动量与能量1.3.6功 功率 动能定理
- 格式:ppt
- 大小:1.40 MB
- 文档页数:5
动能定理与动量守恒动能定理和动量守恒是物理学中两个重要的基本原理。
它们可以帮助我们理解物体在各种力的作用下的运动规律。
本文将介绍动能定理和动量守恒的基本概念、原理和应用。
一、动能定理动能定理是描述物体动能变化的定理,它表明物体的动能变化等于物体所受的合外力沿着物体位移方向所作的功。
简单来说,动能定理可以用以下公式表示:K2 - K1 = W其中,K1是物体的初始动能,K2是物体的末态动能,W是合外力对物体所作的功。
动能定理的证明可以通过牛顿第二定律和功的定义进行推导。
根据牛顿第二定律 F = ma,将力和位移的关系代入功的定义 W = F·s,可以得到动能定理的数学表达。
动能定理的应用非常广泛。
例如,我们可以通过动能定理分析汽车在行驶过程中的能量转化和耗散情况。
当汽车加速时,发动机提供的功将转化为汽车的动能,而刹车时,动能则被耗散为热能。
二、动量守恒动量守恒是指在一个封闭系统内,系统的总动量在时间不变的情况下保持不变。
也就是说,系统中各个物体的动量之和保持恒定。
动量是物体的运动状态的量度,它等于物体的质量与速度的乘积。
动量守恒可以用以下公式表示:m1v1 + m2v2 = m1v1' + m2v2'其中,m1和m2分别是两个物体的质量,v1和v2分别是它们的初始速度,v1'和v2'分别是它们的末态速度。
动量守恒的原理可以通过牛顿第三定律和动量定义进行推导。
根据牛顿第三定律 F12 = -F21和动量定义 p = mv,可以得到动量守恒的数学表达。
动量守恒在物理学中有广泛的应用。
例如,它可以解释火箭发射的原理。
火箭通过向后喷射燃料与氧化剂产生的高速气体,使系统的总动量为零,实现了火箭的推进。
三、动能定理与动量守恒的关系动能定理和动量守恒是物理学中两个不同的概念,但它们之间存在着紧密的联系。
首先,动能定理可以通过动量守恒得到。
当在动量守恒的条件下,物体的速度发生变化时,根据动量定义可以得到物体动能的变化。
动量和能量力的效应:力的瞬时作用效应牛顿第二定律=;当合外力为零时物体平衡。
---==⎧⎨⎩F ma F F x y00 力对时刻的积聚效应——动量定理Ft =p 2-p 1,当合外力的冲量为零时,体系动量守恒p 1=p 2。
力对空间的积聚效应——动能定理Fs =E k2-E k1,当只有重力和弹簧弹力做功时,机械能守恒E 1=E 2。
(一)动量定理和动能定理动量和动能是从不合角度描述物体活动状况的物理量。
动量是矢量,而动能是标量;物体动量的变更用外力的冲量来量度,而动能的变更则用外力的功来量度。
动量定理和动能定理的公式分别为:Ft =mv 2-mv 1 ①Fs mv mv =-12122212②因此两个公式分别为矢量式和标量式,但不难看出二者仍有专门多雷同的处所。
起首两个公式的情势是类似的;其次式中的v 1、v 2和s 均应相关于同一惯性系;再者合外力的冲量Ft 与合外力的功Fs 在求解方法上也具有类似性,即能够先求合力F 再求它的冲量或功,也能够先求各分力的冲量和功再合成。
(二)动量守恒定律和机械能守恒定律假如说动量定理和动能定理研究对象仅限于单个物体的话,那么动量守恒定律和机械能守恒定律的研究对象则必定是由多个物体所构成的体系。
二者的数学表达式常用情势分别为m v m v m v m v 11221122+=+''③ 1212121222mv mgh mv mgh +=+④在应用两个守恒定律解题时起重要留意体系切实事实上定和守恒前提切实事实上定。
两个守恒定律的前提含义是完全不合的,解题时切切不克不及混为一谈。
1. 动量守恒的前提①动量守恒定律的前提是体系不受外力的感化,然则实际上,全然不受外力感化的体系是不存在的,只要体系受的合外力为零,那么该体系就将严格遵守动量守恒定律,因为“合外力为零”与“不受外力感化”在对体系活动状况的变更上所产生的后果是雷同的。
②在实际情形中,合外力为零的体系也是专门少碰到的,是以在解决实际问题时,假如体系内部的互相感化力(即内力)远比它们所受的外力大年夜(例如互相感化时刻极短的碰撞类问题确实是如斯)就可忽视外力的感化,应用动量守恒定律去处理。
2020年高考物理二轮精准备考复习讲义第二部分功能与动量第5讲功功率动能定理目录一、理清单,记住干 (2)二、研高考,探考情 (2)三、考情揭秘 (4)四、定考点,定题型 (5)超重点突破1功和功率的分析与计算 (5)命题角度1功的分析与计算 (5)命题角度2功率的分析及应用 (6)命题角度3 变力做功 (7)超重点突破2机车启动中的功率问题 (8)超重点突破3动能定理的基本应用 (10)命题角度1动能定理在直线运动中的应用 (10)命题角度2动能定理在曲线运动中的应用 (12)命题角度3 动能定理在图象问题中的应用 (13)五、固成果,提能力 (14)一、理清单,记住干1.功(1)恒力做功:W =Fl cos α(α为F 与l 之间的夹角).(2)变力做功:①用动能定理求解;②用F -x 图线与x 轴所围“面积”求解. 2.功率(1)平均功率:P =Wt =F v cos α(α为F 与v 的夹角).(2)瞬时功率:P =Fv cos α(α为F 与v 的夹角).(3)机车启动两类模型中的关键方程:P =F ·v ,F -F 阻=ma ,v m =PF 阻,Pt -F 阻x =ΔE k . 3.动能定理:W 合=12mv 2-12mv 20.4.应用动能定理的两点注意(1)应用动能定理的关键是写出各力做功的代数和,不要漏掉某个力做的功,同时要注意各力做功的正、负. (2)动能定理是标量式,不能在某一方向上应用.二、研高考,探考情【2019·高考全国卷Ⅲ,T17】从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用.距地面高度h 在3 m 以内时,物体上升、下落过程中动能E k 随h 的变化如图所示.重力加速度取10 m/s 2.该物体的质量为( )A .2 kgB .1.5 kgC .1 kgD .0.5 kg 【答案】:C【解析】:画出运动示意图,设阻力为f ,据动能定理知A →B (上升过程):E k B -E k A =-(mg +f )hC →D (下落过程):E k D -E k C =(mg -f )h整理以上两式得mgh =30 J ,解得物体的质量m =1 kg ,选项C 正确.【2019·高考江苏卷】如图所示,轻质弹簧的左端固定,并处于自然状态.小物块的质量为m ,从A 点向左沿水平地面运动,压缩弹簧后被弹回,运动到A 点恰好静止.物块向左运动的最大距离为s ,与地面间的动摩擦因数为μ,重力加速度为g ,弹簧未超出弹性限度.在上述过程中( )A .弹簧的最大弹力为μmgB .物块克服摩擦力做的功为2μmgsC .弹簧的最大弹性势能为μmgsD .物块在A 点的初速度为2μgs 【答案】:BC【解析】:小物块处于最左端时,弹簧的压缩量最大,然后小物块先向右做加速运动再做减速运动,可知弹簧的最大弹力大于滑动摩擦力μmg ,选项A 错误;物块从开始运动至最后回到A 点过程,由功的定义可得物块克服摩擦力做功为2μmgs ,选项B 正确;自物块从最左侧运动至A 点过程由能量守恒定律可知E p =μmgs ,选项C 正确;设物块在A 点的初速度为v 0,整个过程应用动能定理有-2μmgs =0-12mv 20,解得v 0=2μgs ,选项D 错误.【2018·高考全国卷Ⅲ,T19】地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v 随时间t 的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程( )A .矿车上升所用的时间之比为4∶5B .电机的最大牵引力之比为2∶1C .电机输出的最大功率之比为2∶1D .电机所做的功之比为4∶5 【答案】:AC【解析】:由图线①知,矿车上升总高度h =v 02·2t 0=v 0t 0由图线②知,加速阶段和减速阶段上升高度和 h 1=v 022·(t 02+t 02)=14v 0t 0匀速阶段:h -h 1=12v 0·t ′,解得t ′=32t 0故第②次提升过程所用时间为t 02+32t 0+t 02=52t 0,两次上升所用时间之比为2t 0∶52t 0=4∶5,A 对;对矿车受力分析,当矿车向上做加速直线运动时,电机的牵引力最大,由于加速阶段加速度相同,故加速时牵引力相同,B 错;在加速上升阶段,由牛顿第二定律知, F -mg =ma ,F =m (g +a ) 第①次在t 0时刻,功率P 1=F ·v 0, 第②次在t 02时刻,功率P 2=F ·v 02,第②次在匀速阶段P 2′=F ′·v 02=mg ·v 02<P 2,可知,电机输出的最大功率之比P 1∶P 2=2∶1,C 对;由动能定理知,两个过程动能变化量相同,克服重力做功相同,故两次电机做功也相同,D 错.三、考情揭秘近几年高考命题点主要集中在正、负功的判断,功率的分析与计算,机车启动模型,题目具有一定的综合性,难度适中.高考单独命题以选择题为主,综合命题以计算题为主,常将动能定理与机械能守恒定律、能量守恒定律相结合.应考策略:备考中要理解功和功率的定义,掌握正、负功的判断方法,机车启动两类模型的分析,动能定理及动能定理在变力做功中的灵活应用.动能定理仍是2020年高考的考查重点,要重点关注本讲知识与实际问题、图象问题相结合的情景题目.四、定考点,定题型超重点突破 1 功和功率的分析与计算1.功和功率的计算 (1)功的计算①恒力做功一般用功的公式或动能定理求解。
高中物理公式大全(全集)八动量与能量1.动量 2.机械能1.两个〝定理〞〔1〕动量定理:F ·t =Δp 矢量式 (力F 在时刻t 上积存,阻碍物体的动量p ) 〔2〕动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积存,阻碍物体的动能E k )动量定理与动能定理一样,差不多上以单个物体为研究对象.但所描述的物理内容差不极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时刻积存作用成效——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时刻为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如下图.那么在Δt 内:以小球为研究对象,其受力情形如下图.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-〔-mv 0cos θ〕小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要专门注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=mυ02/2-mυ02 /2 =02.两个〝定律〞〔1〕动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′〔2〕机械能守恒定律:适用条件——只有重力〔或弹簧的弹力〕做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如下图,分不以m 1和m 2为研究对象,依照动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理能够解决动量守恒咨询题,只是较苦恼一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——明白得〝摩擦生热〞(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,通过一段时刻,物块的位移为s 1,板的位移s 2,现在两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在那个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断〝生热〞,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③ 由此可见,在两物体相互摩擦的过程中,缺失的机械能〔〝生热〞〕等于摩擦力与相对位移的乘积。
动能定理与动量守恒动能定理和动量守恒是物理学中两个重要的基本概念和原理。
它们在我们理解和研究物体运动及相互作用方面起到了至关重要的作用。
本文将详细介绍动能定理和动量守恒的含义、应用及其在日常生活和工程应用中的意义。
一、动能定理动能定理是描述物体运动所具有的动能和力之间的关系。
根据动能定理,一个物体的动能的变化量等于所受外力对其所做的功。
动能定理的数学表达式为:其中,K代表物体的动能,W代表外力对物体所做的功。
动能定理的实际意义是,当一个物体受到作用力时,其动能会发生改变。
外力对物体所做的功越大,物体的动能变化量也就越大。
动能定理不仅对于描述物体受力运动有重要作用,还可以应用于机械能转化和能量守恒的研究中。
二、动量守恒动量守恒是指在一个封闭系统中,系统的总动量保持不变。
动量是描述物体运动状态的物理量,其定义为物体的质量乘以其速度。
根据动量守恒原理,当一个封闭系统内各个物体的外力合为零时,系统的总动量将保持不变。
动量守恒的数学表达式为:其中,m代表物体的质量,v代表物体的速度,Σ代表对所有物体求和。
动量守恒的实际意义是,当一个封闭系统内的物体发生相互作用时,它们的总动量保持不变。
这意味着当一个物体的动量发生变化时,必然有其他物体的动量发生相应的变化,以保持系统的总动量恒定。
三、动能定理与动量守恒的关系动能定理和动量守恒是描述和解释物体运动的两个重要原理,它们之间存在着密切的关系。
根据动能定理的定义,一个物体的动能的变化量与外力对其所做的功有关。
而根据牛顿第二定律,力等于质量乘以加速度,而加速度等于速度的变化率。
将这两个关系结合起来,可以得到动能定理的另一种表达形式:其中,F代表物体所受的外力,a代表物体的加速度。
将动能定理的这一形式与动量的定义结合起来,可以得到:即物体的动能的变化量等于物体所受的外力对其动量的变化量。
从这个角度来看,动能定理实际上是动量守恒的特例。
它表明当一个物体所受的外力为零时,物体的动能保持不变,即动量守恒成立。
动能定理与功率动能定理和功率是物理学中两个重要的概念。
动能定理描述了物体的动能与力学工作之间的关系,而功率则描述了力的作用速度和工作的效率。
本文将探讨这两个概念的含义、应用和相关实例。
一、动能定理动能定理是描述物体运动能量变化的基本原理。
它表明,物体的动能变化等于物体所受外力所做的功。
具体而言,动能定理可以用以下公式表示:动能的增量 = 外力所做的功其中,动能的增量指的是物体动能的变化量,外力所做的功指的是外力对物体所做的力学工作。
这个定理可以帮助我们理解物体在受到外力作用下的能量转换过程。
动能定理的应用十分广泛。
例如,当我们用力推动一个静止的物体时,我们所施加的力会增加物体的动能,使其具有速度和动量。
同样地,当我们用力减慢一个运动中的物体时,我们所施加的力会减少物体的动能,使其逐渐停下来。
动能定理还可以用于解释运动中的能量转换。
例如,当一个物体从高处自由下落时,它的势能会转化为动能。
根据动能定理,物体下落的过程中会产生速度增加,动能增加的现象。
二、功率功率是描述力的作用速度和工作效率的物理量。
它定义为单位时间内所做的功。
具体而言,功率可以用以下公式表示:功率 = 做功的大小 / 做功的时间功率的单位是瓦特(W),1瓦特等于1焦耳/秒。
功率可以帮助我们衡量力的作用效率和能量转换速度。
功率的应用也非常广泛。
例如,当我们使用电器时,我们常常会看到功率的标识。
这是因为功率可以帮助我们了解电器的能量转换速度和能耗情况。
功率越大,表示电器能够更快地将电能转换为其他形式的能量,但同时也意味着更高的能耗。
另一个例子是汽车的引擎功率。
汽车引擎的功率决定了汽车的加速能力和最高速度。
较高的功率表示汽车能够更快地转化燃料能为动能,从而提供更强的动力。
三、动能定理与功率的关系动能定理和功率之间存在着密切的关系。
根据动能定理,物体的动能变化等于外力所做的功。
而功率则描述了单位时间内所做的功。
因此,我们可以将动能定理重新表达为功率的形式:动能的增量 = 功率 ×时间这个公式说明了功率对于物体动能变化的影响。
大一物理必考知识点总结大一物理课程是理工科学生必修的一门重要课程,涉及到许多基础的物理概念和理论。
掌握这些知识点对于建立坚实的物理基础和应对考试具有重要意义。
以下是大一物理必考知识点的总结。
1. 力学1.1 牛顿三定律:分别是惯性定律、动力学定律和作用、反作用定律。
1.2 动量与能量:包括动量定律、动能定理、机械能守恒等概念和公式的应用。
1.3 万有引力定律:描述了物体之间的引力关系,包括引力公式、重力加速度等。
1.4 运动学:包括匀速直线运动、匀加速直线运动、平抛运动、圆周运动等。
1.5 静力学:包括平衡条件、浮力、压强等概念和公式。
2. 热学2.1 热力学基础:包括温度、热量、热平衡等基本概念。
2.2 理想气体状态方程:描述理想气体的状态变化,包括气体状态方程和气体温度的定义。
2.3 热传导与传热:包括热传导的基本原理和传热方式,如导热、对流、辐射等。
2.4 热力学循环:介绍了热力学循环的基本概念和工作原理,如卡诺循环。
2.5 熵和热力学第二定律:描述了熵的概念和热力学第二定律的表达方式。
3. 电磁学3.1 静电学:包括库仑定律、电场和电势能的概念,以及电势差和电场的关系。
3.2 电流和电阻:介绍了电流的概念、欧姆定律和电阻的计算方法。
3.3 电容和电路:包括电容的定义、电容器的原理和串并联电路的计算方法。
3.4 磁场和磁感应强度:涉及到安培定律、洛伦兹力和电流感应等基本概念。
3.5 电磁感应:包括法拉第电磁感应定律、自感现象和感应电流的产生。
4. 光学4.1 光的传播和光的速度:包括光的传播方式和光速的定义。
4.2 光的干涉和衍射:介绍了光的干涉和衍射现象,如双缝干涉、杨氏干涉等。
4.3 光的折射和反射:包括光的折射定律和反射定律。
4.4 光的光路和成像:涉及到薄透镜成像、球面镜成像和光的光路追迹法。
4.5 波动光学:介绍了光的波粒二象性和光的偏振现象。
总结:大一物理必考知识点包括力学、热学、电磁学和光学等多个方面。
动能定理和动量定理的应用一、动能定理的应用1.动能定理的基本概念:动能定理指出,一个物体的动能变化等于它所受的合外力做的功。
2.动能定理的表达式:ΔE_k = W_net,其中ΔE_k表示物体动能的变化,W_net表示合外力做的功。
3.动能定理在实际问题中的应用:a.计算物体在力的作用下从一个位置移动到另一个位置时动能的变化。
b.分析物体在斜面上滑动时的动能变化,考虑重力势能和摩擦力的影响。
c.研究弹性碰撞和非弹性碰撞中动能的转移和变化。
二、动量定理的应用1.动量定理的基本概念:动量定理指出,一个物体的动量变化等于它所受的合外力作用时间的乘积。
2.动量定理的表达式:Δp = F_net * t,其中Δp表示物体动量的变化,F_net表示合外力,t表示作用时间。
3.动量定理在实际问题中的应用:a.计算物体在力的作用下速度的变化,即动量的变化。
b.分析物体在碰撞过程中的动量守恒,即碰撞前后物体总动量的保持不变。
c.研究爆炸、火箭发射等高速运动物体的动量变化和力的作用。
三、动能定理和动量定理的相互关系1.在某些情况下,动能定理和动量定理可以相互转化应用。
2.动能定理主要关注物体的动能变化,而动量定理主要关注物体的动量变化。
3.在实际物理问题中,根据具体情况选择合适的定理进行分析。
四、注意事项1.在应用动能定理和动量定理时,要正确选择研究对象和研究过程。
2.注意区分合外力和系统内力的作用,以及各种力的方向和大小。
3.在计算功和动量时,要注意单位的转换和数值的精确性。
4.理解动能定理和动量定理的适用范围和条件,避免盲目套用公式。
习题及方法:1.习题:一个物体从静止开始沿着光滑的斜面下滑,斜面与水平面的夹角为30°,物体的质量为2kg,斜面长为10m。
求物体滑到斜面底端时的动能。
a.首先,计算物体下滑过程中的重力势能变化ΔE_p = mgh,其中m为物体质量,g为重力加速度,h为高度变化。
ΔE_p = 2kg * 9.8m/s^2 * 10m * sin(30°) = 98Jb.根据动能定理,物体动能的变化等于重力势能的变化,即ΔE_k =ΔE_p。