电容电流危害及消弧线圈的发展
- 格式:doc
- 大小:41.00 KB
- 文档页数:3
2. 消弧线圈的工作原理及动态消弧补偿系统的提出2.1 消弧线圈的工作原理2.1.1 中性点不接地系统单相接地时的电容电流电力线路导线间及导线与大地之间均存在分布电容,电器设备与大地之间也存在电容。
对于中压配电网,由于线路长度相对于工频波长来讲要短得多,这些分布电容可以用集中参数电容代替。
一般来讲,各相对地电容c b a C C C ≠≠,Φ=︒+︒=U C I I I C B DC 0330cos 30cos ω这个接地电容电流由故障点流回系统,它的大小等于正常时一相对地充电电流的3倍,方向落后于A 相正常时相电压︒90。
由于接地电流和接地相正常时的相电压相差︒90,所以当接地电流过零时,加在弧隙两端的电源电压为最大值,因此故障点的电弧不易熄灭。
当接地电容电流较大时,容易形成间歇性的弧光接地或电弧稳定接地。
间歇性的弧光接地能导致危险的过电压。
稳定性的弧光接地能发展成多相短路。
2.1.2 中性点不接地系统的中性点位移电压为U B .Φ--=U jdK c'.1 (2-1-2) 式中)(13''2.'c b a cb a cb ac C C C Rd C C C aC C a C K r R ++=++++==ω'.,d K c 分别称为中性点不接地电网的不对称度和阻尼率。
正常运行时因导线不对称布置所引起的电网不对称度是不高的,尤其是电缆网络其值更小,表2-1列出了作者对67个煤矿6KV 电缆电网的测定结果,从表中可见,占实测总体85%的电网其自然不对称度小于0.54%,所以中性点电压位移较小。
但是当系统中发生一相导线断线、或两相导线同一处断线、或开关动作不同步都将使故障相的对地电容减小,从而使不对称度有较大的增长,中性点的位移电压可能达到很高的数值。
2.1.3消弧线圈的作用原理中性点加入消弧线圈后,起到三个方面的作用,即大大减小故障点接地电流;减缓电弧熄灭瞬时故障点恢复电压的上升速度;避免由于电磁式电压互感器饱和而引发铁磁谐振。
探讨10kV供电系统中消弧线圈的应用摘要:随着经济和社会的快速发展,国家在供电系统的建设力度在逐渐增加,各地出现了大量的电网改造施工,因此10kV供电系统逐渐增加,接地电容与地电容的电流逐渐加大。
针对10kV供电系统存在的安全隐患问题和老式消弧线圈存在的缺点,阐述了消弧线圈的类型,及选型标准,消弧线圈在10kV供电系统中的应用情况,消弧线圈成套装置的工作原理,以及消弧线圈成套装置对继电保护产生的影响,希冀对同行们起到一定的借鉴意义。
关键词:10kV供电系统;消弧线圈;供电系统引言随着电网规模的扩大,变电站10kV出线增多以及电缆的广泛使用,系统发生单相接地引起的电容电流随之增大。
新颁标准规定:10kV系统(含架空线路)单相接地故障电流大于10A而又需要在接地故障条件下运行时应采用消弧线圈接地方式。
因此,在变电站安装消弧线圈能减小故障点的残余电流,抑制间歇性弧光过电压及谐振过电压,对保证系统安全供电起到显著的作用。
1 设备选型1.1 消弧线圈型式的选择消弧线圈选择晶闸管调节自动跟踪补偿型式,现在常见的消弧线圈主要包含晶闸管调节消弧线圈、调容式消弧线圈和调匝式消弧线圈。
晶闸管调节弧线圈属于高短路阻抗变压器消线圈,可以利用功率较大的晶闸管来对消弧线圈的电感进行连续的调节,通过改变消弧线圈当中能够调节的晶闸管的导通角,来对消弧线圈的等值电感进行更改,实现连续调节补偿电流的效果。
调容式消弧线圈的调节范围比较广,残流比较小,可以通过增加电容器投切组数来扩大调节的范围,该方法的缺点是消弧线圈的维护工作量比较大。
调匝式消弧线圈调节范围较小,速度较慢,因此难以处理好在建站初期电容电流小、出现少以及远期电容电流增加、出线增加的矛盾。
1.2 接地变压器的选择若10kV供电系统当中不存在中性点引出,就必须配置接地变压器。
接地变压器可以使用零序阻抗小的 Z 型接线方式,容量和消弧线圈可以相互配合。
若接地变压器存在二次绕组,还能够当作变压器使用。
自动控制消弧线圈继电保护所保护四班范永德消弧线圈的作用消弧线圈的作用主要是将系统的电容电流加以补偿,使接地点电流补偿到较小的数值,防止弧光短路,保证安全供电。
降低弧隙电压恢复速度,提高弧隙绝缘强度,防止电弧重燃,造成间歇性接地过电压。
中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。
并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。
10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。
3、系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: (1)当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。
消弧线圈的作用消弧线圈的作用一个电网的存在必然存在着漏电.从那里漏的电呢? 电缆对地的电容!我们知道,我们采用的是50Hz的频率.而且在传输的过程中是没有零线的,主要的目的是为了节约成本!代替零线的自然就是大地.三相点他们对大地的距离不一样也就是对大地的电容也不一样!既然电容不一样,那么漏电流也不一样.漏掉的电流跑到那里去了呢?这要取决于那条线路距离大地最近.因为漏掉的电流要跑到另外的线路中!假如A失去电流,那么B或者C就得到电流!容性电流=A-B|A-C线路越长容性电流就越大!容性电流越大,当发生接地的时候弧光就不容易熄灭!通过引入消弧线圈来保证整个变电站的接地时候的电流<5A就可以消灭接地弧光!当然:引入消弧线圈后,变电站的系统有可能是过补(电感电流大于电容电流)或者是欠补(电感电流小于电容电流)但绝对不能相同(电感电流等于电容电流)!消弧线圈的作用消弧线圈的工作方式晶闸管调容式消弧线圈调匝式消弧线圈调气隙式消弧线圈老式固定式磁偏式各种方式的比较:传统方式(1)由于传统消弧线圈没有自动测量系统,不能实时测量电网对地电容电流和位移电压,当电网运行方式或电网参数变化后靠人工估算电容电流,误差很大,不能及时有效地控制残流和抑制弧光过电压,不易达到最佳补偿。
消弧线圈接地变成套装置原理
消弧线圈接地变成套装置的原理主要基于消弧线圈的工作原理。
当电网发生单相接地故障时,消弧线圈接地变成套装置会提供一电感电流,补偿接地电容电流。
通过调整消弧线圈的电感量,可以使得接地电流减小,降低故障相接地电弧两端的恢复电压速度,从而达到熄灭电弧的目的。
消弧线圈接地变成套装置由电抗器、晶闸管触发器、防雷器、模拟开关、变压器等器件组成。
通过利用电抗器使出线电压保持在一个较低的值,然后通过晶闸管触发器对模拟开关进行控制,使得需要出线的电线通过变压器进行调节输出。
这样可以避免在故障时形成的高电压电弧,从而消除接地电流。
消弧线圈的调谐程度也会影响其补偿效果。
当消弧线圈正确调谐时,即电感电流接地或等于电容电流时,不仅可以减少产生弧光接地过电压的机率,还可以限制过电压的辐值,减小故障点热破坏作用及接地网的电压等。
工程上用脱谐度V来描述调谐程度,V=(IC-IL)/IC。
总之,消弧线圈接地变成套装置是一种电力系统中常用的保护装置,主要用于解决电路故障时电能转移和消除故障电弧的问题。
通过消弧线圈的感性电流补偿接地故障时的容性电流,使接地故障电流减少以致自动熄弧,保证继续供电。
接地变、消弧线圈及自动补偿装置的原理和选择1问题提出随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。
一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。
210kV中性点不接地系统的特点选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。
并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。
10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。
3系统对地电容电流超标的危害实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下:3.1当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。
3.2配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。
消弧线圈的几个常见问题邓岳华胡晓萌区伟潮广东电网公司南海供电局1998年在110 kV桂城等3个变电所安装了3套调隙式消弧线圈,由于控制部分使用了大量的电磁继电器,控制回路复杂且运行极不稳定,不到半年该三套消弧线圈均处于停运状态。
2000年开始,南海供电局(以下简称我局)逐步选用微机控制的调匝式消弧线圈(以下简称“预调式”消弧线圈),也有部分变电所选用微机控制的可控硅方式消弧线圈(以下简称“随调式”消弧线圈)。
2005年10月,我局已安装消弧线圈51套,其中预调式消弧线圈有42套,随调式的消弧线圈9套。
安装消弧线圈后效果明显,主要体现在Tv没有发生过因铁磁谐振而使高压熔断件熔断的现象,有效地抑制了单相接地故障造成的过电压,也没有发生过开关柜“火烧连营”的情况以及原因不明的10 kV设备重大事故。
1 消弧线圈存在的几个问题1.1 消弧线圈容量的选择我局早期投运的消弧线圈,容量大多选择250 kVA(额定电流为40 A)。
随着配电网的扩大以及电缆线路的增加,运行3~5年后,消弧线圈的最大补偿电流小于系统的电容电流,消弧线圈运行在“欠补偿”状态,致使运行中容易发生谐振过电压。
因此消弧线圈容量的选择是我们面临的棘手问题。
在相关的设计规程中提到消弧线圈容量选择的参考公式如下Q = 1.35×I c×U n/31/2式中 i c——接地电容电流;u n——系统标称电压。
我们认为该公式具有一定的局限性。
特别是对新建变电所该如何选择消弧线圈的容量,就不能套用该公式。
该问题应“因地制宜”地解决,不能“一刀切”。
在南海的配电网,如果选用“预调式”的消弧线圈(该型号消弧线圈受补偿电流下限制约)其容量一般选择630 kVA或750 kVA(下限值不低于10 A);如果选用“随调式”消弧线圈,则容量可以选择800 kVA及以上。
该选择原则是根据我区各变电所10 kV 系统电容电流的状况以及配电网发展规划确定的。
调匝式消弧线圈成套装置简要技能培训资料培训资料内容一、消弧线圈及接地变的基本参数二、线圈成套装置常识资料三、现场安装调试相关四、现场常见问题解决五、消弧线圈现场投运的操作规程及日常维护六、关于控制屏控制器的操作一、消弧线圈及接地变的基本参数1、消弧线圈的作用;电容电流的危害:(一)电容电流对供电系统的危害:1)、当配电网发生单相接地时,当容电流一旦过大(超过10A),接地点电弧不能自灭,就会迅速发展为相间短路,造成停电或损坏设备的事故,引起统一线路跳闸,因小动物造成单相接地而引起相间故障造成的停电事故也时有发生,使供电中断。
2)、当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,产生的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。
3)、配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。
4)、造成接地点热破坏及接地网电压升高:单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地网电压升高,危害人身安全。
5)、当有人误触带电部位时,由于受到大电流的烧灼,加重了对触电人员的伤害,甚至伤亡。
6)、配电网对地电容电流增大后,对架空线路来说,树线矛盾比较突出,尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。
7)、交流杂散电流危害:电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃瓦斯煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等。
接地电弧引起瓦斯煤尘爆炸。
在国家煤矿安全操作规程中也规定了矿井高压电网单相接地电流超过20A时,必须采取措施以限制接地电流。
(二)消弧线圈的作用:当系统出现单相接地时,可通过消弧线圈对大地产生一个电感电流,感性电流是由系统流向大地,其电位呈感性为“-”。
浅析消弧线圈技术的新发展蔡健威(广东工业大学,广东广州510006)摘要:在高新技术支持下,配电网中消弧线圈的应用发展很快,介绍了调客式、磁阀式、高短路阻抗式、调感武等几种新型消弧线圈的特点。
关键词:消弧线圈;电感电流;接地1引言国内外电力系统以前多采用传统消弧线圈,不仅需要人工进行调谐,而且调谐精度较差。
限制了消弧线罔的应用与发展。
近年来,随着微机的推广应用,高新技术产品不断出现,克服了上述缺点,使消弧线圈得到了越来越广泛的推广和应用。
特别是当前采用的自动跟踪补偿装置,不仅可免除人工调谐的诸多麻烦,而且显著提高调谐精度,使接地电弧瞬间熄灭。
有利于进一步限制电弧的接地过电压。
2消弧线圈的作用原理消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿其接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。
当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网电压的升高等。
所谓正确调谐,即电感电流接地或等于电容电流,工程上用脱谐度V来描述调谐程度:k∞一11)/l c当V=O时,称为全补偿,当V>O时为欠补偿,V<O时为过补偿。
从发挥消弧线圈的作用七来看,脱谐度的绝对值越小越好,最好是处于全补偿状态,即调至谐振点上。
但是在电网正常运行时,小脱谐度的消弧线圈将产生各种谐振过电压。
如煤矿6K V 电网中,当消弧线罔处于全补偿状态时,电网正常稳态运行情况下其中性点位移电压是未补偿电网的10—25倍,这就是通常所说的串联谐振过电压。
除此之外,电网的各种操作(如大电机的投人,断路器的非同期合闸等)都可能产生危险的过电压,所以在电网正常运行时,或发生单相接地故障以外的其它故障时,小脱谐度的消弧线圈给电网带来的不是安全因素而是危害。
综上所述,当电网未发生单相接地故障时,希望消弧线圈的脱谐度越大越好,最好是退出运行。
消弧和消谐的工作原理详解消弧和消谐的工作原理是不一样的。
消弧是指当母线发生单相金属接地时消弧装置动作使金属接地通过消弧装置动作的真空接触器直接接地,有利于母线保护动作、这样可以避免谐波的产生。
消谐主要是消除二次谐波以及高次谐波,有利于电网的安全运行。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
消弧线圈主要是由带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。
绕组的电阻很小,电抗很大。
消弧线圈的电感可用改变接入绕组的匝数加以调节。
在正常运行状态下,由于系统中性点的电压是三相不对称电压,数值很小,所以通过消弧线圈的电流也很小,电弧可能自动熄灭。
一般采用过补偿方式,就是电感电流略大于电容电流消弧线圈是一种带铁芯的电感线圈。
它接于变压器(或发电机)的中性点与大地之间,构成消弧线圈接地系统。
正常运行时,消弧线圈中无电流通过。
而当电网受到雷击或发生单相电弧性接地时,中性点电位将上升到相电压,这时流经消弧线圈的电感性电流与单相接地的电容性故障电流相互抵消,使故障电流得到补偿,补偿后的残余电流变得很小,不足以维持电弧,从而自行熄灭。
这样,就可使接地迅速消除而不致引起过电压。
长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。
此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。
因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。
现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。
摘要:随着城市电网的发展,变电站10kV出线中电缆所占比重越来越高,导致10kV系统的电容电流越来越大,远远超过了规程规定的10A(10kV为架空线和电缆线混合的系统)。
因此需要在10kV中压电网中采用中性点谐振接地(经消弧线圈接地)方式。
理想的消弧线圈能实时监测电网电容电流的大小,在正常运行时电抗值很大,相当于中性点不接地系统,在发生单相接地故障时能在极短时间内自动调节电抗值完全补偿电容电流,使接地点残流的基波无功分量为零。
自动跟踪补偿消弧装置基本能实现上述功能,技术现已相当成熟,能将接地故障电流限制在允许范围内,保证系统的可靠运行及人身和设备的安全。
[关键词]:中压电网中性点谐振接地方式一、引言对10kV中压电网而言,设备的绝缘裕度受经济因素的制约作用较小,工频电压升高的不良影响较低,相反限制单相接地故障电流及其一系列危害显得尤为重要,加之接地继电保护选择性难题的攻克(之前为了检出和清除故障线路曾采用低电阻接地方式),现国内10kV中压电网多采用中性点非有效接地方式。
其包括如下几种方式:1、中性点不接地方式;2、中性点经高电阻接地方式;3、中性点谐振接地(经消弧线圈接地)方式。
所谓中性点不接地方式,实际系统是经过一定数值容抗接地的。
当系统发生一点接地时,保护不跳闸,仅发出接地信号,可带故障运行1-2小时(前提是系统接地故障电流不大于10A)。
因接地系数(零序阻抗与正序阻抗比值)k小于0,△U=-U相可能高于相电压,非故障相的工频电压升高将会略高于线电压,约为1.05U线。
另外,中性点不接地系统还具有中性点不稳定的特点,当单相接地电弧自行熄灭后,容易导致电压互感器的铁芯饱和激发中性点不稳定过电压,引起电压互感器烧毁与高压熔丝熔断等事故。
如采用中性点经高电阻接地方式:可限制电弧接地过电压;限制单相接地电弧熄灭后激起的中性点不稳定过电压。
但如系统发生单相接地故障时的故障电流超过10A,接地电弧不能自行熄灭,将引起电弧接地过电压,所以中性点经高电阻接地方式有一定局限性,只适合用于规模较小的10kV电网中。
对消弧线圈使用的国家相关规定一、DL/T620-1997《交流电气装置的过电压保护和绝缘配合》电力行业标准《交流电气装置的过电压保护和绝缘配合》中规定:10 kV架空线路系统单相接地故障电流大于20 A或10 kV电缆线路系统单相接地故障电流大于30 A时应装设消弧线圈。
其理由是在此电流下电弧能自行熄灭。
本标准是根据原水利电力部1979年1月颁发的SDJ7—79《电力设备过电压保护设计技术规程》和1984年3月颁发的SD 119—84《500kV电网过电压保护绝缘配合与电气设备接地暂行技术标准》经合并、修订之后提出的。
中华人民共和国电力工业部1997-04-21批准,1997-10-01实施。
3 系统接地方式和运行中出现的各种电压:3.1 系统接地方式3.1.1 110kV~500kV系统应该采用有效接地方式,即系统在各种条件下应该使零序与正序电抗之比(X0/X1)为正值并且不大于3,而其零序电阻与正序电抗之比(R0/X1)为正值并且不大于1。
110kV及220kV系统中变压器中性点直接或经低阻抗接地,部分变压器中性点也可不接地。
330kV及500kV系统中不允许变压器中性点不接地运行。
3.1.2 3kV~10kV不直接连接发电机的系统和35kV、66kV系统,当单相接地故障电容电流不超过下列数值时,应采用不接地方式;当超过下列数值又需在接地故障条件下运行时,应采用消弧线圈接地方式:a)3kV~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,10A。
b)3kV~10kV非钢筋混凝土或非金属杆塔的架空线路构成的系统,当电压为:1)3kV和6kV时,30A;2)10kV时,20A。
c)3kV~10kV电缆线路构成的系统,30A。
3.1.6 消弧线圈的应用a)消弧线圈接地系统,在正常运行情况下,中性点的长时间电压位移不应超过系统标称相电压的15%。
b)消弧线圈接地系统故障点的残余电流不宜超过10A,必要时可将系统分区运行。
110kV 望山变电站工程接地变容量计算书一、工程名称:110kV 望山变电站工程二、计算内容:10kV 、35kV 电容电流的估算及消弧线圈容量的选择三、计算依据:《电力工程电气设计手册电气一次部分》第六章《高压电气选择》四、已知数据1、10kV 终期出线:架空20回,线路长度为20km ;电缆长2km.2、10kV 本期出线:架空12回;电缆2km.3、10kV 线路长度: 电缆每回线平均长度0.2km.4、10kV 出线电缆截面:按三芯截面300mm 2计算5、35kV 终期出线:架空10回,每回线路长度为30km ;电缆8回,1.2km.6、35kV 本期出线:架空6回;电缆1.2km.7、35kV 出线电缆截面:按三芯截面150mm 2计算8、变电站附加10kV 电容电流数量:16%9、变电站附加35kV 电容电流数量:13%五、计算公式10kV 侧: 1、每千米电容电流 km UA SS Ic /23.0220044.195++==2.44A 2、消弧线圈容量补偿Q=kIcU N /√3=20+0.025×20×12×1.35×10.5/√3=690.0256*20*20*1.35*10.5/√3=83.8式中:k-系数,过补偿取1.35Ic-电网电容电流A35kV 侧: 1、每千米电容电流km A Ic /15.3=2、消弧线圈容量补偿Q=kIcU N /√3=1.35*3.15*1.2*35/√3=103.2103.2+0.078*30*6*1.35*35/√3=103.2+338=486.2式中:k-系数,过补偿取1.35Ic-电网电容电流A六、结论10kV侧:选用2台单台容量为600kVA的接地变兼站用变,接地变容量为315kVA,站用变容量为200kVA,每台主变带1台接地变兼站用变.35kV侧:选用2台单台容量为550kVA的消弧线圈.。
消弧线圈补偿原理及运行注意事项一、消弧线圈补偿原理(1) 单相接地的一般过程间歇性电弧接地——稳定性电弧接地——金属性接地(2)弧光接地过电压及电弧电流发生单相间歇性弧光接地(弧光接地)时,由于电弧多次不断的熄灭和重燃,导致系统对地电容上的电荷多次不断的积累和重新再分配,在非故障相的电感—电容回路上引起高频振荡过电压。
对于架空线路,过电压幅值一般可达3.1~3.5倍相电压,对于电缆线路,非故障相的过电压可达4~71倍。
弧光接地时流过故障点的电弧电流为高频电流和工频电流的和,在弧光接地或电弧重燃的瞬间,已充电的相对地电容将要向故障点放电,相当于RLC 放电过程,其高频振荡电流为:t e CL U i t ωδsin -=其中:U 为相电压,δ=R/2L ,ωo =1/,≈ωo (在输电线路中) 过渡过程结束后,流过故障点的电弧电流只剩下稳态的工频电容电流。
(3)弧光接地的危害A 、 加剧了电缆等固体绝缘的积累性破坏,威胁设备安全;B 、 导致烧PT 或保险熔断;C 、 导致避雷器爆炸;D 、 燃弧点温度高达5000K 以上,会烧伤导线,甚至导致断线事故;E 、 电弧不能很快熄灭,在风吹、电动力、热气流等因素的影响下,将会发展成为相间弧光短路事故;F 、 电弧燃烧时会直接破坏电缆相间绝缘,导致相间短路事故的发生;G 、 跨步电压高,危及人身安全;H 、 高频电流对通讯产生干扰。
(4)工频接地电流与电弧间的关系A 、在接地的电容电流的允许值是小于30A 。
而20-63KV 的系统承受过电压的能力较差,所以,它的接地的电容电流的允许值是小于10A 。
B 、相同大小(小于10A )的容性残流和感性残流均可起到消弧作用,所以当消弧线圈容量不足时,可采用前补偿调谐。
C 、补偿度(IcI k L)过大,系统残流超过可能超过10A ,可维持电弧燃烧,所以补偿度不宜过大。
3、消弧线圈补偿原理消弧线圈利用流经故障点的电感电流和电容电流相位差为180°,补偿电容电流减小流经故障点电流,降低故障相接地电弧两端的恢复电压速度,来达到消弧的目的。
论单相接地电容电流危害及消弧线圈的发展煤炭工业部济南设计研究院周海斌、魏岱宁摘要:本文介绍了单相接地电容电流的危害、传统消弧线圈存在的问题以及现在国内主要的几种消弧线圈的特点。
关键词:电容电流、消弧线圈作者简介:周海斌,男,1979年生,2001年毕业于山东科技大学电气工程系,毕业后进入济南煤炭设计院从事电气专业设计至今。
通讯地址:济南市堤口路141号煤炭设计院250031魏岱宁,男,1976年生,2000年毕业于山东工业大学工业自动化系,毕业后进入济南煤炭设计院从事电气专业设计至今。
通讯地址:济南市堤口路141号煤炭设计院250031Discussing single-phase grounding capacitance current’s damage and developing of arc arrest coil Jinan Institute of Design & Research,Ministry of Coal Industry Zhou Haibin 、Wei Daining Abstract: This text introduced the single-phase grounding capacitance current’s damage、tradition arc arrest coil existing problems and characteristics of a few primary kinds arc arrest coil.Key words: capacitance current、arc arrest coil一、我国城乡配电网中性点接地方式的发展概况建国初期,我国各大城市电网开始改造简化电压等级,将遗留下来的3kV、6kV配电网相继升压至10kV,解放前我国城市配电网中性点不接地、直接接地和低电阻接地方式都存在过,上海10kV电缆配电网中性点不接地、经电缆接地、经电抗接地3种方式并存运行至今,北京地区10kV系统中性点低电阻与消弧线圈并联接地,上海35kV系统中性点经消弧线圈和低电阻接地2种方式并存至今。
但是,从50年代至80年代中期,我国10(6)~66kV系统中性点,逐步改造为采用不接地或经消弧线圈接地两种方式,这种情况在原水利电力部颁发的《电力设备过电压保护设计技术规程SDJ7-79》中规定得很明确。
80年代中期我国城市10kV配电网中,电缆线路增多,电容电流相继增大,而且运行方式经常变化,当电缆发生单相接地故障时间一长,往往发展成为二相短路。
二、单相接地电容电流的危害目前我国6~35kV的电网大多采用中性点不接地的运行方式。
现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。
如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。
但是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3.5倍相电压的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,如果在健全相的绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路的重大事故。
单相接地电容电流的危害主要体现在以下四个方面:1、产生弧光接地过电压。
2、造成接地点热破坏及接地网电压升高。
3、产生交流杂散电流。
4、接地电弧引起瓦斯煤尘爆炸。
三、消弧线圈的作用消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。
当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。
四、传统消弧线圈存在的问题当3—66kV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式,通过计算电网当前脱谐度(ε = (I L- IC)/IC ·100%)与设定值的比较,决定是否调节消弧圈的分接头,过去选用的传统消弧线圈必须停电调节档位,在运行中暴露出许多问题和隐患,具体表现如下:1 由于传统消弧线圈没有自动测量系统,不能实时测量电网对地电容电流和位移电压,当电网运行方式或电网参数变化后靠人工估算电容电流,误差很大,不能及时有效地控制残流和抑制弧光过电压,不易达到最佳补偿。
2 传统消弧线圈按电压等级的不同、电网对地电容电流大小的不同,采用的调节级数也不同,一般分五级或九级,级数少、级差电流大,补偿精度很低。
3 调谐需要停电、退出消弧线圈,失去了消弧补偿的连续性,响应速度太慢,隐患较大,只能适应正常线路的投切。
如果遇到系统异常或事故情况下,如系统故障低周低压减载切除线路等,来不及进行调整,易造成失控。
若此时正碰上电网单相接地,残流大,正需要补偿而跟不上,容易产生过电压而损坏电力系统绝缘薄弱的电器设备,引起事故扩大、雪上加霜。
4由于消弧线圈抑制过电压的效果与脱谐度大小相关,实践表明:只有脱谐度不超过±5%时,才能把过电压的水平限制在2.6倍的相电压以下(见参考文献1),传统消弧线圈则很难做到这一点。
5运行中的消弧线圈不少容量不足,只能长期在欠补偿下运行。
传统消弧线圈大多数没有阻尼电阻,其与电网对地电容构成串联谐振回路,欠补偿时遇电网断线故障易进入全补偿状态(即电压谐振状态),这种过电压对电力系统绝缘所表现的危害性比由电弧接地过电压所产生的危害更大。
既要控制残流量小,易于熄弧;又要控制脱谐度保证位移电压不超标,这对矛盾很难解决。
鉴于上述因素,只好采用过补偿方式运行,补偿方式不灵活,脱谐度一般达到15%—25%,甚至更大,这样消弧线圈抑制弧光过电压效果很差,几乎与不装消弧线圈一样。
6单相接地时,由于补偿方式、残流大小不明确,用于选择接地回路的微机选线装置更加难以工作。
此时不能根据残流大小和方向或采用及时改变补偿方式或调档变更残流的方法来准确选线。
该装置只能依靠含量极低的高次谐波(小于5%)的大小和方向来判别,准确率很低,这也是过去小电流选线装置存在的问题之一。
7 为了提高我国电网技术和装备水平,国家正在大力推行电网通讯自动化和变电站综合自动化的科技方针,实现四遥(遥信、遥测、遥调、遥控),进而实现无人值班,传统消弧线圈根本不具备这个条件。
五、自动跟踪消弧线圈补偿技术自动跟踪补偿消弧线圈装置可以自动适时的监测跟踪电网运行方式的变化,快速地调节消弧线圈的电感值,以跟踪补偿变化的电容电流,使失谐度始终处于规定的范围内。
大多数自动跟踪消弧装置在可调的电感线圈下串有阻尼电阻,它可以限制在调节电感量的过程中可能出现的中性点电压升高,以满足规程要求不超过相电压的15%。
当电网发生永久性单相接地故障时,阻尼电阻可由控制器将其短路,以防止损坏。
六、目前国内的几种产品自动跟踪补偿消弧线圈按改变电感方法的不同,大致可分为有分接头的调匝式,有可动铁芯的调气隙式,磁阀式调节的消弧线圈,高短路阻抗变压器式消弧系统以及调容式消弧补偿装置等。
现仅介绍主要的三种产品。
1、调匝式该装置属于随动式补偿系统,它同调气隙式的唯一区别是动芯式消弧线圈用有载调匝式消弧线圈取代,这种消弧线圈是用原先的人工调匝消弧线圈改造而成,即采用有载调节开关改变工作绕组的匝数,达到调节电感的目的。
其工作方式同调气隙式完全相同,也是采用串联电阻限制谐振过电压。
该装置同调气隙式相比,消除了消弧线圈的高噪音,但是却牺牲了补偿效果,消弧线圈不能连续调节,只能离散的分档调节,补偿效果差,并且同样具有过电压水平高,电网中原有方向型接地选线装置不能使用及串联的电阻存在爆炸的危险等缺点,另外该装置比较零乱,它由四部分设备组成(接地变压器,消弧线圈、电阻箱、控制柜)。
2、调气隙式调气隙式属于随动式补偿系统。
其消弧线圈属于动芯式结构,通过移动铁芯改变磁路磁阻达到连续调节电感的目的。
然而其调整只能在低电压或无电压情况下进行,其电感调整范围上下限之比为2.5倍。
控制系统的电网正常运行情况下将消弧线圈调整至全补偿附近,将约100欧电阻串联在消弧线圈上。
用来限制串联谐振过电压,使稳态过电压数值在允许范围内(中性点电位升高小于15%的相电压)。
当发生单相接地后,必须在0.2S内将电阻短接实现最佳补偿,否则电阻有爆炸的危险。
该产品的主要缺点主要有四条:(1)工作噪音大,可靠性差:动芯式消弧线圈由于其结构有上下运动部件,当高电压实施其上后,振动噪音很大,而且随着使用时间的增长,内部越来越松动,噪音越来越大。
串联电阻约3kW,100MΩ。
当补偿电流为50A时,需要250kW容量的电阻才能长期工作,所以在接地后,必须迅速切除电阻,否则有爆炸的危险。
这就影响到整个装置的可靠性。
(2)调节精度差:由于气隙微小的变化都能造成电感较大的变化,电机通过机械部件调气隙的精度远远不够。
用液压调节成本太高。
(3)过电压水平高:在电网正常运行时,消弧线圈处于全补偿状态或接近全补偿状态,虽有串联谐振电阻将稳态谐振过电压限制在允许范围内,但是电网中的各种扰动(大电机投切,非同期合闸,非全相合闸等),使得其瞬态过电压危害较为严重。
(4)功率方向型单相接地选线装置不能继续使用。
3、偏磁式电控无级连续可调消弧线圈,全静态结构,内部无任何运动部件,无触点,调节范围大,可靠性高,调节速度快。
这种线圈的基本工作原理是利用施加直流励磁电流,改变铁芯的磁阻,从而改变消弧线圈电抗值的目的,它可以带高压以毫秒级的速度调节电感值。
综上所述:采用动态补偿方式,从根本上解决了补偿系统串联谐振过电压与最佳补偿之间相互矛盾的问题。
众所周知,消弧线圈在高压电网正常运行时无任何好处,如果这时调谐到全补偿或接近全补偿状态,会出现串联谐振过电压使中性点电压升高,电网中各种正常操作及单相接地以外的各种故障的发生都可能产生危险的过电压。
所以电网正常运行时,调节消弧线圈使其跟踪电网电容电流的变化有害无利,这也就是电力部门规定“固定式消弧线圈不能工作在全补偿或接近全补偿状态”的原因。
国内同类自动补偿装置均是随动系统,都是在电网尚未发生接地故障前即将消弧线圈调节到全补偿状态等待接地故障的发生,这了避免出现过高的串联谐振过电压而在消弧线圈上串联一阻尼电阻,将稳态谐振过电压限制到容许的范围内,并不能解决暂态谐振过电压的问题,另外由于电阻的功率限制,在出现接地故障后必须迅速的切除,这无疑给电网增加了一个不安全因素。
偏磁式消弧线圈不是采用限制串联谐振过电压的方法,而是采用避开谐振点的动态补偿方法,根本不让串联谐振出现,即在电网正常运行时,不施加励磁电流,将消弧线圈调谐到远离谐振点的状态,但实时检测电网电容电流的大小,当电网发生单相接地后,瞬时(约20ms)调节消弧线圈实施最佳补偿。