大致是()A.B.C.D.二.填空题(共20小题)8.若y=kx+4﹣x是一次函数,则k的取值范围是.9.(2021秋•金山区期末)已知正比例函数y=kx的图象经过点(2,﹣2),则y的值随着x的值增大而(填“增大”、“减小”、或“不变”).10.(2022春•青浦区校级期末)一次函数y=kx+2x+k2,若函数值y随自变量x的增大而减小,那么k的取值范围是.11.(2022春•上海期中)一次函数y=2(x﹣1)+3的图象在y轴上的截距是.12.(2022春•嘉定区期中)若直线y=﹣x﹣1的图象过点A(4,m),则m=.13.(2022春•黄浦区校级期中)若直线y=mx﹣2经过点(4,2),则该直线与两坐标轴围成的三角形的面积为.14.(2022春•奉贤区校级月考)已知经过点(1,﹣2)的直线y=kx+b是由y=3x+1向下平移后得到的,那么这条直线的解析式是.15.(2022春•徐汇区校级期中)已知一次函数y=(2m+1)x﹣1,且y的值随着x的值增大而减小,则m 的取值范围是.16.(2022春•静安区期中)把函数y=2x的图象向下平移3个单位,再向左平移2个单位,得到的函数图象解析式为.17.(2022春•浦东新区校级期中)已知一次函数y=kx+4(k≠0)的图象与两坐标轴围成的三角形面积为4,则k=.18.(2022春•徐汇区校级期中)直线y=kx+2经过点A(2,4),且交x轴于点B,在x轴上有一点C,若△ABC的面积为12,则C点坐标为.19.(2022春•徐汇区校级期中)一次函数y=﹣x+4与x轴交于点A,与y轴交于点B,将线段AB绕A 点逆时针旋转90°,使B点落在M点处,则M的坐标为.20.(2022春•浦东新区校级期中)点(a,b)在直线y=﹣2x+3上,则4a+2b﹣1=.21.(2022春•杨浦区校级期中)若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b=.22.(2022春•普陀区校级期中)一次函数y=﹣3x﹣6的图象与x轴的交点坐标是.23.(2022春•闵行区校级期中)如果关于x的一次函数y=(m﹣3)x+m的图象不经过第三象限,那么m 的取值范围.24.(2022春•虹口区期中)点A(1,3)(填“在”或“不在”)直线y=﹣x+2上.25.(2022春•闵行区校级月考)如果点A(﹣1,a),B(1,b)在直线y=﹣2x+m上,那么a b (填“>”、“<”或“=”).26.(2022春•奉贤区校级期末)当x=2时,不论k取任何实数,函数y=k(x﹣2)+3的值为3,所以直线y=k(x﹣2)+3一定经过定点(2,3);同样,直线y=(k﹣2)x+4k一定经过的定点为.27.(2015春•闸北区期中)已知:如图所示,直线y=﹣x+交x轴于点A,交y轴于点B,若点P 从点A出发,沿射线AB做匀速运动,点Q从点B出发,沿射线BO做匀速直线运动,两点同时出发,运动速度也相同,当△BPQ为直角三角形时,则点Q的坐标为.三.解答题(共7小题)28.(2022春•奉贤区校级月考)如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.29.(2021春•嘉定区校级期中)如图,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.30.(2021春•浦东新区期中)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.31.(2021春•嘉定区校级期中)若直线分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.32.(2021春•徐汇区校级月考)在平面直角坐标系中,直线y=kx+b(k≠0)向上平移2个单位后与直线y=x重合,且直线y=kx+b(k≠0)与x轴交于点A,与y轴交于点B.(1)写出点B的坐标,求直线AB的表达式;(2)求△AOB的面积.33.(2021春•松江区月考)已知一次函数y=(2﹣k)x﹣k2+4.(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?34.(2021春•徐汇区期中)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.。
一次函数考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上. 思路点拨:一次函数)0(≠+=k b kx y 的图象的位置由k 、b 确定,同时考虑k 、b 就确定了直线经过的象限1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限2. 一次函数y=6x+1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y =2x -3的图象不经过第______象限.4. 一次函数y = -3 x + 2的图象不经过第 象限.5. 一次函数2y x =+的图象大致是( )6. 关于x 的一次函数y=kx+k 2+1的图像可能是( )7.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ).A.-2B.-1C.0D.28. 已知一次函数y =-x +b 的图象经过第一、二、四象限,则b 的值可以是( ).A .-2 B.-1 C. 0 D. 29.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .10. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >211.已知关于x 的一次函数y m x n =+的图象如图所示,则2||n m m --可化简为____.12. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是____。
2020年中考数学必考经典题讲练案【苏科版】专题06一次函数的图象性质问题【方法指导】一次函数的具体知识点有:1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.2.一次函数的性质k,b符号k>0,b>0K>0,b<0K>0,b=0k<0,b>0k<0,b<0k<0,b=0 大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.7.一次函数与方程组二元一次方程组1112y k x by k x b=+⎧⎨=+⎩的解⇔两个一次函数y=k1x+b1和y=k2x+b2图象的交点坐标.8.一次函数与不等式(1)函数y=kx+b的函数值y>0时,自变量x的取值范围就是不等式kx+b>0的解集(2)函数y=kx+b的函数值y<0时,自变量x的取值范围就是不等式kx+b<0的解集【题型剖析】【类型1】一次函数的性质和性质的应用【例1】(2019春•如皋模拟)已知函数y=(2m+1)x+m﹣3.(1)若这个函数的图象经过原点,求m的值(2)若这个函数的图象不经过第二象限,求m的取值范围.【变式1-1】(2019•玄武区校级模拟)已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是()【变式1-2】(2019•常州校级模拟)已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是()【变式1-3】(2019•邳州市模拟)已知函数y=(2m+1)x+m﹣3(1)若函数图象经过原点,求m的值;(2)若函数的图象平行直线y=3x﹣3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.【类型2】:一次函数与方程不等式【例2】(2019春•崇川区校级模拟)已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点,则关于x的方程﹣3x+b=﹣kx+1的解为x=.【变式2-1】(2019春•京口区校级模拟)已知一次函数y=kx+b与y=mx+n的图象如图所示,若kx+b<mx+n,则x的取值范围为.【变式2-2】(2018秋•垣曲县期末)如图,已知直线y=ax+b和直线y=kx交于点P(﹣4,﹣2),则关于x,y的二元一次方程组的解是.【类型3】:一次函数图象上点的坐标特征【例3】(2019春•海陵区校级期末)如图,直线y1=3x+4交x轴、y轴于点A、C,直线y2x+4交x 轴、y轴于点B、C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.B.6 C.D.【变式3-1】(2019•无锡二模)在平面直角坐标系中,已知A、B、C、D四点的坐标依次为(0,0)、(6,0),(8,6),(2,6),若一次函数y=mx﹣8m+6的图象将四边形ABCD的面积分成1:3两部分,则m的值为()A.B.或C.或D.或1【变式3-2】(2019春•海州区校级期中)如图,在平面直角坐标系中,一次函数y=2x﹣5的图象经过正方形OABC的顶点A和C,则正方形OABC的面积为()A.9 B.10 C.12 D.13【类型4】:一次函数的几何变换问题【例4】(2019春•如皋市期中)直线y=3x+2沿y轴向下平移6个单位,则平移后直线解析式为.【变式4-1】(2019•鼓楼区二模)在平面直角坐标系中,将函数y=2x﹣3的图象先向右平移2个单位长度,再沿y轴翻折,所得函数对应的表达式为.【变式4-2】(2018秋•邗江区校级期末)若直线L1经过点(0,4),L2经过点(3,2),且L1与L2关于x 轴对称,则L1与L2的交点坐标为.【变式4—3】(2019春•常州期中)如图,在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点B(6,2),C(4,0),直线y=2x+1以每秒1个单位长度的速度沿y轴向下平移,经过秒该直线可将平行四边形OABC分成面积相等的两部分.【类型5】:一次函数的几何综合性问题【例5】.(2018秋•张家港市期末)如图,一次函数y=﹣x+7的图象与正比例函数y x的图象交于点A,点P(t,0)是x正半轴上的一个动点.(1)点A的坐标为(,);(2)如图1,连接P A,若△AOP是等腰三角形,求点P的坐标:(3)如图2,过点P作x轴的垂线,分别交y x和y=﹣x+7的图象于点B,C.是否存在正实数,使得BC OA,若存在求出t的值;若不存在,请说明理由.【变式5-2】(2019春•溧阳市期中)在平面直角坐标系xOy中,点M的坐标为(x1,y1),点的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角分平行于x轴、y轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,3),则以AB为边的“坐标菱形”的面积为;(2)若点C(1,2),点D在直线x=5上,以CD为边的“坐标菱形”为正方形,求直线CD的函数表达式.【变式5-3】(2019•洪泽区二模)如图,直线y x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,(1)求A、C两点的坐标;(2)求证:△BCD为等边三角形;(3)请直接写出同时经过A、E两点的直线的函数表达式.【达标检测】1.若一次函数(y kx b k =+,b 为常数,且0)k ≠的图象经过点(0,1)A -,(1,1)B ,则不等式1kx b +>的解为()A .0x <B .0x >C .1x <D .1x >2.(2019•扬州)若点P 在一次函数4y x =-+的图象上,则点P 一定不在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(2018•徐州)若函数y kx b =+的图象如图所示,则关于x 的不等式20kx b +<的解集为( )A .3x <B .3x >C .6x <D .6x >4.(2018•常州)一个正比例函数的图象经过(2,1)-,则它的表达式为( ) A .2y x =-B .2y x =C .12y x =-D .12y x =5.(2019•秦淮区二模)在平面直角坐标系中,点A 、B 的坐标分别是(0,3)、(4,0)-,则原点到直线AB 的距离是( ) A .2B .2.4C .2.5D .36.(2019•孝义市二模)已知点1(A x ,1)y 和点2(B x ,2)y 在一次函数(1)y m x n =++的图象上,并且12x x <,12y y >,则m 的取值范围是( )A .0m >B .0m <C .1m >-D .1m <-7.(2019•姜堰区二模)已知过点(1,2)的直线(0)y ax b a =+≠不经过第四象限,设2S a b =+,则S 的取值范围为( ) A .24S <<B .24S <C .24S <D .24S8.(2019•常州一模)已知点1(x ,3),2(x ,2)是直线21y x =-+上两点,则下列正确的是( ) A .120x x ->B .120x x -<C .12x x =D .120x x +>二.填空题(共5小题)9.(2019•徐州)函数1y x =+的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若ABC ∆为等腰三角形,则满足条件的点C 共有 个.10.(2019•无锡)已知一次函数y kx b =+的图象如图所示,则关于x 的不等式30kx b ->的解集为 .11.(2019•惠山区二模)当13x -时,不等式40mx +>始终成立,则m 的取值范围是 .12.(2019•天宁区校级二模)在平面直角坐标系中,A 点坐标为(1,0),C 点坐标为(7,0),若点P 在直线3y kx =+上运动时,只存在一个点P 使90APC ∠=︒,则k 的值是13.(2019•靖江市校级一模)平面直角坐标系中,P 为直线y x b =-+上一点,过P 作PA x ⊥轴于A ,PB y ⊥轴于B .当矩形PAOB 的面积为6时,相应的点P 有且只有3个,则b = . 三.解答题(共7小题)14.(2019•南京)已知一次函数12(y kx k =+为常数,0)k ≠和23y x =-. (1)当2k =-时,若12y y >,求x 的取值范围.(2)当1x <时,12y y >.结合图象,直接写出k 的取值范围.15.(2019•梁溪区一模)如图,已知(3,0)A ,(0B ,)(30)a a -<<,以AB 为一边在AB 上方作正方形ABCD ,点E 与点A 关于y 轴对称,直线EC 交y 轴于点F ,连接DF . (1)求直线EF 所对应的函数表达式; (2)判断CE 与DF 的数量关系并说明理由.16.(2019•滨湖区一模)如图,已知矩形OABC的顶点A在x轴的负半轴上,顶点C在y轴上,且4AB=.P 为OC上一点,将BCP∆沿PB折叠,点C落在第三象限内点Q处,BQ与x轴的交点M恰好为OA的中点,且1MQ=.(1)求点A的坐标;(2)求折痕PB所对应的函数表达式.17.(2019•鼓楼区校级模拟)如图,一次函数y kx b=+的图象经过B、C,A是此图象上一点,AM垂直于x轴,垂足为M,求:(1)一次函数y kx b=+的解析式;(2)梯形ABOM的面积S;(3)CAM∠的正弦函数的值.18.(2019•宝应模拟)如图,在平面直角坐标系xOy中,过点(2,0)A-的直线交y轴正半轴于点B,将直线AB绕着O顺时针旋转90︒后,分别与x轴y轴交于点D、C.(1)若4OB=,求直线AB的函数关系式;(2)连接BD,若ABD∆的面积是7.5,求点B的运动路径长.19.(2019•长春一模)如图,平面直角坐标系中,直线343y x =+分别交x 轴、y 轴于点A 、C ,直线BC 与直线AC 关于y 轴对称,动点D 从点A 出发,沿AC 以每秒2个单位长度的速度向终点C 运动,当点D 出发后,过点D 作//DE BC 交折线A O C --于点E ,以DE 为边作等边DEF ∆,设DEF ∆与ACO ∆重叠部分图形的面积为S ,点D 运动的时间为t 秒. (1)写出坐标:点(A ),点(B ),点(C ); (2)当点E 在线段AO 上时,求S 与t 之间的函数关系式; (3)求出以点B 、E 、F 为顶点的三角形是直角三角形时t 的值; (4)直接写出点F 运动的路程长为 .。
2021年中考数学一轮复习讲练测专题11一次函数的图像与性质1、知道一次函数与正比例函数的意义.2、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.3、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况).1.(2020·北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【答案】B【分析】hcm注水时间为t分钟,根据题意写出h与t的函数关系式,从而可得答案.设水面高度为,【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.2.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .2【答案】A【分析】由直线y =kx +2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k 值.【详解】解:∵直线y =kx +2过点(﹣1,4),∴4=﹣k +2,∴k =﹣2.故选:A .【点睛】本题考查的是一次函数图像上点的坐标特点,以及利用待定系数法求解一次函数的解析式,掌握一次函数图像上的点满足函数解析式是解题的关键.3.(2020·安徽中考真题)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.(2020·江苏泰州市·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( )A .5B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.(2020·浙江嘉兴市·中考真题)一次函数21y x =--的图象大致是( )A .B .C .D .【答案】D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式21y x =--,∵k 0<,∴直线斜向下,∵0b <,∴直线经过y 轴负半轴,图象经过二、三、四象限.故选:D .【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状. 6.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【点睛】本题考查的是一次函数的图像与性质,不等式的基本性质,掌握一次函数y kx b =+中的,k b 对函数图像的影响是解题的关键 .7.(2020·四川凉山彝族自治州·中考真题)已知一次函数y =(2m +1)x +m -3的图像不经过第二象限,则m 的取值范围( )A .m>-12B .m<3C .-12<m<3D .-12<m≤3 【答案】D【分析】一次函数的图象不经过第二象限,即可能经过第一,三,四象限,或第一,三象限,所以要分两种情况.【详解】当函数图象经过第一,三,四象限时,21030m m ⎧⎨-⎩+><,解得:-12<m <3. 当函数图象经过第一,三象限时,21030m m +>=⎧⎨-⎩,解得m =3. ∴-12<m≤3. 故选D.【点睛】一次函数的图象所在的象限由k ,b 的符号确定:①当k >0,b >0时,函数y =kx +b 的图象经过第一,二,三象限;②当k >0,b <0时,函数y =kx +b 的图象经过第一,三,四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一,二,四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二,三,四象限.注意当b =0的特殊情况.8.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x(单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A【分析】 根据题目中的函数解析式,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.【详解】解:设y 与x 的函数关系式为y =kx+b ,6910.5b k b =⎧⎨+=⎩, 解得,k 0.5b 6=⎧⎨=⎩, 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故选:A .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.(2019·浙江杭州市·中考真题)某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式_____.【答案】1y x =-+或21y x =-+或1y x =-等.【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是1y x =-+或21y x =-+或1y x =-等,(本题答案不唯一) 故答案为如1y x =-+或21y x =-+或1y x =-等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义. 10.(2020·贵州黔东南苗族侗族自治州·中考真题)把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.【答案】y =2x +3【分析】直接利用一次函数的平移规律进而得出答案.【详解】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1,再向上平移2个单位长度,得到y =2x +3.故答案为:y =2x +3.【点睛】本题考查了一次函数的平移,熟练掌握是解题的关键.11.(2020·天津中考真题)将直线2y x =-向上平移1个单位长度,平移后直线的解析式为________.【答案】21y x =-+【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:∵直线的平移规律是“上加下减”,∴将直线2y x =-向上平移1个单位长度所得到的的直线的解析式为:21y x =-+; 故答案为:21y x =-+.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键. 12.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.【答案】m <n【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.【详解】解:∵直线2y x b =+中,k=2>0,∴此函数y 随着x 的增大而增大, ∵12-<2, ∴m <n .故答案为:m <n .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键. 13.(2020·四川成都市·中考真题)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为_________. 【答案】12m >【分析】根据一次函数的性质得2m-1>0,然后解不等式即可.【详解】解:因为一次函数(21)2y m x =-+的值随x 值的增大而增大,所以2m-1>0. 解得12m >. 故答案为:12m >. 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.14.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限.【答案】三【分析】根据一次函数的性质,即可得到答案.【详解】解:在一次函数2y x b =-+中,∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限;故答案为:三【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.15.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).【答案】<【分析】由k =2>0,可得出y 随x 的增大而增大,结合1<3,即可得出x 1<x 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大.又∵1<3,∴x 1<x 2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小”.16.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.【答案】122y x =+ 【分析】 根据原一次函数与x,y 轴的交点坐标,并求出旋转后这两点对应的坐标,再由待定系数法求解一次方程的表达式即可.【详解】∵一次函数的解析式为24y x =-+,∴设与x 轴、y 轴的交点坐标为()2,0A 、()0,4B ,∵一次函数24y x =-+的图象绕原点O 逆时针旋转90,∴旋转后得到的图象与原图象垂直,旋转后的点为()10,2A 、()1-4,0B , 令y ax b =+,代入点得12a =,2b =, ∴旋转后一次函数解析式为122y x =+. 故答案为122y x =+. 【点睛】本题主要考查了一次函数图像与几何变换,正确把握互相垂直的两直线的位置关系是解题的关键.17.(2020·湖南中考真题)已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x (m ≠0)的图象只有一个交点,求交点坐标.【答案】(1)一次函数的解析式为y =2x +12;(2)(﹣3,6).【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y =kx +b 中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式可得2x 2+12x ﹣m =0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩, 解得212k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象只有一个交点,∴212y x my x =+⎧⎪⎨=⎪⎩只有一组解, 即2x 2+12x ﹣m =0有两个相等的实数根, ∴△=122﹣4×2×(﹣m )=0, ∴m =-18.把m =-18代入求得该方程的解为:x =-3, 把x =-3代入y =2x +12得:y =6, 即所求的交点坐标为(-3,6). 【点睛】本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.18.(2020·北京中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围. 【答案】(1)1y x =+;(2)2m ≥ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2), ∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥. 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.考点一一次函数图像与系数的关系例1.(2020·明光市明湖学校八年级月考)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A. B. C. D.【答案】D【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:∵一次函数y=kx+b过一、二、四象限,∴则函数值y随x的增大而减小,图象与y轴的正半轴相交∴k<0,b>0,∴一次函数y=bx+k的图象y随x的增大而增大,与y轴负半轴相交,∴一次函数y=bx+k的图象经过一三四象限.故选:D.【点睛】本题考查了一次函数的性质.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.【变式训练】=+的图象如图所示,则下列结论正确的1.(2020·湖南益阳市·中考真题)一次函数y kx b是()A .0k <B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<【答案】B 【分析】根据一次函数的图象与性质判断即可. 【详解】由图象知,k ﹥0,且y 随x 的增大而增大,故A 、C 选项错误; 图象与y 轴负半轴的交点坐标为(0,-1),所以b=﹣1,B 选项正确; 当x ﹥2时,图象位于x 轴的上方,则有y ﹥0即+kx b ﹥0,D 选项错误, 故选:B . 【点睛】本题考查一次函数的图象与性质,利用数形结合法熟练掌握一次函数的图象与性质是解答本题的关键.2.(2020·江苏镇江市·中考真题)一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,它的图象不经过的象限是( ) A .第一 B .第二C .第三D .第四【答案】D 【分析】根据一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,可以得到k >0,与y 轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题. 【详解】解:∵一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大, ∴k >0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质及一次函数的图象.解答本题的关键是明确题意,利用一次函数的性质解答.考点二 一次函数的性质例2. (2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y <【答案】D 【分析】根据一次函数的图像与性质即可求解. 【详解】A.图象经过点()1,3,正确;B.图象与x 轴交于点()2,0-,正确C.图象经过第一、二、三象限,故错误;D.当2x >时,y >4,故错误; 故选D . 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点. 【变式训练】1.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】B 【分析】根据一次函数的图象分析增减性即可. 【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小. 故选B . 【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.2.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限. 【答案】三 【分析】根据一次函数的性质,即可得到答案. 【详解】解:在一次函数2y x b =-+中, ∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限; 故答案为:三 【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.考点三 求一次函数的解析式例3(2020·湖南郴州市·中考真题)小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y=3x+37. 【分析】利用待定系数法即可求出该函数表达式.【详解】解:设该函数表达式为y=kx+b ,根据题意得:40243k b k b +⎧⎨+⎩==, 解得337k b ⎧⎨⎩==,∴该函数表达式为y=3x+37. 故答案为:y=3x+37. 【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键. 【变式训练】1.(2020·江西中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB 向右上方平移,得到Rt O A B '''△,且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A B ''的表达式为( ) A .y x = B .1y x =+C .12y x =+D .2y x =+【答案】B 【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,2230x x --=,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A (0,-3),B (3,0), 对称轴为直线12bx a=-=, 经过平移,A '落在抛物线的对称轴上,点B '落在抛物线上, ∴三角形Rt OAB 向右平移1个单位,即B′的横坐标为3+1=4, 当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形Rt OAB 向上平移5个单位, 此时A′(0+1,-3+5),∴A′(1,2), 设直线A B ''的表达式为y=kx+b , 代入A′(1,2),B′(4,5),可得254k bk b =+⎧⎨=+⎩ 解得:11k b =⎧⎨=⎩,故直线A B ''的表达式为1y x =+, 故选:B . 【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.2.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.【答案】y =-2x 【分析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解. 【详解】∵点P 到x 轴的距离为2, ∴点P 的纵坐标为2,∵点P 在一次函数y =-x +1上, ∴2=-x +1,解得x =-1, ∴点P 的坐标为(-1,2). 设正比例函数解析式为y =kx ,把P (-1,2)代入得2=-k ,解得k =-2, ∴正比例函数解析式为y =-2x , 故答案为:y =-2x . 【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.考点四 一次函数式图像的平移变换例4. (2020·山东日照市·中考真题)将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A 【分析】直接利用一次函数“上加下减”的平移规律即可得出答案. 【详解】解:∵将函数y =2x 的图象向上平移3个单位, ∴所得图象的函数表达式为:y =2x +3. 故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键. 【变式训练】1.(2020·四川内江市·中考真题)将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .25y x =-- B .23y x =--C .21y x =-+D .23y x =-+【答案】C【分析】向上平移时,k的值不变,只有b发生变化.【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故选:C.【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k和b的值发生变化.2.(2020·四川广安市·中考真题)一次函数y=2x+b的图象过点(0,2),将函数y=2x+b 的图象向上平移5个单位长度,所得函数的解析式为________.【答案】y=2x+7【分析】将点(0,2)代入一次函数解析式中,即可求出原一次函数解析式,然后根据平移方式即可求出结论.【详解】解:将点(0,2)代入y=2x+b中,得2=b∴原一次函数解析式为y=2x+2将函数y=2x+2的图象向上平移5个单位长度,所得函数的解析式为y=2x+2+5=2x+7 故答案为:y=2x+7.【点睛】此题考查的是求一次函数解析式和图象的平移,掌握利用待定系数法求一次函数解析式和一次函数的平移规律是解题关键.。
第03讲一次函数的图象和性质(8类热点题型讲练)1.理解函数图象的概念,掌握作函数图象的一般步骤;(重点)2.掌握正比例函数的图象与性质,并能灵活运用解答有关问题.(难点)3.了解并掌握一次函数的图象与性质;(重点)4.能灵活运用一次函数的图象与性质解答有关问题.(难点)知识点01正比例函数的图象与性质1)一次函数图象是一条直线;2)已知一点可以作图,也可求出解析式;3)交y 轴于点(0,0),交x 轴于点(0,0);4)过象限、增减性y =kx 过原点(0,0)的一条直线k 值0k >0k <大致图象经过象限经过第一、三象限经过第二、四象限增减性y 随x 的增大而增大y 随x 的增大而减小5)函数图象大小比较:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的(x 、y ),x 的值是点的横坐标,纵坐标就是与这个x 的值相对应的y 的值,因此,观察x 或y 的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x 的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低.知识点02一次函数的图象与性质1)一次函数图象是一条直线;2)已知两点可以作图,也可求出解析式;3)交y 轴于点(0,b ),交x 轴于点(bk-,0);4)过象限、增减性0b >(过一、二象限)0b <(过三、四象限)0b =(过原点)k >(过一、三象限)y 随x 的增大而增大经过第一、二、三象限经过第一、三、四象限经过第一、三象限k <(过二、四象限)y 随x 的增大而减小经过第一、二、四象限经过第二、三、四象限经过第二、四象限5)函数图象大小比较:函数图象上的点是由适合函数解析式的一对x 、y 的值组成的(x 、y ),x 的值是点的横坐标,纵坐标就是与这个x 的值相对应的y 的值,因此,观察x 或y 的值就是看函数图象上点的横、纵坐标的值,比较函数值的大小就是比较同一个x 的对应点的纵坐标的大小,也就是函数图象上的点的位置的高低.知识点03一次函数的平移与对称“上加下减”——针对y 的平移;“左加右减”——针对x 的平移,是对x 整体的变化.题型01正比例函数的图象和性质题型02画一次函数的图象(1)在平面直角坐标系中,画出该函数图象;(2)把该函数图象向上平移3个单位,判断点【变式1】(2023春·陕西西安·【变式2】(2023春.北京朝阳解:函数21y x =+的自变量x (3)-2-1-0题型03一次函数的图象和性质【典例3】(2023春·福建泉州·八年级福建省泉州市培元中学校考期中)下列描述一次函数34y x =-+的图象及性质错误的是()A .直线与x 轴交点坐标是()0,4B .y 随x 的增大而减小C .直线经过第一、二、四象限D .当0x <时,4y <【变式1】(2023春·浙江台州·八年级统考期末)对于一次函数2y x =-+,下列说法正确的是()A .y 随x 的增大而增大B .它的图象过点()11,C .它的图象过第一、二、三象限D .它的图象与x 轴的交点坐标为()20-,【变式2】(2023春·广西桂林·八年级校考阶段练习)对于函数1y x =-,下列结论不正确的是()A .图象经过点()1,2--B .图象不经过第一象限C .图象与y 轴交点坐标是()0,1-D .y 的值随x 值的增大而增大【变式3】(2023秋·四川成都·八年级统考期末)关于一次函数23y x =-+,下列结论正确的是()A .图象不经过第二象限B .图象与x 轴的交点是()0,3C .将一次函数23y x =-+的图象向上平移3个单位长度后,所得图象的函数表达式为26y x =-+D .点()11,x y 和()22,x y 在一次函数23y x =-+的图象上,若12x x <,则12y y <题型04已知函数经过的象限求参数范围题型05根据一次函数增减性求参数题型06比较一次函数值的大小题型07一次函数图象与坐标轴的交点问题题型08一次函数图象的平移问题【典例8】(2023春·福建泉州长度后,所得函数的解析式为(1)求点A和点B的坐标;(2)若点P在x轴上,且(3)将函数24y x =-+的图像向下平移16.(2023·浙江绍兴·校考一模)已知一次函数该函数图像上,P 到x 轴、y 轴的距离分别为(1)当P 为线段AB 的中点时,求12d d +的值;(2)直接写出12d d +的范围,并求当123d d +=时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使124d ad +=(a 为常数),求a 的值.。
专题:一次函数重难点题型专题讲练
※题型讲练
【例1】已知一次函数y=(2m+1)x+m–3,分别解答下列各题:
(1)求m的取值范围;
(2)若该函数是正比例函数,求m的值;
(3)若该函数图象在y轴的截距为-2,求m的值;
(4)若该函数图象平行直线y=3x–3,求m的值;
(5)若该函数图像y随着x的增大而减小,求m的取值范围;
(6)若该函数图像经过一、二、三象限,求m的范围;
(7)若该函数图像不过第二象象限,求m的范围;
(8)若该函数图像必过二、四象限,求m的范围;
(9)若函数图像必过三、四象限,求m的范围;
(10)若该函数图像过点(–1,–2),求函数解析式;
(11)若该函数图像是由函数y=–5x+n–3的图像延y轴向上平移2个单位得来,求m和n的值;
(12)若该函数图像与函数y=(n–5)x+2n–2关于x轴对称,求m和n的值;
(13)若该函数图像与函数y=–x+3的图像同时交于函数y=3x+19上一点,求函数解析式;
(14)该函数图像是否过定点?若过,请求出这个定点;若不过,请说明理由.
【例2】已知y+1与x+2成正比例,且当x=4时,y=-4.
(1)求y关于x的函数关系式;
(2)若点(a,2)和(2,b)均在(1)中函数图像上,求a、b的值.
(3)当-2≤x≤6时,求y的取值范围.
【例3】已知某一直线过点(1,-4)和点(4,-2),
(1)求该直线所在的一次函数关系式;
(2)求该直线与两坐标轴所围成的三角形的面积;
(3)若函数图像上有两点(a,m+3)、(b,-2m+6)且a>b,
求m的取值范围.
【例4】一次函数y=kx+b的自变量的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,求该一次函数的解析式.
【例5】如图,函数y=ax+b和y=kx的交于点P,则根据图象可得:
(1)方程ax+b-kx=0的解是;
(2)方程组y=ax+b,
y=kx的解
是__________;
(3)不等式ax+b<kx的解集是_______;
(4)不等式组的解集为.
(5)若△AOP的面积为6,求△BOP的面积.
【例6】某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与收费y(元)之间的函数关系如图所示.
(1)有月租的收费方式是____(填“①”或“②”),月租费是____元;
(2)分别出①、②两种收费方式中y与x之间的函数表达式;
(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
{02<<+kx b ax
【例7】为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
设某户每月用水量x(立方米),应交水费y(元).
(1)求a,c的值;
(2)写出y于x的函数关系式;
(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?
【例8】如图,直线l1的解析表达式为y=–3x+3,且l1与x轴交于点D,直线l2经过点A、B,直线l1,l2交于点C.
(1)求点D的坐标和直线l2的解析表达式;
(2)求△ADC的面积;
(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接
..写出点P的坐
标.
※课后练习
1.下列函数中,自变量x的取值范围是x≥2的是()
A.y
=2x-B.y =
2-
1
x
C.y=2
4x-D.y=2
x+·2x-
2.直线y=kx+b经过一、二、四象限,则直线y=bx–k的图象只能是图中的()
3.如图,两直线y1=kx+b和y2=bx+k在同一坐标系内图象的位置可能是()
4.一辆汽车和一辆摩托车分别从A,B两地去同一城市,它们离A地的路程随时间变化的图象如图所示.则下列结论错误的是()
A.摩托车比汽车晚到1h
B.A,B两地的路程为20km
C.摩托车的速度为45km/h
D.汽车的速度为60km/h
5.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m为.6.若直线y=–x+a和y=x+b的交于点(m,8),则a+b=.
7.已知直线y=4x–2与直线y=–x+3m的交点在第四象限内,则m的取值范围是.8.若直线y=k1x+1与y=k2x–4交于x轴上一点,则=.
9.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则
不等式组mx+2>kx+b>mx的解集是.
10.一次函数y1与y2的图象如图所示,根据图像解决下列问题:
(1)求两个函数交点P的坐标;
(2)求△ABP的面积;
(3)直接写出下列不等式的解集:
①y1≥0;②0<y2≤y1
1
2
k
k。