圆的基本图形研究—多切图2020.3.30
- 格式:pdf
- 大小:278.94 KB
- 文档页数:3
竞赛讲座09—圆基础知识如果没有圆,平面几何将黯然失色.圆是一种特殊的几何图形,应当掌握圆的基本性质,垂线定理,直线与圆的位置关系,和圆有关的角,切线长定理,圆幂定理,圆和圆的位置关系,多边形与圆的位置关系.圆的几何问题不是独立的,它与直线形结合起来,将构成许多丰富多彩的、漂亮的几何问题,“三角形的心”,“几何着名的几何定理”,“共圆、共线、共点”,“直线形”将构成圆的综合问题的基础.本部分着重研究下面几个问题:1•角的相等及其和、差、倍、分;2.线段的相等及其和、差、倍、分;3.二直线的平行、垂直;4•线段的比例式或等积式;5.直线与圆相切;6•竞赛数学中几何命题的等价性.命题分析例1.已知A为平面上两个半径不等的O O i和O O2的一个交点,两圆的外公切线分别为RP20Q2, M i、M2 分别为RQ i、P2Q2的中点,求证:NO!AO2 =NM!AM2例2.证明:唯一存在三边长为连续整数且有一个角为另一个角的两倍的三角形.例3.延长AB至D,以AD为直径作半圆,圆心为H , G是半圆上一点,• ABG为锐角.E在线段BH 上,Z在半圆上,EZ II BG,且EH ED =EZ2, BT II HZ .求证:TBG 工1 ABG .3例4•求证:若一个圆外切四边形有两条对边相等,则圆心到另外两边的距离相等.例5 .设.A是厶ABC中最小的内角,点B和C将这个三角形的外接圆分成两段弧,U是落在不含A的那段弧上且不等于B与C的一个点,线段AB和AC的垂直平分线分别交线段AU于V和W,直线BV和CW相交于T .证明:AU =TB - TC .例6.菱形ABCD的内切圆O与各边分别切于E,F,G,H,在EF与GH上分别作O O切线交AB于M,交BC于N,交CD于P,交DA于Q,求证:MQ II NP .例7.O O1和O O2与厶ABC的三边所在直线都相切,E,F,G,H为切点,并且EG,FH的延长线交于点P .求证:直线PA与BC垂直.例8.在圆中,两条弦AB,CD相交于E点,M为弦AB上严格在E、B之间的点.过D,E,MMB MD NC NE的圆在E点的切线分别交直线BC、AC于F,G .已知如二t,求些(用t表示).AB EF 例9 .设点D和E是厶ABC的边BC上的两点,使得• BAD 二/CAE .又设M和N分别是△1111ABD、△ ACE的内切圆与BC的切点.求证:— ^二丄•丄.例10.设厶ABC满足.A = 90 , . B <C,过A作厶ABC外接圆W的切线,交直线BC于D , 设A关于直线BC的对称点为E ,由A到BE所作垂线的垂足为X , AX的中点为Y , BY交W于Z 点,证明直线BD 为厶ADZ外接圆的切线.例11 •两个圆M和:2被包含在圆:内,且分别现圆:相切于两个不同的点M和N •丨i经过:2 的圆心.经过M 和丨2的两个交点的直线与〕相交于点A和B,直线MA和直线MB分别与丨i相交于点C和D •求证:CD与:2相切.例12•已知两个半径不相等的O O i和O 02相交于M、N两点,且O O i、O O2分别与O O内切于S、T两点•求证:OM _MN的充要条件是S、N、T三点共线.例13.在凸四边形ABCD中,AB与CD不平行,O O1过A、B且与边CD相切于点P , O O2过C、D且与边AB相切于点Q • O O1和O O2相交于E、F ,求证:EF平分线段PQ的充要条件是BC II AD •例14・设凸四边形ABCD的两条对角线AC与BD互相垂直,且两对边AB与CD不平行•点P 为线段AB 与CD的垂直平分线的交点,且在四边形的内部•求证:A、B、C、D四点共圆的充要条件为S pAB二S p CD训练题1 •△ ABC内接于O O , ■ BAC ::: 90,过B、C两点O O的切线交于P , M为BC的中点, 求证:(1)如二cos BAC ;(2)BAM =/PAC •AP2 •已知A,B,C •分别是厶ABC外接圆上不包含A, B,C的弧BC,CA,AB的中点,BC分别和CA \ AB •相交于M、N两点,CA分别和A B、BC •相交于P、Q两点,AB分别和BC、C A相交于R、S两点•求证:MN二PQ二RS的充要条件是△ ABC为等边三角形.3•以△ ABC的边BC为直径作半圆,与AB、CA分别交于点D和E,过D、E作BC的垂线,垂足分别为F、G •线段DG、EF交于点M •求证:AM _ BC •4•在厶ABC中,已知.B内的旁切圆与CA相切于D,■ C内的旁切圆与AB相切于E,过DE 和BC的中点M和N作一直线,求证:直线MN平分△ ABC的周长,且与• A的平分线平行.5•在厶ABC中,已知,过该三角形的内心I作直线平行于AC交AB于F •在BC边上取点P使1得3BP 二BC •求证:BFP B •26•半圆圆心为O,直径为AB,一直线交半圆于C,D,交AB于M ( MB :::MA, MC ::: MD )•设K是厶AOC与厶DOB的外接圆除点O外之另一交点•求证:• MKO为直角•7•已知,AD是锐角△ ABC的角平分线,• BAC h、,• ADC = ,且cos二=c c s2一:•求证:2AD 二BD DC •8. M为厶ABC的边AB上任一点,r1,r2,r分别为△ AMC、△ BMC、△ ABC的内切圆半径;匚匚亍分别为这三个三角形的旁切圆半径(在• ACB内部).求证:L L L L = L .P i P2 P9 •设D是厶ABC的边BC上的一个内点,AD交厶ABC外接圆于X,P、Q是X分别到AB 和AC的垂足,0是直径为XD的圆.证明:PQ与O O相切当且仅当AB=AC .10•若AB是圆的弦,M是AB的中点,过M任意作弦CD和EF ,连CD, DE分别交AB于X,Y ,则MX 二MY.11 •设H为厶ABC的垂心,P为该三角形外接圆上的一点,E是高BH的垂足,并设PAQB与PARC都是平行四边形,AQ与BR交于X •证明:EX II AP .12•在△ ABC中,.C的平分线分别交AB及三角形的外接圆于明:(1)ID IK —1 •ID IKD和K , I是内切圆圆心•证。
圆的基本图形研究——双切图基本模型(课本P101—6)【例1】(2018年武汉中考题)如图,PA 是⊙O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB 、PC ,PC 交AB 于点E ,且PA =PB .(1)求证:PB 是⊙O 的切线;(2)若∠APC =3∠BPC ,求CEPE 的值.【例2】(课本P101—6改)如图,AB 是⊙O 的直径,PB 、PC 是⊙O 的切线,切点分别为B 、C ,PA 交⊙O 于点D ,连接CD ,∠BPC=2∠A .(1)求证:CD ∥AB ;(2)求tan ∠A 的值;(3)求tan ∠PCD 的值.典题精练:1、如图,PA 、PB 分别与⊙O 相切于点A 、B ,PO 的延长线交⊙O 于点C ,连接BC 、OA .(1)求证:∠POA=2∠PCB ;(2)若OA=3,PA=4,求tan ∠PCB 的值.2、如图,AB 、AD 是⊙O 的切线,切点分别为B 、D ,DE 是⊙O 的直径,连接BE 、OA .(1)求证:BE ∥OA ;(2)若AD=DE ,求sin ∠DAB 的值.3、如图,PA 、PB 分别与⊙O 相切于点A 、B ,AC 是⊙O 的直径,连接BC .(1)求证:;APB ACB ∠-︒=∠2190(2)连接PC ,若PB=6,PC=10,求sin ∠PCB 的值.4、如图,PA 、PB 分别与⊙O 相切于A 、B 两点,AC 是⊙O 的直径.(1)如图1,连接OP 、AB ,求证:OP ⊥AB ;(2)如图2,过点B 作BE ⊥AC 于点E ,连接PE ,若AP=AC ,求tan ∠PEB 的值.5、如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 两点,点C 为⊙O 上的一点.(1)如图1,若AC 为直径,求证:OP ∥BC ;(2)如图2,若sin ∠P=1312,求tan ∠C 的值.。
圆的绘画知识点总结一、圆形的绘画基础知识1. 定义:圆形是由一个固定点到平面上的所有点的距离都相等的图形。
在绘画中,圆形可以由线条或者色彩绘制出来,形成丰富多样的艺术效果。
2. 容积和比例:圆形在绘画中常常通过容积和比例来表现不同的立体感和形态美感。
圆形的大小、位置和角度都可以通过容积和比例来进行调整,以表现出不同的艺术效果。
二、圆形在静态绘画中的运用1. 静态的表现形态:圆形在静态绘画中常常用来表现形态美感。
通过线条的勾勒和色彩的运用,可以表现出圆形的光滑和柔和,从而产生出温柔和圆润的艺术效果。
2. 静态的装饰效果:圆形也常常用于静态绘画中的装饰效果。
通过圆形的重复、组合和变换,可以形成出各种不同的装饰图案和装饰纹样,从而为艺术作品增添出更加丰富多彩的艺术韵味。
三、圆形在动态绘画中的运用1. 动态的形态变化:圆形在动态绘画中可以通过线条和色彩的运用来表现出不同的形态变化。
通过圆形的扭曲、变形和变化,可以表现出生命力和活力,从而为艺术作品增添出动感和韵律感。
2. 动态的装饰效果:圆形在动态绘画中也可以用来表现装饰效果。
通过圆形的旋转、交错和重叠,可以形成出各种不同的动态装饰图案和动态装饰纹样,从而为艺术作品增添出更加动感和变化的艺术韵味。
四、圆形在抽象绘画中的运用1. 抽象的形态表现:圆形在抽象绘画中可以通过线条和色彩的运用来表现出不同的形态美感。
通过圆形的抽象和简化,可以表现出纯粹的艺术形态和美感,从而形成出抽象的艺术效果。
2. 抽象的装饰效果:圆形在抽象绘画中也可以用来表现装饰效果。
通过圆形的交叉、重叠和碰撞,可以形成出各种不同的抽象装饰图案和抽象装饰纹样,从而为艺术作品增添出更加丰富多彩的艺术韵味。
五、圆形在写实绘画中的运用1. 写实的形态表现:圆形在写实绘画中可以通过线条和色彩的运用来表现出真实的形态感。
通过圆形的细节和观察,可以表现出真实的物体形态和结构,从而产生出写实的艺术效果。
2. 写实的装饰效果:圆形在写实绘画中也可以用来表现装饰效果。
圆的基本图形研究——多切图
基本模型:
【例1】(2018武汉四调)如图1,在四边形ABCD中,AD∥BC,AB⊥BC,⊙O分别与边AB、AD、DC相切,切点分别为E、G、F,其中点E为边AB的中点.
(1)求证:BC与⊙O相切;
(2)如图2,若AD=3,BC=6,求EF的长.
【例2】(2019武汉中考)已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点
(1)如图1,求证:AB2=4AD·BC
(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积
典题精炼:
1、已知,在四边形ABCD 中,AD ∥BC ,CD ⊥BC ,⊙O 分别与边AB 、BC 、CD 、AD 相切,切点分别为G 、F 、E 、H .
(1)若∠ABC=60°,求证:BF=3CF ;
(2)如图2,GE ,BC 的延长线交于点P ,若CD=4,BF=3,求GP 的长.
2、如图,在四边形ABCD 中,AD ∥BC ,AB ⊥AD ,AB=4,BC=1,以AB 为直径的⊙O 与CD 相切于点E .
(1)求CD 的长;
(2)连接AC ,OE 相交于点M ,求MA
CM 的值.
3、如图,△ABC 中,∠C=90°,⊙O 为△ABC 的内切圆,切点分别为D 、E 、F .
(1)如图1,求sin ∠DFE 的值;
(2)如图2,若3
2 AF BF ,求sin ∠DEF 的值.
4、如图,在等边△ABC 中,AB=6,△ABC 的内切圆⊙O 与BC 相切于点D .
(1)求⊙O 的半径长;
(2)点M 是⊙O 上的一点,且BM ⊥DM ,求BM 的长.。