CRH3型动车组动车转向架三维实体设计
- 格式:doc
- 大小:3.96 MB
- 文档页数:37
CRH3型动车组动车转向架三维实体设计摘要随着我国铁路第六次大提速的顺利实施,以及客运专线不断建成通车,国产CRH系列200~300km/h 动车组已分期分批投入运营。
转向架是高速动车组的走行机构,必须始终保持良好的性能状态,才能保证高速列车的安全可靠运行,所以必须对高速动车组转向架进行进一步研究。
本论文主要研究设计CRH3高速动车组动力转向架三维实体造型。
首先介绍了世界各国的典型高速动车组技术,其次对我国的CRH3型电动车组设备组成进行了介绍,然后应用Solidworks三维软件对CRH3动车组转向架各零部件进行设计和实体建模并进行了虚拟装配,并对一些零件进行了分析,最后对CRH3型动车组动力转向架进行了总体设计。
为以后转向架的优化设计提供一定的参考。
关键词:高速动车组;转向架构架;转臂式轴箱定位装置;架悬式AbstractAs China’s railway the sixth speed up was carried out,as well as the passenger special line was opened to traffic continuously,Domestic CRH series of 200 ~ 300km/h EMUs have been put into operation in stages. Bogie is the high-speed EMUs’ traveling agency,so in order to ensure the high-speed train operation safely and reliably, it must be always maintained a good performance status,Therefore, we should do further research on high-speed EMU bogie.In this passage, the research design3D solid modeling for driving bogie theCRH3 high-speed EMU.Introduced the first countries in the world of the typical high-speed EMU, then the CRH3 EMU equipment were introduced,Then the application of Solidworks 3D software on CRH3 EMU bogie of the various parts to design and solid modeling and virtual assembly And some parts analysis, the overall design of the final the CRH3 EMU power bogie. After bogie optimize the design to provide a reference. Keywords: high speed train;bogie frame; rocker typejournal box positioning device; Frame suspension;目录1 绪论 (1)1.1 日本新干线高速动车组的发展及应用 (1)1.2 法国TGV高速动车组的发展及应用 (2)1.3 德国ICE高速动车组的发展及应用 (2)1.4 其他国家 (3)1.4.1意大利 (3)1.4.2 瑞典 (4)1.4.3 西班牙 (4)1.4.4 我国高速铁路的发展 (5)1.5 结束语 (5)2 转向架总体设计 (6)2.1 转向架设计准则 (6)2.2 高速转向架技术 (6)2.2.1构架 (6)2.2.2轮对 (6)2.2.3弹簧悬挂装置 (7)2.2.4牵引装置 (7)2.2.5轴箱定位装置 (7)2.2.6回转阻尼装置 (8)2.2.7抗侧滚装置 (8)2.2.8主动和半主动悬挂系统的开发 (8)2.2.9高速运行的稳定性 (9)2.2.10 高速通过曲线的性能 (10)3 基于Solidworks的转向架三维实体设计 (11)3.1三维造型软件 Solidworks 软件简介 (11)3.2转向架的三维模型建立 (11)3.2.1特征的概述 (11)3.2.2零件的三维造型与装配 (12)3.3.3装配干涉检查 (13)3.4 本章小结 (13)4 构架 (14)4.1 转向架构架 (15)4.1.1 侧梁 (16)4.1.2 横梁 (17)图4.4横梁 (17)5 轮对轴箱定位装置 (18)5.1 轮对 (18)5.2 主从动齿轮配合设计 (19)5.3 轴箱体 (20)5.4 本设计轴箱定位装置也采用转臂式定位 (23)6 悬挂与制动 (24)6.1 中心悬挂 (24)6.2 牵引装置 (26)6.3 电机驱动装置 (27)6.4 基础制动装置成 (28)7 转向架附属装置设计 (29)7.1 撒砂装置 (29)7.2 轮缘润滑装置 (29)7.3 扫石器组装 (29)结论 (30)致谢 (31)参考文献 (32)1 绪论目前世界上拥有自主开发并已成功运用高速动车组的国家有日本、法国、德国和意大利,其共同之处在于列车各部件大量运用高新技术,同时又各具特色,即根据本国的运用条件和传统经验,特别是在转向架结构、车体轻量化、流线型外形、列车动力配置及构成形式、电传动及控制技术、列车信息网络等方面都具有各自的特点。
CRH3型动车组拖车转向架三维实体设计1目录1.绪论 ..................................................................... . (3)1.1国内外动车组的发展概况 ..................................................................... (3)1.1.1德国高速铁路概况 ..................................................................... . (3)1.1.2日本动车组概况 ..................................................................... .. (3)1.1.3法国高速铁路概况 ..................................................................... . (4)1.1.4我国动车组发展概况 ..................................................................... (4)1.2本论文主要研究工作 .................................................................................................. 5 2.转向架 ..................................................................... . (7)2.1转向架基本知识 ..................................................................... . (7)2.2转向架的组成、任务和分类 ..................................................................... .. (7)2.2.1任务 ..................................................................... . (7)2.2.2组成及各部件的作用 ..................................................................... (8)2.2.3转向架的主要技术要求 ..................................................................... .. (8)2.2.4转向架分类 ..................................................................... .................................. 9 3.CRH3型动车组转向架 ..................................................................... .. (11)3.1转向架设计思想 ..................................................................... .. (11)3.2转向架结构概述 ..................................................................... .. (11)3.2.1 转向架主要技术参数 ..................................................................... (12)3.3转向架零件的三维实体设计 ..................................................................... (13)3.3.1 轮对 ..................................................................... . (13)3.3.2 转向架构架 ..................................................................... . (20)3.3.3轴箱 ..................................................................... .. (23)3.3.4一系悬挂轴箱定位装置 ..................................................................... (24)3.3.5中央弹簧悬挂装置 ..................................................................... .. (26)3.3.6基础制动装置 ..................................................................... . (28)3.4虚拟装配 ..................................................................... ............................................... 29 4.构架的静强度评价 ..................................................................... (33)4.1有限元算法基本原理 ..................................................................... (33)4.2使用UIC615-4标准对构架进行静强度评价 (36)4.2.1有限元模型的建立 ..................................................................... .. (36)4.2.2计算载荷 ..................................................................... (37)4.2.3边界条件的确定 ..................................................................... (39)4.2.4计算结构分析及评价 ..................................................................... ................ 39 结论 ..................................................................... (43)致谢 ..................................................................... (44)参考文献 ..................................................................... . (45)21.绪论1.1国内外动车组的发展概况世界变化日新月异,铁路科技事业也正在飞速的向前发展,特别是高速铁路的发展给世界带来的巨大的经济效益。
关于CRH3型动车组转向架分解与检修的探讨随着铁路客运的发展,高速动车组已经成为现代化铁路客运的重要组成部分。
CRH3型动车组作为国内一种新型高速列车,其速度和舒适性都有了极大的提升。
其中,转向架作为动车组重要的构成部分之一,发挥着重要的作用。
本文主要探讨CRH3型动车组转向架的分解与检修。
CRH3型动车组的转向架为腰架式转向架,主要由轮对组件、轴承、弹簧、减震器、齿轮传动组件、制动盘等部件组成。
其中,轮对组件包括车轮、轴承、轴箱、齿轮传动组件等,是转向架中起着核心作用的部件。
轮对组件需要经常进行检修和更换,以确保整个转向架的正常运行。
在进行CRH3型动车组转向架的分解前,需要先做好完整的工具和装备的准备,确保工作的安全性和有效性。
具体的分解过程如下:1. 拆卸轮对组件首先,需要通过升降设备将动车组升起,对每个转向架进行校正和检查。
接下来,将制动盘和减震器拆卸下来,再拆下前后联接部分,并对齿轮传动组件进行拆卸,最后将轮对组件拆下来。
2. 拆卸轴箱拆卸轴箱时,需要将轴箱盖拆掉,用千斤顶将轴承组推出轴箱。
在拆卸轴承组时,需要注意保持工作环境清洁,防止轴承和其它部件受到污染。
3. 拆卸弹簧和挂钩拆卸弹簧和挂钩时,需要先将挂钩拆卸下来,然后拆卸弹簧。
拆卸齿轮传动组件时,需要先卸下车轮齿圈,再拆卸小齿轮、大齿轮等部件。
在进行CRH3型动车组转向架的检修时,需要先将分解开来的各个部件进行清洗,去除污垢和残留物,并进行检查,确保其性能完好。
具体的检修内容如下:1. 车轮的检修车轮需要进行磨损和裂纹的检查,以确保其正常使用。
对于有磨损或裂纹的轮子需要进行更换。
2. 轴承和轴箱的检修对轴承和轴箱进行检查,看是否存在磨损、凹陷、错位以及裂口等情况,如果有,则需要进行相应的更换。
4. 齿轮传动组件的检修对齿轮传动组件进行检查,清洗,并检验其正常性能。
如果出现磨损或损坏等情况,则需要进行更换或磨光。
通过以上步骤,完成了对CRH3型动车组转向架的分解和检修,可确保其正常运行,从而为高速动车组提供更加安全和可靠的保障。
浅析CRH3型动车组转向架三级检修工艺设计论文引言近几年来,虽然CRH3型的动车组原型车VELAROE在西班牙运行已经达到三级检修的周期,但由于CRH3型的动车组与VELAROE型的动车组结构存在差异,运行的环境也不一致,因此不能直接借鉴VELAROE型的动车组三级检修方式,需要检修人员深入分析,研究适合于CRH3型的动车组三级检修方式。
1总体工艺的设计首先,转向架全部空气管路的接头、电缆接头、电线,齿轮箱的迷宫前后盖密封处、轴箱迷宫后盖密封处、牵引机等零件清洗,清洗前都要进行防护,防护完成后清洗转向架。
横向悬挂装置、横梁组成与空气弹簧等零部件应拆卸,同时把已拆卸零件放到相关存放区,便于检修人员清洗与检查。
把构架组成和轮对轴箱的装置分离开后,在齿轮箱的C型支架与轴箱转臂的定位节点位置装设防护装置,并运到专业的检修厂进行检修。
所有拆卸零件都要根据检修工艺的规范检修,并进行如实记录。
已检修完成零部件应该根据工艺规范组装复原,对二次组装转向架的功能性进行试验,经试验后合格转向架,要实施交验——转运到落车的工序。
2总体工艺的布局2.1轮对的检修线应按照检修规程要求,配备进口轴承的退装机、空心轴的探伤机与轮对动的平衡机等工艺设备。
2.2调试线的组装应用流水线式调试组装工艺布局的模式,构架的组装工序一般采取可升降式举升机,同时配备独立移动液压的升降车与单元行的架车;而横梁组装的工序则是使用翻转变位设备来装配零部件;落轮的工序使用进口落轮设备代替传统地沟作业的方式,这样在落轮装备上组装转向架零部件时,才能够一次完成;调试的工序施工还要进口电台测试的设备与转向架的综合试验台,便于检测转向架高度尺寸、自重、固定轴距与轮重差等参数。
2.3清洗线CRH3型的动车组转向架中铝质品件、电器件与橡胶件等零件比较多,现在并没有一个完整清洗的经验,为确保零部件完整性与清洗质量,可使用高压电的加热水与全封闭性脉冲式的高温水进行漂洗。
CRH3型动车组转向架设计结构简介摘要:随着我国经济的迅猛发展、人民生活水平的稳步提高,铁路旅客列车高速化、智能化、安全化和舒适化成为未来发展的主要方向,CRH系列高速动车组应运而生。
CRH3型动车组作为CRH系列中速度快、安全性能好、智能化程度高、舒适度好等优点领跑中国高铁,转向架作为支承车体使之在轨道上运行的关键部件,其运行的安全性、平稳性和可靠性最为重要,关系着行车安全、速度、舒适度。
转向架的优化设计和制造质量是确保动车组安全运行的核心环节。
本文主要介绍了CRH3型动车组,动车典型转向架知识以及CRH3型动车组转向架的优化设计、安装等知识。
关键词:高铁;CRH3型动车组;转向架;安全出行引言CRH3型动车组以CRH系列动车组中速度快、安全性好、智能化高、舒适度好等优点领跑中国高铁。
转向架作为动车组的核心部件,在动车组安全、舒适、高速运行中发挥重要作用。
一、转向架结构原理及基本部件1.1 转向架基础知识1.11 转向架的作用支承车体并使之在轨道上运行的装置称为转向架,亦称走行部,它是动车组的关键部件。
1.承重—承担机车上部的重量,包括车体及安装在车体内的各种机械、电气设备的重量,并把这些重量经一系弹簧悬挂装置传递到钢轨上。
2.传力—产生牵引力和制动力,并把产生的牵引力和制动力经牵引装置传递到车体底架,最后传递到车钩,实现对列车的牵引和制动。
3.缓冲(走行)—在机车运行中缓和线路对机车的冲击,保证机车运行的平稳性。
4.导向—在钢轨的作用下,引导机车顺利地通过曲线和道岔,保证机车在曲线上安全运行。
1.12 转向架的组成基本组成及其功能:1.轮对:走行导向。
2.轴箱:降低摩擦阻力,化滚动为平动。
3.一系悬挂装置:用以固定轴距,保持轮对正确位置,安装轴承等。
缓冲轴箱以上部分的振动,以减轻运行中的动作用力。
4.构架:安装基础。
5.二系弹簧悬挂:也叫车体支承装置:是车体与转向架的连接装置。
6.基础制动装置:是制动机产生制动力的部分。
CRH3型动车组动车转向架三维实体设计动车转向架是动车组的一个重要部件,它主要用于承载车体重量,并通过转向机构来实现车辆的转向功能。
本文将对CRH3型动车组动车转向架的三维实体设计进行详细介绍。
首先,我们需要了解CRH3型动车组动车转向架的主要构成部分和功能。
动车转向架由车架、转向架、副车架、承重装置以及转向机构等组成。
它的主要功能是支撑车体和承载车辆重量,并通过转向机构实现车辆的转向。
在进行三维实体设计前,我们首先进行整体造型的确定。
CRH3型动车组的外形设计以流线型为主,动感十足,具有较好的空气动力性能。
因此,在设计动车转向架的三维实体时,我们应该充分考虑整体流线型外形的美观性和空气动力学特性。
接下来,我们需要进行细节的设计。
首先是车架部分的设计。
车架是整个动车转向架的主要支撑结构,需要具备足够的强度和刚度来承载车体重量。
我们可以通过增加材料的厚度或者进行加强筋的设置来增加车架的强度。
其次是转向架的设计。
转向架是实现车辆转向的关键部件,它需要具备较高的稳定性和灵活性。
为了实现这一目标,我们可以采用铸造或锻造的工艺来制造转向架,通过优化结构设计和材料选择,提高其抗扭转能力和耐久性。
副车架是连接车架和转向架的重要部分。
它主要用于传递车体重量和转向力。
在设计副车架时,我们需要考虑其与其他部件的连接方式和强度要求,并根据实际情况进行优化。
承重装置是用于承载车辆重量的关键部件。
它需要具备较高的承载能力和稳定性。
在设计承重装置时,我们可以采用弹簧、减震器等隔振措施,以提高车辆的乘坐舒适性和行驶稳定性。
最后是转向机构的设计。
转向机构是实现车辆转向的核心部件,需要具备较高的灵活性和可靠性。
在设计转向机构时,我们可以采用电液转向、电动转向等技术,以提高转向的灵活性和控制精度。
综上所述,CRH3型动车组动车转向架的三维实体设计是一个综合性的工程,需要考虑外形设计、结构强度、转向性能等多个方面的因素。
通过合理的设计和优化,可以提高转向架的性能和可靠性,从而确保动车组的安全运行。
高速动车组转向架异形件3D打印研配构想分析摘要:动车组转向架是保障高速列车安全平稳运行的重要设备之一。
随着科技进步,高速动车的运行速度也在越来越快,同时也对高速动车组转向架的性能提出了高要求。
动车组转向架相对于传统转向架而言,其在保持高动力性能及适应高速平稳运行等方面具备绝对的优势,动车组转向架的关键技术在于其充分利用轮轨之间的附着力,来达到减轻轮轨之间相互作用力的效果,本文对高速动车组转向架技术及其检修技术进行简要分析。
关键词:高速动车组;转向架;技术解析轴承是高速铁路车辆运行段的肝脏,伴随车辆行驶距离的增加,故障问题呈现上升的走势。
为了很好地抑制轴承失效对车辆运行造成的影响,国内外专家对轴承失效的判定做了不少的理论研究,并获得了可观的成效。
因为铁路车辆的轴承故障向来是交通安全中较为重视的问题,铁路工程技术人员也具备一定的故障统计以及检测知识。
现今,为了很好地在线检测轴承状态,轨边声学检测装置发挥了特定的预防功能,并已普遍运用于整个道路。
但是针对故障的精准确定仍有待深入研究。
关于轴承故障文章做了归总,并通过当前所具备检测装置一一检查和追踪了故障,从检测结果分析效果突出,为轴承的安全运行予以一定的技术与经验支持。
1、某高速动车组转向架轴承故障描述联系某高速动车组的总运行情况,探析了这一车组在具体行驶中产生的轴承失效情况,并计算了轴承失效的行驶路程。
通过故障统计结果的分析可知,其中轴承外圈、轴承内圈、滚子和轴承的保持架是极易发生轴承失效的,其中轴承外圈发生轴承失效的可能性极大。
通过对轴承结构的探析知,轴承外圈处在轴承的核心受力位置,轴承外圈需要承载轴承一系以上的所有受力,在高速动车组行驶的过程中,在进行高速运行时就极易造成其截面损坏,这也是轴承外圈变成轴承故障高发部位的核心因素。
就是轴承外圈出现了剥离故障。
对这一轴承外圈的损坏程度进行分析得出,此轴承外圈的剥离宽度与滚子长度近似相等,且长度沿圆周变化很大,范围为10~200mm之间。
数字化设计与制造论文高速列车转向架三维建模及虚拟装配小组成员:廖林201220000202陈诗涵201220000165摘要随着国家对铁路行业的重视和科学技术的进步,高速列车在我国的广泛应用必将成为现实。
高速、安全以及舒适度始终是铁路发展的方向,然而伴随着速度的提高产生了许多设计难题,如何使得列车在高速情况下平稳、安全、长久的运行是设计的基本思路。
转向架是高速列车的关键部件,其性能好坏对高速列车的运行安全性具有十分重要的影响。
然而,在其装配环节上,人工操作一直都是最主要的手段,依赖于人的技巧和判断能力来进行复杂的操作,具有很强的误差性和复杂性,因而在高速列车快速发展的今天,装配工艺成为其最薄弱环节,成为高速列车向前发展的瓶颈;同时以往的装配过程被局限在“设计——制造(装配)——评价和实物验证”的封闭时空模式中,装配关系的滞后检验,造成巨大的成本浪费,同时也不符合市场快速响应的需要,虚拟装配就很好的解决了这个问题。
本文对虚拟装配的相关知识和所使用的软件进行了阐述,在此基础上,首先对高速列车转向架的设计方案进行了选择,通过计算设计出合理的零部件并通过三维设计软件Solidworks进行三维模型的建立,同时在Solidworks中对高速列车转向架进行简单的装配。
其次通过3DSMAX软件对转向架的零部件进行渲染,而后通过数据交换技术将三维模型导入Vitools中,最后对高速列车转向架模型编写Virtools脚本程序并在Vitools中进行高速列车转向架的虚拟装配。
关键词:高速列车转向架虚拟装配三维建模VitoolsAbstractWith the national attention on the railroad industry and scientific and technological progress, High-speed trains widely used in China will become a reality. High-speed、safe and comfort Is always the direction of railway development, with the speed increase, however produced a number of design problems, how to make the train in case of ahigh-speed, secure、smooth 、long run is the basic idea. Bogie is a key component of high-speed train, Its performance is good or bad for the safe operation of high-speed train has a very important influence.But, manual has been the most important means of assembly link, depends on the person's skills and ability to judge for complex operations has a strong and complex nature of the error so in today's fast-growing of high-speed trains, assembly process as its weakest link, obstruction High-speed trains development forward.At the same time,assembly process of the past is confined in the closed space of design—manufacturing—evaluation and Physical verification,the delay test of assembly relationship has made enormous waste of cost and don’t meet the market needs to respond quickly,but virtual assembly solved the problem well.This paper has researched about the knowledge of virtual assembly and softwares used, On this basis, first select the design of high speed train bogie then design the reasonable parts though calculating and use the Solidworks to building their three-dimensional model, in the same time makes a simple high-speed train bogie assembly in Solidworks.Second rendering the parts of the bogie by 3ds max,then make the three-dimensional model into Vitools through data exchange.The last create Vitools script of High-speed train bogie and make virtual assembly of High-speed train bogie in Vitools.Key words:High-speed train Bogie Virtual Assembly Three-dimensional Modeling Vitools目录第1章绪论 (1)1.1高速列车转向架简介 (1)1.2国内外研究进展 (4)1.3本文研究的主要内容及意义 (14)第2章高速列车转向架的设计 (15)2.1高速列车转向架的设计要求 (15)2.2高速列车转向架性能参数的选取 (16)2.3构架的设计 (18)2.4轮对与轴箱的设计 (19)2.5悬挂装置的设计 (21)2.6基础制动装置的设计 (23)第3章高速列车转向架的三维建模 (26)3.1建模工具简绍 (26)3.2建模过程 (27)3.2.1轮对及轴箱的建模 (27)3.2.2悬挂装置的建模 (30)3.2.3构架的建模 (32)3.2.4基础制动装置的建模 (36)第4章基于虚拟现实的高速列车转向架的装配仿真 (39)4.1虚拟装配软件 (39)4.2数据交换技术 (43)4.3虚拟装配过程 (44)4.3.1数据导入3dmax (44)4.3.2模型导入vitools (46)4.3.3编写脚本完成虚拟装 (48)第5章结论与展望 (57)致谢 (58)参考文献 (59)第一章绪论近年来中国高速铁路取得了长足的发展,随着国家的大力投入,中国逐步完善着自己的高速铁路网络。
CRH3型动车组动车转向架三维实体设计摘要随着我国铁路第六次大提速的顺利实施,以及客运专线不断建成通车,国产CRH系列200~300km/h 动车组已分期分批投入运营。
转向架是高速动车组的走行机构,必须始终保持良好的性能状态,才能保证高速列车的安全可靠运行,所以必须对高速动车组转向架进行进一步研究。
本论文主要研究设计CRH3高速动车组动力转向架三维实体造型。
首先介绍了世界各国的典型高速动车组技术,其次对我国的CRH3型电动车组设备组成进行了介绍,然后应用Solidworks三维软件对CRH3动车组转向架各零部件进行设计和实体建模并进行了虚拟装配,并对一些零件进行了分析,最后对CRH3型动车组动力转向架进行了总体设计。
为以后转向架的优化设计提供一定的参考。
关键词:高速动车组;转向架构架;转臂式轴箱定位装置;架悬式AbstractAs China’s railway the sixth speed up was carried out,as well as the passenger special line was opened to traffic continuously,Domestic CRH series of 200 ~ 300km/h EMUs have been put into operation in stages. Bogie is the high-speed EMUs’ traveling agency,so in order to ensure the high-speed train operation safely and reliably, it must be always maintained a good performance status,Therefore, we should do further research on high-speed EMU bogie.In this passage, the research design3D solid modeling for driving bogie theCRH3 high-speed EMU.Introduced the first countries in the world of the typical high-speed EMU, then the CRH3 EMU equipment were introduced,Then the application of Solidworks 3D software on CRH3 EMU bogie of the various parts to design and solid modeling and virtual assembly And some parts analysis, the overall design of the final the CRH3 EMU power bogie. After bogie optimize the design to provide a reference. Keywords: high speed train;bogie frame; rocker typejournal box positioning device; Frame suspension;目录1 绪论 (1)1.1 日本新干线高速动车组的发展及应用 (1)1.2 法国TGV高速动车组的发展及应用 (2)1.3 德国ICE高速动车组的发展及应用 (2)1.4 其他国家 (3)1.4.1意大利 (3)1.4.2 瑞典 (4)1.4.3 西班牙 (4)1.4.4 我国高速铁路的发展 (5)1.5 结束语 (5)2 转向架总体设计 (6)2.1 转向架设计准则 (6)2.2 高速转向架技术 (6)2.2.1构架 (6)2.2.2轮对 (6)2.2.3弹簧悬挂装置 (7)2.2.4牵引装置 (7)2.2.5轴箱定位装置 (7)2.2.6回转阻尼装置 (8)2.2.7抗侧滚装置 (8)2.2.8主动和半主动悬挂系统的开发 (8)2.2.9高速运行的稳定性 (9)2.2.10 高速通过曲线的性能 (10)3 基于Solidworks的转向架三维实体设计 (11)3.1三维造型软件 Solidworks 软件简介 (11)3.2转向架的三维模型建立 (11)3.2.1特征的概述 (11)3.2.2零件的三维造型与装配 (12)3.3.3装配干涉检查 (13)3.4 本章小结 (13)4 构架 (14)4.1 转向架构架 (15)4.1.1 侧梁 (16)4.1.2 横梁 (17)图4.4横梁 (17)5 轮对轴箱定位装置 (18)5.1 轮对 (18)5.2 主从动齿轮配合设计 (19)5.3 轴箱体 (20)5.4 本设计轴箱定位装置也采用转臂式定位 (23)6 悬挂与制动 (24)6.1 中心悬挂 (24)6.2 牵引装置 (26)6.3 电机驱动装置 (27)6.4 基础制动装置成 (28)7 转向架附属装置设计 (29)7.1 撒砂装置 (29)7.2 轮缘润滑装置 (29)7.3 扫石器组装 (29)结论 (30)致谢 (31)参考文献 (32)1 绪论目前世界上拥有自主开发并已成功运用高速动车组的国家有日本、法国、德国和意大利,其共同之处在于列车各部件大量运用高新技术,同时又各具特色,即根据本国的运用条件和传统经验,特别是在转向架结构、车体轻量化、流线型外形、列车动力配置及构成形式、电传动及控制技术、列车信息网络等方面都具有各自的特点。
其他正在发展高速铁路技术的国家和地区,如西班牙、比利时、荷兰、韩国和中国、台湾等,都是建立在引进这些国家的成熟技术的基础上而发展起来的。
1.1 日本新干线高速动车组的发展及应用日本的东海道新干线于1959年开工建设,1964年10月1日东京奥运会开幕前夕开通。
该线路的成功运营,开创了一世界上高速铁路的新纪元。
第一列0系新干线列车以210km/h的最高运行速度投入运用,使东京一大阪间列车运行时间由7h缩短至3h10min。
东海道新干线建成并成功运行,在日本产生了良好的社会效益和经济利益,对世界铁路的发展产生了重大影响。
1985年,日本东北、上越新干线相继开通,200系、100系新干线列车分别以240km/h和210km/h的最高运行速度投入运用,100系列车在1986年与0系列车一同达到220km/h.1987年日本国铁民营化之后,新干线网络的不断扩大。
为了适应不同线路的运营条件,提高运行速度,降低对环境的影响,日本持续不断地开发研制不同系列的新干线高速动车组,使日本高速铁路技术飞速发展。
1992年300系列车在东海道新干线投入运行,最高速度达到270km/h。
该车通过采用铝合金车体、轻量化转向架和交流传动技术使轴重大幅度降低,同时,运行速度及动力学性能得到较大提高。
随后,日本又开发了采用其有更好的空气动力学性能,并采用半主动减振技术的500系(最高试验速度350. 4 km/h,运行速度300 km/h)、采用IGBT变流技术的700系(最高运行速度285km/h),采用双层车体的E4系(运行速度240km/h)和Star21、700系等型号的新干线列车,并一直保持自开通运行以来无重大事故的良好记录。
2002年12月1日,东北新干线盛冈一八户新建标准新千线开通运营,东日本公司采用E2系1000型高速动车组,每列车由10辆编组(8M2T}。
E2系1000型动车组最高设计速度3l5km/h,最高运行速度275 km/h。
我国从日本引进并联合设计生产的200 km/h动车组的原型即为该型动车组。
1.2 法国TGV高速动车组的发展及应用自1967年起,法国国营铁路开始着手研究高速运输。
首先是尝试将航空用燃气涡轮发动机用于铁路动车组。
1969年11月,法国研制成功了第一代ETG 型燃气轮动车组,最高试验速度达到248km/h。
此后,通过进一步提高燃气轮动车组质量,又研制出第二代ETG型燃气轮动车组,最高试验速度为260km/h。
为了配合在巴黎—里昂建设高速铁路,还研制了第三代TGV一00l型燃气轮动车组,5节编组,1972年最高试验速度达到381 km/h。
然而,1973年中东钱争引起第一次世界石油危机后,法国开始将高速动车组技术政策转向电力牵引,并率先在欧洲实行将速度、环保意识、充分利用能源、高新技术以及经济可靠性综合考虑的技术方针。
1973年研制出第一列Z7001电动车组,1975年最高试验速度达到309 km/h.自1976年开始,法国开始着手研究交一直传动的TGV- PST动车组,并在1981年9月投入运用。
此后,法国先后研制了交一直一交传动的TGV-A TGV-R, TGV-2N, TGV-TMST,西班牙A VE, TGV-PBKA, TGV-K等动车组,新型动力分散动车组AGV也已研制成功,并投入试验运行。
其中,TGV-A 325号车组于1990年5月在大西洋线创造了515.3 km/h轮轨系统高速行车的纪录。
2007年4月3日,TGV以574. 8公里的时速创造了轮轨列车的最快纪录。
同时,TGV也是世界上定期轮轨客运列车中平均速度最快的。
1.3 德国ICE高速动车组的发展及应用早在1970年,原联邦德国政府技术研究部就开始组织对未来长途运输系统新技术的研究。
在发展高速铁路采用磁悬浮技术还是轮轨技术的问题上,德国经过了旷日持久的讨论,由于联邦铁路在市场竞争中亏损越来越大,而法国TGV 高速动车组的成功运营也刺激着素以高技术著称的德国,故原联邦德国政府加快了发展高速铁路的步伐。
1982年5月13日,原联邦德国铁路成立董事会,决定修建高速铁路,并一于1982年7月动土。
1982年8月,联邦铁路投资1200万马克,研制ICE(Inter City Express)试验型城际快车。
1985年,2动3拖的ICE/V试验型高速电动车组试制成功,同年,其最高试验速度达到317km/h. 1988年5月,ICE/V型试验列车在汉诺威—维尔茨堡间创造了406 km/h的当时高速动车组速度纪录。
在ICE/V的基础上,1985年12月联邦铁路确定了ICE设计任务书,1986年开始试制ICE1型高速动车组,1990年7月试制完成并一于1991年6月2日以280 km/h的速度正式投入运行。
1991年民主德国、联邦德国统一后,德国政府决定修建柏林—汉诺威的高速铁路,同时开始了第二代ICE高速动车组—ICE2的开发。
1996年,该型动车组投入运用。
德国铁路于1995年开贻动工修建科隆—法兰克福的高速铁路,由于该线路最高运行速度提高到300km/h,线路最大坡度达到4%,既有的ICE1、ICE2型列车已经不能满足运行需要。