pn结的特性,PN结的击穿特性,PN结的电容特性
- 格式:doc
- 大小:23.00 KB
- 文档页数:4
PN结及其特性详细介绍1. PN结的形成在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。
此时将在N型半导体和P型半导体的结合面上形成如下物理过程:扩散到对方的载流子在P区和N区的交界处附近被相互中和掉,使P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。
这样在两种半导体交界处逐渐形成由正、负离子组成的空间电荷区〔耗尽层〕。
由于P区一侧带负电,N区一侧带正电,所以出现了方向由N区指向P 区的内电场PN结的形成当扩散和漂移运动到达平衡后,空间电荷区的宽度和内电场电位就相对稳定下来。
此时,有多少个多子扩散到对方,就有多少个少子从对方飘移过来,二者产生的电流大小相等,方向相反。
因此,在相对平衡时,流过PN结的电流为0。
对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。
在空间电荷区,由于缺少多子,所以也称耗尽层。
由于耗尽层的存在,PN结的电阻很大。
PN结的形成过程中的两种运动:多数载流子扩散少数载流子飘移PN结的形成过程〔动画〕2. PN结的单向导电性PN结具有单向导电性,假设外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。
如果外加电压使PN结中:P区的电位高于N区的电位,称为加正向电压,简称正偏;P区的电位低于N区的电位,称为加反向电压,简称反偏。
(1) PN结加正向电压时的导电情况PN结加正向电压时的导电情况如下图。
外加的正向电压有一局部降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。
于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。
扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。
PN结加正向电压时的导电情况(2) PN结加反向电压时的导电情况外加的反向电压有一局部降落在PN结区,方向与PN结内电场方向一样,加强了内电场。
内电场对多子扩散运动的阻碍增强,扩散电流大大减小。
电子线路第四版线性部分-谢嘉奎-复习资料全申明:本复习资料仅作为考试参考,不代表百分百会考本资料上的容。
一、选择填空题1、本征半导体:纯净的、不含杂质的半导体称为本征半导体。
2、本征激发是半导体中产生自由的电子空穴对的条件。
3、N型半导体:本征半导体中掺入少量五价元素构成。
4、P型半导体:本征半导体中掺入少量三价元素构成。
5、PN结的基本特性:单向导电性(即正向导通,反向截止)。
除了单向导电性外还有反向击穿特性、温度特性、电容特性。
6、PN结的伏安特性方程式:正偏时:反偏时:其中:热电压倍。
7、硅PN结:VD(on)=0.7V锗PN结:VD(on)=0.3V8、PN结的击穿特性:热击穿(二极管损坏,不可恢复),齐纳击穿(可恢复)。
9、PN结的电容特性:势垒电容、扩散电容。
10、三极管部结构特点:发射区掺杂浓度大;基区薄;集电结面积大。
11、三极管的工作状态及其外部工作条件:放大模式:发射结正偏,集电结反偏;饱和形式:发射结正偏,集电结正偏;≈26mV(室温);温度每升高10℃,Is约增加一截止模式:发射结反偏,集电结反偏。
12、三极管工作在放大模式下:对NPN管各极电位间要求:Ve<Vb<Vc对PNP管各极电位间要求:Ve>Vb>Vc解:电压值都为正,可判断为NPN管;假设三极管工作在放大状态,根据电位间要求:Ve<Vb<Vc,可判断U1=10V 为C极电压,U2-U3=0.7V,可判断U2=3V为B极电压;U3=2.3V为E极电压;且UCE=10-2.3=7.7V>0.3V,由此可判断此三极管为NPN型三极管,且工作在放大状态,假设成立。
13、三极管静态工作点:IBQ、TCQ、VCEQ14、公式:15、三极管的三种组态:16、混合Π型小号电路模型:vB Er b ei BQiEvB EiBiEQ26(1)re(1)ICQrce三极管输出电阻,数值较大。
半导体二极管及其应用习题解答Document number:NOCG-YUNOO-BUYTT-UU986-1986UT第1章半导体二极管及其基本电路教学内容与要求本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。
教学内容与教学要求如表所示。
要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。
主要掌握半导体二极管在电路中的应用。
表第1章教学内容与要求内容提要1.2.1半导体的基础知识1.本征半导体高度提纯、结构完整的半导体单晶体叫做本征半导体。
常用的半导体材料是硅(Si)和锗(Ge)。
本征半导体中有两种载流子:自由电子和空穴。
自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。
本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。
但本征半导体中载流子的浓度很低,导电能力仍然很差,2.杂质半导体(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。
N 型半导体呈电中性。
(2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。
P 型半导体中的多子是空穴,少子是自由电子。
P 型半导体呈电中性。
在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。
而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。
1.2.2 PN 结及其特性1.PN 结的形成在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。
PN 结是构成其它半导体器件的基础。
2.PN 结的单向导电性PN 结具有单向导电性。
外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。
半导体基础知识一、半导体本础知识(一)半导体自然界的物质按其导电能力区别,可分为导体、半导体、绝缘体三类。
半导体是导电能力介于导体和绝缘体之前的物质,其电阻率在10-3~109Ω范围内。
用于制作半导体元件的材料通常用硅或锗材料。
(二)半导体的种类在纯净的半导体中掺入特定的微量杂质元素,能使半导体的导电能力大提高。
掺入杂质后的半导体称为杂质半导体。
根据掺杂元素的性质不同,杂质半导体可分为N型和P型半导体。
(三)PN结及其特性1、PN结:PN结是构成半导体二极管、三极管、场效应管和集成电路的基础。
它是由P型半导体和N型半导体相“接触”后在它们交界处附近形成的特殊带电薄层。
2、PN结的单向导电性:当PN结外加正向电压(又叫正向偏置)时,PN结会表现为一个很小的电阻,正向电流会随外加的电压的升高而急速上升。
称这时的PN结处于导通状态。
当PN结外加反向电压(以叫反向偏置)时,PN结会表现为一个很大的电阻,只有极小的漏电流通过且不会随反向电压的增大而增大,这时的电流称为反向饱和电流。
称这时的PN结处于截止状态。
当反向电压增加到某一数值时,反向电流急剧增大,这种现象称为反向击穿。
这时的反向电压称为反向击穿电压,不同结构、工艺和材料制成的管子,其反向击穿电压值差异很大,可由1伏到几百伏,甚至高达数千伏。
3、频率特性由于结电容的存在,当频率高到某一程度时,容抗小到使PN结短路。
导致二极管失去单向导电性,不能工作,PN结面积越大,结电容也越大,越不能在高频情况下工作。
二、半导体二极管(一)半导体二极管及其基本特性1、半导体二极管:半导体二极管(简称为二极管)是由一个PN结加上电极引线并封装在玻璃或塑料管壳中而成的。
其中正极(或称为阳极)从P区引出,负极(或称为阴极)从N区引出。
以下是常见的一些二极管的电路符号:普通二极管稳压二极管发光二极管整流桥堆2、二极管的伏安特性二极管的伏安特征如下图所示:二极管的伏安特性曲线(二)二极管的分类二极管有多种分类方法1、按使用的半导体材料分类二极管按其使用的半导体材料可分为锗二极管、硅二极管、砷化镓二极管、磷化镓二极管等。
PN 结外加正向电压时内外电场方向相反外电场削弱内电场PN 结变窄多子的扩散运动占优势PN 结表现为导通状态。
正向电流的方向是从P 区流向N 区。
表现为正向电阻小。
1.2.2 PN 结的特性1、PN 结的单向导电性P 区N 区内电场空间电荷区外电场IERPN 结正偏:P 区接电源的正极,N 区接电源的负极。
P 区N 区内电场空间电荷区外电场IERPN结外加反向电压时内外电场方向一致外电场加强内电场PN 结变宽少子的漂移运动占优势反向电流很小,PN 结为截止状态。
反向电阻很大。
1、PN 结的单向导电性1.2.2 PN 结的特性P 区N 区内电场空间电荷区外电场RE I PN 结反偏:P 区接电源的负极,N 区接电源的正极。
P 区N 区内电场空间电荷区外电场R EI2、PN 结的伏安特性T =26mV kT U q =TS (e1)UU I I =-(1)①③②④①U <U th ,称为死区②U >U th ,称为正向导通区③区域称为反向截止区④区域称为反向击穿区温度的电压当量:23191.3810J/K =300K 1.610C k T q --⎧=⨯⎪⎨⎪=⨯⎩TS eUU I I ≈S-I I ≈3、PN 结的击穿特性①雪崩击穿②齐纳击穿掺杂浓度大,空间电荷区承受的反向电压大。
掺杂浓度小,少数载流子在空间电荷区漂移距离长。
P 区N 区内电场空间电荷区外电场REIP 区N 区内电场空间电荷区外电场REI(1) 势垒电容C B4、PN 结的电容效应势垒电容是描述在PN 结反偏时,空间电荷区的宽度随外加反向电压改变所产生的电容效应。
1.2.2 PN 结的特性(2) 扩散电容C D扩散电容是描述PN 结正偏时,两侧积累的非平衡载流子数量随外加正向电压改变所产生的电容效应。
PN 结的电容效应是影响半导体器件最高工作频率的根本原因。
电子浓度分布空穴浓度分布5、PN 结的温度特性1.PN 结的单向导电性2.PN 结的伏安特性3.PN 结的击穿特性4.PN 结的电容效应①PN 结具有热敏特性和光敏特性,因此它对环境温度的变化很敏感,表现为其伏安特性曲线将发生变化。
PN结的形成一、PN结的形成在一块完整的硅片上,用不同的掺杂工艺使其一边形成N型半导体,另一边形成P型半导体,那么在两种半导体的交界面附近就形成了PN结。
PN结是构成各种半导体器件的基础。
在P型半导体和N型半导体结合后,由于N型区内电子很多而空穴很少,而P型区内空穴很多电子很少,在它们的交界处就出现了电子和空穴的浓度差别。
这样,电子和空穴都要从浓度高的地方向浓度低的地方扩散。
于是,有一些电子要从N型区向P型区扩散,也有一些空穴要从P型区向N型区扩散。
它们扩散的结果就使P区一边失去空穴,留下了带负电的杂质离子,N区一边失去电子,留下了带正电的杂质离子。
半导体中的离子不能任意移动,因此不参与导电。
这些不能移动的带电粒子在P和N区交界面附近,形成了一个很薄的空间电荷区,就是所谓的PN结。
空间电荷区有时又称为耗尽区。
扩散越强,空间电荷区越宽。
在出现了空间电荷区以后,由于正负电荷之间的相互作用,在空间电荷区就形成了一个内电场,其方向是从带正电的N区指向带负电的P区。
显然,这个电场的方向与载流子扩散运动的方向相反,它是阻止扩散的。
另一方面,这个电场将使N区的少数载流子空穴向P区漂移,使P区的少数载流子电子向N区漂移,漂移运动的方向正好与扩散运动的方向相反。
从N区漂移到P区的空穴补充了原来交界面上P区所失去的空穴,从P区漂移到N区的电子补充了原来交界面上N区所失去的电子,这就使空间电荷减少,因此,漂移运动的结果是使空间电荷区变窄。
当漂移运动和扩散运动相等时,PN结便处于动态平衡状态。
二、PN结的正向导电性当PN结加上外加正向电压,即电源的正极接P区,负极接N区时,外加电场与PN结内电场方向相反。
在这个外加电场作用下,PN结的平衡状态被打破,P区中的多数载流子空穴和N区中的多数载流子电子都要向PN结移动,当P区空穴进入PN结后,就要和原来的一部分负离子中和,使P区的空间电荷量减少。
同样,当N区电子进入PN结时,中和了部分正离子,使N区的空间电荷量减少,结果使PN结变窄,即耗尽区由厚变薄,由于这时耗尽区中载流子增加,因而电阻减小。
pn结的特性,PN结的击穿特性,PN结的电容特性
PN结的击穿特性:
当反向电压增大到一定值时,PN结的反向电流将随反向电压的增加而急剧增加,这种现象称为PN结的击穿,反向电流急剧增加时所对应的电压称为反向击穿电压,如上图所示,PN结的反向击穿有雪崩击穿和齐纳击穿两种。
1、雪崩击穿:阻挡层中的载流子漂移速度随内部电场的增强而相应加快到一定程度时,其动能足以把束缚在共价键中的价电子碰撞出来,产生自由电子—空穴对新产生的载流子在强电场作用下,再去碰撞其它中性原子,又产生新的自由电子—空穴对,如此连锁反应,使阻挡层中的载流子数量急
剧增加,象雪崩一样。
雪崩击穿发生在掺杂浓度较低的PN 结中,阻挡层宽,碰撞电离的机会较多,雪崩击穿的击穿电压高。
2、齐纳击穿:当PN结两边掺杂浓度很高时,阻挡层很薄,不易产生碰撞电离,但当加不大的反向电压时,阻挡层中的电场很强,足以把中性原子中的价电子直接从共价键中拉出来,产生新的自由电子—空穴对,这个过程称为场致激发。
一般击穿电压在6V以下是齐纳击穿,在6V以上是雪崩击穿。
3、击穿电压的温度特性:温度升高后,晶格振动加剧,致使载流子运动的平均自由路程缩短,碰撞前动能减小,必须加大反向电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。
6V左右两种击穿将会同时发生,击穿
电压的温度系数趋于零。
4、稳压二极管:PN结一旦击穿后,尽管反向电流急剧变化,但其端电压几乎不变(近似为V(BR),只要限制它的反向电流,PN结就不会烧坏,利用这一特性可制成稳压二极管,其电路符号及伏
安特性如上图所示:其主要参数有:VZ 、Izmin 、Iz 、Izmax
电压才能发生雪崩击穿具有正的温度系数,但温度升高,共价键中的价电子能量状态高,从而齐纳击穿电压随温度升高而降低,具有负的温度系数。
6V左右两种击穿将会同时发生,击穿电压的温度系数趋于零。
PN结的电容特性:
PN结除具有非线性电阻特性外,还具有非线性电容特性,主要有势垒电容和扩散电容。
1、势垒电容:势垒区类似平板电容器,其交界两侧存储
着数值相等极性相反的离子电荷,电荷量随外加电压而变化,称为势垒电容,用CT表示。
CT = - dQ/dV PN结有突变结和缓变结,现考虑突变结情况(缓变结参见《晶体管原理》),PN结相当于平板电容器,虽然外加电场会使势垒区变宽或变窄但这个变化
比较小可以忽略,
则CT=εS/L,已知动态平衡下阻挡层的宽度L0,代入上式可得:
CT不是恒值,而是随V而变化,利用该特性可制作变容二极管。
2、扩散电容:多子在扩散过程中越过PN结成为另一方的少子,当PN结处于平衡状态(无外加电压)时的少子称为平衡少子可以认为阻挡层以外的区域内平衡少子浓度各处是一样的,当PN结处于正向偏置时,N区的多子自由电子扩散到P区成为P区的非平衡少子,由于浓度差异还会向P 区深处扩散,距交界面越远,非平衡少子浓度越低,其分布曲线见[PN 结的伏安特性]。
当外加正向电压增大时,浓度分布曲线上移,两边非平衡少子浓度增加即电荷量增加,为了维持电中性,中性区内的非平衡多子浓度也相应增加,这就是说,当外加电压增加时,P区和N区各自存储的
空穴和自由电子电荷量也增加,这种效应相当于在PN结上并联一个电容,由于它是载流子扩散引起的,故称之为扩散电容CD,由半导体物理推导得CD=(I + Is)τp/VT 推导过程参见《晶体管原理》。
当外加反向电压时I = Is ,CD趋于零。
3、PN结电容:PN结的总电容Cj为CT和CD两者之和Cj = CT+CD ,外加正向电压CD很大,Cj以扩散电容为主(几十pF到几千pF),外加反向电压CD趋于零,Cj
以势垒电容为主(几pF到几十pF到)。
4、变容二极管:PN结反偏时,反向电流很小,近似开路,因此是一个主要由势垒电容构成的较理想的电容器件,且其增量电容值随外加电压而变化利用该特性可制作变容二极管,变容二极管在非线性电路中应用较广泛,如压控振荡器、频率调制等。