X射线荧光分析特点
- 格式:docx
- 大小:12.45 KB
- 文档页数:1
olympus能量色散型x射线荧光光谱X射线荧光光谱(XRF)分析法是对各种各样材料进行元素测定的一种现代化的通用分析方法。
不管是块状样品、粉末样品还是液体样品,位于元素周期表上从4号元素铍(Be)到92号元素铀(U)之间的几乎所有元素都可以进行精确的定性、定量和无标样分析。
根据不同的应用要求,其分析浓度范围可从0.1ppm到100%,而且即使高至100%的元素浓度也能直接进行测量而无须进行稀释。
XRF分析法具有样品制备简单、测定元素范围广、测定精度高、重现性好、测量速度快(30s-900s)、无环境污染、不破坏样品等特点。
XRF法广泛应用于环保、地质、矿物、冶金、水泥、电子、石化、高分子、食品、药物以及高科技材料等领域,在产品研究开发、生产过程监控与质量管理等方面起着重要的作用。
具体应用见以下说明:● 电子、塑胶、五金材料:各种电子元件、五金件、塑胶原料及制品、线路板等。
● 纸张及纸原料:纸原料、各种纸张、调色剂、油墨等。
● 石油、煤炭:石油、润滑油、重油、高分子聚合物、煤炭、焦炭等。
● 陶瓷、水泥:陶瓷、耐火材料、岩石、玻璃、水泥、水泥原料和生料、熟料、石灰石、高岭土、粘土等。
● 农业、食品:土壤、农药残留物、肥料、植物、各种食品等。
● 有色金属:铜合金、铝合金、铅合金、锌合金、镁合金、钛合金、贵金属等。
● 钢铁:生铁、铸铁、不锈钢、低合金钢、高合金钢、特种钢、铁合金、铁矿石、炉渣、电镀液、铸造砂等。
● 化学工业:无机有机物及制品、化妆品、洗涤剂、橡胶、调色剂、催化剂、涂料、颜料、药品、化学纤维等。
● 环境:各种废弃物、工业废物、大气粉尘、工业废水、海水、河水等。
● 生物科学:有机体、辅助物等。
X射线荧光分析基本原理各种元素的核外电子轨道位能互不相同,因此,受激发后发出的X射线光子能量互不相同,即每种元素发射该元素原子所特有能量的X射线,代表了该元素的特征,因此称作该元素的特征X射线。
每种元素的特征X射线具有其特定的能量,检测到此种能量的X射线,即可以确定物质样品中有该元素存在。
x射线荧光分析实验报告X射线荧光分析实验报告引言X射线荧光分析是一种用于确定物质成分的非破坏性分析方法,通过测量样品受激发后发出的特征X射线来确定其元素组成和含量。
本实验旨在利用X射线荧光分析仪器对不同样品进行分析,以验证其准确性和可靠性。
实验方法在本次实验中,我们使用了一台X射线荧光分析仪器,样品包括金属合金、岩石和陶瓷等。
首先,我们将样品放置在分析仪器的样品台上,并调整仪器参数以激发样品发出X射线。
然后,我们收集并记录样品发出的X射线谱线,利用仪器自带的软件对谱线进行分析,确定样品中的元素成分和含量。
实验结果通过X射线荧光分析,我们成功地确定了各个样品的元素成分和含量。
在金属合金样品中,我们发现了铁、铜和锌等元素的存在,并测得它们的含量分别为30%、20%和10%。
在岩石样品中,我们发现了硅、铝、钙和铁等元素,并测得它们的含量分别为40%、25%、15%和5%。
在陶瓷样品中,我们发现了氧化铝和二氧化硅等元素,并测得它们的含量分别为60%和40%。
讨论与结论通过本次实验,我们验证了X射线荧光分析的准确性和可靠性。
实验结果表明,该方法能够精确地确定样品中的元素成分和含量,为材料分析提供了一种有效的手段。
然而,需要注意的是,在进行X射线荧光分析时,样品的制备和仪器的校准都会对结果产生影响,因此在实际应用中需要慎重考虑这些因素。
总之,X射线荧光分析是一种非常有用的分析方法,能够为材料研究和质量控制提供重要的支持。
我们希望通过本次实验报告的分享,能够增加对X射线荧光分析的了解,为相关研究和实践工作提供参考和帮助。
X射线荧光光谱仪的优点
X射线荧光光谱仪由激发源(X射线管)和探测系统构成。
X射线管产生入射X射线(一次X射线),激发被测样品。
受激发的样品中的每一种元素会放射出二次X 射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。
X射线荧光光谱仪的优点都有那些?
1.分析速度高。
测定用时与测定精密度有关,但一般都很短,2~5分钟就可以测完样品中的全部待测元素。
2.X射线荧光光谱跟样品的化学结合状态无关,而且跟固体、粉末、液体及晶质、非晶质等物质的状态也基本上没有关系。
(气体密封在容器内也可分析)但是在高分辨率的精密测定中却可看到有波长变化等现象。
特别是在超软X射线范围内,这种效应更为显著。
波长变化用于化学位的测定。
3.非破坏分析。
在测定中不会引起化学状态的改变,也不会出现试样飞散现象。
同一试样可反复多次测量,结果重现性好。
4.X射线荧光分析是一种物理分析方法,所以对在化学性质上属同一族的元素也能进行分析。
5.X射线荧光光谱仪分析精密度高。
6.制样简单,固体、粉末、液体样品等都可以进行分析。
标签:
X射线荧光光谱仪
1。
同步辐射X射线荧光法分析藏药材和藏药制剂中金属元素
同步辐射X射线荧光法是一种非破坏性、无需样品预处理的无损伤、微量金属元素分析技术。
该技术在分析藏药制剂和藏药材中的金属元素上具有独特的优势。
目前,同步辐射X射线荧光法已广泛应用于藏药制剂和藏药材中的金属元素分析,极大地促进了藏药的质量和安全控制。
同步辐射X射线荧光法能够测定药材和制剂中微量元素的浓度、分布和化学形态,包括有毒金属元素(如汞、铅、镉)、重要微量元素(如锌、铁、硒、钙等)以及其他金属元素。
该技术具有高灵敏度、高分辨率和高稳定性等优点,使得分析结果非常可靠和准确。
在分析藏药制剂中的金属元素时,同步辐射X射线荧光法能够精确测定不同配方的制剂中的金属元素含量,对于有效控制制剂中有毒金属元素(如汞、铅等)含量具有重要意义。
在分析藏药中的金属元素时,同步辐射X射线荧光法能够实现对不同生长环境、不同生长阶段的藏药材中金属元素含量的分析和比较研究,探讨藏药的药效与生长环境之间的关系。
总的来说,同步辐射X射线荧光法是一种非常有潜力的分析技术,在藏药制剂和藏药材中的金属元素分析领域具有广阔的应用前景,有利于进一步提高藏药的质量和安全性。
探究 X射线荧光光谱法测定铁矿石中的主次成分摘要:X射线荧光光谱法(XRF)是应用比较早且至今还在被广泛应用的一种元素分析技术。
基于其具有以下特点:重现性好、分析速度快、精度高、灵敏度高、分析元素范围广等等,所以被广泛的应用于矿石样品的成分分析。
文章将对X射线荧光光谱法(XRF)进行简要概述,且对X射线荧光光谱法测定铁矿石中的主次成分作出探究。
关键词:X射线荧光光谱法;成分分析;铁矿石引言用无水四硼酸锂为熔剂,以硝酸锂为氧化剂,溴化铵为脱模剂,以三氧化二钴为内标,制成玻璃片样片,应用X射线荧光光谱法测定铁矿石中8种主次成分,用铁矿石标样经同法测定并对测定结果进行理论具有较高的准确度和精密度,极大地节省了人力和物力消耗,可实现大批量样品的快速检测。
1X射线荧光光谱法(XRF)概述X射线荧光光谱法的基本原理:当试样受到X射线照射后,试样中各原子的内壳层(K,M或者L壳层)的电子受到激发被逐出原子而产生空穴,从而引起外壳层电子向内跃迁,跃迁的同时发出该元素的特征X射线,每一种元素都有其特定波长(或能量)的特征X射线。
元素特征X射线的强度与该元素在试样中的原子数量成正比。
因此,通过测量试样中某种元素特征X射线的强度,采用恰当的方法进行校正与校准,即可求出该元素在试样中的百分比含量。
这就是X射线荧光光谱分析法。
2实验部分2.1主要仪器和试剂无水四硼酸锂[Li2B4O7](优级纯);碳酸锂(优级纯);铁矿石专用钴粉熔剂(三氧化二钴:混合熔剂 =1:10)(分析纯),上述药品均购于洛阳海纳检测仪器有限公司。
X射线荧光光谱仪MXF2400(日本岛津),端窗铑靶 X 光管。
铂 - 金坩埚(95%Pt-5%Au)。
氧化剂:硝酸锂溶液(50%)。
脱模剂:碘化铵溶液(20%)。
全自动熔样仪 HNJC-L4D (洛阳海纳检测仪器有限公司 )。
2.2 实验方法准确称(6.0000±0.0002)gLi2B4O7,(1.0000±0.0002)碳酸锂,(0.5000±0.0002)g 铁矿石专用钴粉熔剂,于铂金坩埚中搅拌均匀,再准确称取(0.6000±0.0002)g铁矿石标准样品,在样品上加入3mL50%的硝酸锂溶液,再加入10滴20%的溴化铵溶液,放入600℃的马弗炉中预氧化5min,目的是氧化待测样品中的还原性物质,保护铂-金坩埚,同时可使加试剂带入的水分蒸发,避免在高温熔样仪中样品发生迸溅损失,影响测量结果。