msc adams多体动力学仿真基础与实例解析
- 格式:docx
- 大小:10.85 KB
- 文档页数:2
基于MSC.ADAMS的动力传动系统建模与仿真MSC.ADAMS是一款优秀的动力传动系统建模与仿真软件,在汽车、航空、航天等领域广泛应用。
通过MSC.ADAMS,可以对各种类型的动力传动系统进行建模与仿真,包括发动机、变速器、传动轴、差速器等。
动力传动系统建模是将传动系统各个部分进行分离,逐一建模并组装成一个整体,通过建模可以确定每个部件的性能与参数,以及系统整体的工作原理与性能。
在建模过程中,需要考虑各个部位的受力情况、材料属性、温度等因素,并进行物理学建模、数学建模和计算机辅助设计。
动力传动系统仿真是指将建模进行各种工况下的计算和分析,通过仿真可以确定不同工况下的系统性能和特性,从而优化每个部位的设计。
仿真的结果可以反映出系统的运行情况、动态响应、疲劳情况、噪声等各种细节,为系统的设计、制造和优化提供重要的参考依据。
MSC.ADAMS软件支持动力传动系统的建模和仿真,可以方便的进行各种级别的建模和仿真,包括单部件、子系统和整个系统的建模和仿真。
同时,MSC.ADAMS还支持多种不同的仿真方法,如动态仿真、静态仿真、多体仿真等,可以精确地模拟系统的行为。
在进行动力传动系统建模和仿真时,需要注意以下几点:1. 精确定义每个部位的材料属性和受力情况,包括张力、压力、扭矩等。
2. 确定每个部位的工作原理和控制方法,建立相应的数学模型。
3. 考虑系统的复杂度和耦合效应,因此需要对整个系统进行综合分析和优化。
4. 在进行仿真前,需要对模型进行验证和校准,以确保模型的准确性和可靠性。
总之,使用MSC.ADAMS进行动力传动系统建模和仿真,可以大大提高系统的设计和性能,为实现更高效、更安全的动力传动系统打下坚实的基础。
数据分析是指对所收集到的数据进行系统性分析和处理,通过对数据的分析可以发现内在的规律和价值,提供有关原因和结果的科学依据和参考,为决策提供依据和支持。
在不同领域中,数据分析的方法和技术也存在差异,但在基本原则和数据处理方法上却具有共性。
adams动力学仿真原理
Adams是一种基于动力学原理进行仿真的软件,它使用多体
动力学理论和计算力学算法,对系统中的物体进行建模和仿真,以模拟真实的物体运动和相互作用。
Adams的仿真原理主要基于以下几个方面:
1. 多体动力学:Adams使用多体动力学理论来描述系统中的
物体运动。
多体动力学是物体受力和受力作用导致的加速度之间的关系。
通过建立质点、刚体或弹性体等物体的动力学模型,并考虑物体之间的相互作用,可以求解物体的运动轨迹、速度和加速度等。
2. 约束条件:Adams支持对系统中物体之间的各种约束条件
进行建模和仿真。
约束条件可以是几何约束,如固定连接、旋转关节、滑动关节等,也可以是物理约束,如弹簧、阻尼器等。
Adams利用这些约束条件来限制物体的运动范围,并求解约
束条件下的系统运动。
3. 接触和碰撞:Adams还考虑了系统中物体之间的接触和碰撞。
通过建立接触模型和碰撞模型,Adams可以模拟物体之
间的接触力和碰撞力,并根据物体的质量、形状和速度等参数计算物体的反应。
4. 动力学求解:Adams使用高效的动力学求解算法,通过求
解物体运动的微分方程组,得到物体的运动轨迹、速度和加速度等。
求解过程中,Adams考虑了物体之间的相互作用和约
束条件,并根据物体的质量、惯性、摩擦力等参数计算物体的运动状态。
总的来说,Adams的仿真原理基于多体动力学理论和计算力学算法,并考虑了物体之间的约束、接触和碰撞等相互作用,以模拟系统中物体的真实运动和行为。
Adams参数化与优化分析经典案例在机械产品设计进程中,有各种各样的性能指标,甚至有些指标是相互制约的,因此很难通过一次设计就得到满意的结果。
以往采用的手动修改方法费时费力,浪费资源。
使用Adams软件,用户可以通过参数化及优化功能自动完成机械系统的设计,得出最优化的方案,大大提高设计效率。
参数化和优化是用户关注度最高的功能之一,但在Adams基本包的官方培训教程中没作重点介绍。
本期信工诚向大家分享一个参数化与优化方面的经典案例,帮助大家尽快熟悉这一功能。
案例摘自陈志伟编著的《MSC Adams多体动力学仿真基础与实例解析》一书中的第七章。
问题描述:小球在一定倾角的斜板上在重力作用下滑落,研究该倾角为多少时可以顺利通过预先设置的圆环中心。
实现步骤:1)创建部件并定义连接关系首先创建如图1所示的分析模型。
从图中可以看到各部件的尺寸,其中小球的直径为50mm,圆环的孔径为56mm(2*(40-12)mm)。
圆环与大地固连,斜板与大地固连,小球与斜板之间定义接触(不考虑摩擦)。
图1 分析模型2)参数化模型模型参数化分为两步,第一步定义设计变量,第二步将现有模型数据用设计变量替换,实现模型参数化。
本例需要定义一个独立变量(斜板角度)和两个非独立变量(小球X坐标和Y坐标)。
斜板角度参数化如图2所示,小球坐标参数化如图3所示。
图2 斜板角度参数化图3 小球坐标参数化参数化后将斜板角度初始值改为-10,检查修改后的模型显示是否正确。
如果所有的参数定义都正确的话,修改后的模型显示效果会如图4所示。
图4 修改斜板初始角度3)定义优化目标我们的设计目标是让小球穿过圆环,但这不是软件能读懂的机器语言。
这里我们可以建立一个小球中心Marker点和圆环中心Marker的“点的点对点测量”,以测量结果的最小值作为优化目标,当测量结果的最小值小于3mm(圆环孔半径与小球半径之差)即代表小球穿过圆环。
建立好测量后运行一次2秒200步的仿真,并查看测量结果。
基于MSC.ADAMS 的动力传动系统建模与仿真洪清泉 程颖 覃文洁 廖日东(北京理工大学车辆与交通工程学院CAD 室)摘 要:根据动力传动系统的组成及工作原理,在MSC.ADAMS 中分别建立了发动机、液力变矩器、齿轮传动、离合器的动力学模型,并组装成动力传动系统虚拟样机,采用仿真剧本进行总体仿真。
结果表明,利用MSC.ADAMS 进行动力传动系统仿真具有一定的优越性。
关键词:动力传动系统,发动机,液力变矩器,齿轮传动,离合器,仿真剧本动力传动系统是一个典型的多体、多工况、多激励系统,其组成包括发动机、液力变矩器、齿轮传动、离合器等子系统,各子系统仍是复杂的多刚体-柔体系统,其工作过程包括起步、换挡、制动、加速、减速等工况,其受力包括发动机的周期性激励,路面的随机激励,齿轮系统内部激励等。
如何建立动力传动系统的动态模型并仿真其工作过程,对动力传动系统的匹配计算、强度校核、优化设计、疲劳分析、一体化控制具有十分重要的意义。
本文根据MSC.ADAMS 提供的各种建模方法,结合其它软件,实现了动力传动系统一定程度上的虚拟仿真。
1 发动机考虑到发动机的曲轴系当量转动惯量较大,且在不同曲轴转角时发生变化,对整体动态特性影响不能忽略,直接采用发动机稳态外特性和部分特性不能充分描述发动机在动态工况下的真实输出转矩,因此将发动机动力学模型分解为转矩发生器子模型和曲轴系子模型]1[。
在转矩发生器子模型中,将发动机的稳态特性转矩作为施加在曲轴系上的指示转矩,暂不考虑其瞬态特性,将来可以考虑建立详细的燃烧及控制模型。
在MSC.ADAMS 中利用Akima 曲面拟合技术,将某型号柴油发动机的一组部分特性曲线(如图1)拟合为部分特性曲面。
根据部分特性曲面,插值出任意油门开度和发动机转速下的指示转矩值:)0,_,,(engine surface AKISPL T e e αω=式中ωe 为发动机转速,α为油门开度,surface_engine 为发动机特性曲面,0表示输出插值点坐标值。
adams动力学仿真原理一、引言动力学仿真是一种模拟真实物体运动及其相互作用的方法。
在工程领域,动力学仿真被广泛应用于设计、分析、优化以及预测产品或系统的性能。
Adams动力学仿真软件是一款功能强大的工程仿真软件,能够模拟具有复杂运动学和动力学特性的多体系统。
本文将介绍Adams动力学仿真的原理和应用。
二、运动方程和受力分析Adams基于牛顿力学和欧拉法则,通过求解运动方程来描述仿真对象的运动。
运动方程可以通过对系统中所有物体的质量、惯性矩阵以及施加在物体上的外力进行受力分析得到。
Adams提供了丰富的数学建模工具,能够精确地描述物体的几何特性、物理特性以及约束关系。
三、约束建模约束是Adams仿真中的重要概念,用于描述系统中物体之间的约束关系。
Adams支持多种约束类型,包括关节约束、接触约束、力学约束等。
通过合理地定义约束条件,可以准确地模拟物体间的接触、连接和约束。
在进行仿真前,需要根据系统的需求设置适当的约束条件,以确保仿真结果的准确性和可靠性。
四、力学属性在Adams中,物体的力学属性包括质量、惯性、刚度、阻尼等。
通过设置这些属性,可以模拟物体运动时受到的惯性力、重力、弹力、摩擦力等作用。
适当地设置力学属性,能够更加真实地模拟物体的运动行为,并实现精确的仿真分析。
五、控制器建模为了模拟真实系统中的控制装置,Adams提供了控制器建模工具。
控制器可以对系统中的物体施加不同的力或者施加控制策略来实现特定的运动目标。
通过设置适当的控制器参数和策略,可以对系统进行精确的控制和仿真分析。
六、仿真结果分析Adams提供了丰富的仿真结果分析工具,能够对仿真结果进行可视化、数据分析和优化。
通过这些工具,用户可以直观地观察仿真结果,分析系统的运动特性、力学响应以及能耗情况。
此外,Adams还支持与其他工程软件的数据交换,方便用户将仿真结果与实际工程设计相结合。
七、应用案例Adams在许多领域都得到了广泛的应用,例如汽车工业、航空航天、机械设计等。
ADAMS 2023动力学分析与仿真从入门到精通简介ADAMS(Advanced Dynamic Analysis of Mechanical Systems)是一种用于进行动力学分析和仿真的强大工具。
它可以帮助工程师和设计师在产品开发过程中预测和优化机械系统的性能。
无论是汽车、飞机还是机械设备,ADAMS都可以用来模拟其在不同工况下的动态行为。
本文档将介绍ADAMS 2023的基本概念和操作指南,从入门到精通,帮助读者快速上手并掌握ADAMS的使用方法。
1. ADAMS简介1.1 ADAMS的定义ADAMS是一种基于多体动力学理论的仿真软件,它能够对复杂的机械系统进行动力学分析和仿真,并提供详细的结果和可视化的模拟效果。
它主要用于评估系统的运动性能、力学特性和振动响应,是工程师进行设计优化和故障排查的重要工具。
1.2 ADAMS的应用领域ADAMS广泛应用于汽车、航空航天、机械设备等领域,用于模拟和分析复杂机械系统的动态行为。
例如,汽车制造商可以使用ADAMS来评估车辆的悬挂系统、转向动力学和车身振动特性;航空航天公司可以使用ADAMS来模拟飞机的飞行动力学和振动响应。
2. ADAMS基本概念2.1 多体系统ADAMS将机械系统建模为多个刚体之间的约束系统。
每个刚体包含了几何特征、质量和惯性属性。
通过在刚体之间添加约束和运动条件,可以建立复杂的多体系统模型。
2.2 约束约束用于描述刚体之间的相对运动关系。
ADAMS提供了各种类型的约束,如平面、关节、铰链等。
通过正确定义约束条件,可以模拟系统的运动和力学特性。
2.3 运动条件运动条件用于描述系统的运动。
ADAMS提供了多种运动模式,如位移、速度、加速度和力矩等。
通过在刚体上施加运动条件,可以模拟系统的各种运动情况。
3. ADAMS操作指南3.1 ADAMS界面ADAMS的用户界面由多个工具栏、菜单和窗口组成。
主要包括模型浏览器、属性编辑器、运动学模块、仿真控制和结果查看器等。
Adams动力学仿真分析的详细步骤
1、将三维模型导出成parasolid格式,在adams中导入parasolid格式的模型,
并进行保存。
2、检查并修改系统的设置,主要检查单位制和重力加速度。
3、修改零件名称(能极大地方便后续操作)、材料和颜色。
首先在模型界面,使用线框图来修改零件名称和材料。
然后,使用view part only来修改零件的颜色。
4、添加运动副和驱动。
注意:
1)添加运动副时,要留意构件的选择顺序,是第一个构件相对于第二个构件运动。
2)对于要添加驱动的运动副,当使用垂直于网格来确定运动副的方向时,一定要注意视图定向是否对,使用右手法则进行判断。
若视图定向错了,运动方向就错了,驱动函数要取负。
3)添加运动副时,应尽量使用零件的质心点,此时也应检查零件的质心点是否在其中心。
4)因为在仿真中经常要修改驱动函数,所以应为驱动取一个有意义的名称,一般旋转驱动取为:零件名称_MR1,平移驱动取为:零件名称_MT1。
5)运动副数目很多,且后面用的比较少,所以运动副的名称可以不做修改。
对于要添加驱动的运动副,在添加运动副后,应马上添加驱动,以免搞错。
李增刚Adams(ADAMS)是一种基于有限元分析(FEA)技术的仿真软件,广泛应用于机械、航空航天、汽车等领域。
它能够模拟和分析各种工程问题,帮助工程师们进行产品设计和优化,提高产品的性能和可靠性。
在本文中,我们将深入探讨李增刚Adams的入门知识,并结合实例进行详细解释。
1. 什么是李增刚Adams?李增刚Adams是由美国MSC Software公司开发的一种多体动力学仿真软件。
它基于有限元分析(FEA)技术,能够对复杂的机械系统进行动力学仿真和分析。
Adams可以模拟多体系统的运动行为、受力情况,预测系统的动态特性,并通过优化来改善产品设计。
Adams在工程设计和产品优化领域具有重要的应用意义。
2. 初识Adams界面和基本操作当我们第一次打开Adams软件时,会看到一个复杂而丰富的界面。
界面上有各种工具栏、菜单和面板,初学者可能会感到有些不知所措。
不过,只要通过一些基本操作和功能的了解,就能够逐渐熟悉Adams 的界面和操作方法了。
我们需要了解Adams界面的各个部分,比如模型树、属性管理器、操作工具栏等。
学习如何创建一个简单的多体系统模型,并对其进行基本的运动学仿真。
通过这些基本操作,我们可以逐步掌握Adams的使用方法,并为后续的深入学习打下基础。
3. 多体动力学仿真实例解析为了更好地理解Adams的应用,我们将结合一个实际的多体动力学仿真实例进行解析。
假设我们要对一个汽车悬挂系统进行动力学仿真分析,我们可以首先建立一个简化的汽车悬挂系统模型,包括车身、车轮、减震器等部件。
我们可以对车辆通过不同道路情况下的行驶进行仿真,分析汽车悬挂系统在不同路面条件下的工作状态和受力情况,从而优化悬挂系统的设计。
在这个实例中,我们可以运用Adams的各种功能和工具,比如约束条件的设定、运动学分析、动力学分析等,来模拟汽车悬挂系统的运动行为和受力情况。
通过对仿真结果的分析和优化,我们可以为汽车悬挂系统的设计提供有力的支持和指导。
多体动力学模型的建立与仿真分析引言:在工程和科学领域中,多体动力学模型是一种重要的数学工具,可用于研究物体之间的相互作用及其运动。
通过建立动力学模型,我们可以预测和分析机械系统、生物系统以及其他复杂系统的运动行为,为设计优化和问题解决提供理论基础。
本文将探讨多体动力学模型的建立与仿真分析,并介绍一些常用的建模方法和仿真工具。
一、多体动力学模型的基础理论多体动力学模型是基于物体之间的相互作用力和牛顿定律建立的。
牛顿第二定律指出,物体的加速度与作用在其上的合力成正比,反比于物体的质量。
根据牛顿第二定律,我们可以建立物体的运动方程,并通过求解这些方程来获得物体的运动状态。
二、建立多体动力学模型的方法在建立多体动力学模型时,我们通常需要考虑以下几个方面:物体的几何形状、质量分布、刚度特性以及相互作用力。
根据系统的特点和需求,可以选择不同的建模方法,如刚体模型、弹性模型和柔性模型等。
1. 刚体模型刚体模型适用于研究刚性物体的运动行为,忽略物体的变形和弹性特性。
刚体模型的建立较为简单,可以通过描述物体的质心位置、质量及转动惯量等参数来确定物体的运动状态。
2. 弹性模型弹性模型适用于研究具有弹性变形行为的物体。
在弹性模型中,我们需要考虑物体的形变和应力分布。
常用的弹性模型包括弹簧-质点模型、有限元模型等。
这些模型可以通过描述物体的刚度特性和弹性系数等参数来确定物体的运动状态。
3. 柔性模型柔性模型适用于研究高度柔性的物体,如绳子、软体机器人等。
在柔性模型中,我们需要考虑物体的非线性变形和材料特性。
常用的柔性模型包括有限元模型、质点模型等。
这些模型可以通过描述物体的形变、材料刚度和阻尼特性等参数来确定物体的运动状态。
三、多体动力学模型的仿真分析建立了多体动力学模型后,我们可以通过数值仿真来模拟和分析系统的运动行为。
常用的多体仿真工具包括MATLAB/Simulink、ADAMS、EULER等。
这些仿真工具提供了丰富的建模和分析功能,可以帮助我们在不同应用领域进行系统设计和性能优化。
多体动力学仿真软件MSC.ADAMS介绍
在提高设计质量的同时还要节省开支,缩短开发周期,这在市场竞争中是致关重要的。
为了取得市场的胜利,必须采用新的设计概念,剔除错误观念,确定比对手更有竞争力的优化的设计。
MSC.ADAMS 的虚拟现实技术可以帮你做到这一点。
在最基本的层面,功能化虚拟样机技术能够让工程设计队伍在提交物理样机之前,就在计算机中建造起他们的机械系统,并对其进行测试、审核及改进。
用户可以在软件的运动仿真功能基础上增加专业产品、捕捉专业经验、建立专业化模版,在此基础上开发出完整、协调的虚拟样机,并引导用户在产品设计中做出重大决策。
获益:
-同物理样机试验相比,更快、更节约成本地分析设计的改变
-在开发流程的每个阶段获得更完善的设计信息,从而降低开发风险
-通过分析大量的设计方案,优化整个系统的性能,从而提高产品质量
-仿真分析方法随意改变,而无须更改实验仪器、固定设备以及实验程序
-在安全的环境下工作,不必担心关键数据丢失或由于恶劣天气造成的设备失效
应用:
-帮助飞机制造商更好的对飞机设计深入了解,以提高飞机安全性并达到FAA 的要求。
-帮助汽车制造商对汽车进行动力分析、噪声分析和疲劳分析,以缩短设计周期。
-帮助通用机械生产商通过降低振动来改进现有的设计以提高操作速度。
adams动力学仿真原理摘要:1.引言2.Adaams动力学仿真原理简介3.Adaams动力学仿真过程详解4.应用Adams动力学仿真的优势5.结论正文:【引言】在工程领域,动力学仿真技术已成为分析与优化机械系统性能的重要手段。
Adams作为一种广泛应用的动力学仿真软件,可以帮助工程师快速准确地分析复杂机械系统的运动和动力性能。
本文将详细介绍Adams动力学仿真原理及应用过程,以期为工程师们提供实用的指导。
【Adaams动力学仿真原理简介】Adams基于虚拟样机技术,通过建立机械系统的三维模型,利用运动学和动力学方程对系统进行仿真分析。
其核心原理包括以下几点:1.建立机械系统三维模型:用户根据实际需求,在Adams中构建机械系统的各个部件,如机身、支架、电机等。
2.添加约束和驱动:为模拟实际工况,用户需在模型中添加约束(如转动副、滑动副等)以及驱动(如电机、力等)。
3.设定运动学和动力学方程:Adams根据模型自动生成运动学和动力学方程,为后续仿真分析奠定基础。
4.进行仿真计算:根据设定的时间步长和求解器参数,Adams对运动学和动力学方程进行求解,得到各部件的运动轨迹、速度、加速度等数据。
5.后处理与分析:用户可利用Adams提供的后处理工具,对仿真结果进行可视化展示、数据分析等。
【Adaams动力学仿真过程详解】1.建立模型:首先,在Adams中创建一个新的项目,并根据需求添加或修改部件模型。
2.添加约束和驱动:在模型中定义各部件之间的运动关系,如转动副、滑动副等;同时,为需要驱动的部件添加电机、力等驱动。
3.设定材料属性:为各部件设定相应的材料属性,如密度、弹性模量等。
4.网格划分:对模型进行网格划分,以提高仿真精度。
5.设定求解参数:设置时间步长、求解器类型等求解参数。
6.开始仿真:点击“开始仿真”按钮,Adams将自动进行仿真计算。
7.观察仿真结果:在仿真过程中,用户可通过Adams的实时监控功能观察各部件的运动状态。
ADAMS 2023动力学分析与仿真从入门到精通1. 简介ADAMS(Advanced Dynamic Analysis of Mechanical Systems,机械系统高级动力学分析)是一种用于进行多体动力学分析和仿真的工程软件。
它可以帮助工程师在设计阶段预测和优化机械系统的动态性能。
本文档旨在介绍ADAMS软件的基本概念和使用方法,从入门到精通,帮助读者快速上手并深入了解该软件的应用。
2. ADAMS基本概念2.1 动力学分析动力学分析是研究物体在受力的作用下的运动规律的过程。
在工程领域中,动力学分析可以帮助工程师了解机械系统的受力情况、振动特性以及运动性能,从而进行系统设计和优化。
2.2 多体系统ADAMS主要适用于多体系统的动力学分析和仿真。
多体系统是由多个物体组成的系统,这些物体之间通过连接件(如关节、弹簧等)相互连接。
在ADAMS中,物体和连接件共同构成了一个复杂的多体系统。
2.3 仿真仿真是通过模拟真实系统的运行过程来获取系统的性能和行为数据。
在ADAMS中,可以建立一个虚拟的多体系统模型,并对其进行动态仿真。
通过仿真可以观察系统的运动轨迹、应力情况以及其他动态性能指标。
3. ADAMS软件安装与设置3.1 软件安装ADAMS软件可以从MSC官方网站上下载并安装。
根据操作系统的要求进行安装步骤,并确保软件安装成功。
3.2 界面介绍ADAMS的主界面由多个视图组成,包括模型视图、结果视图、控制视图等。
在开始使用ADAMS之前,需要熟悉界面的各个部分以及其功能。
3.3 工作空间设置在ADAMS中,可以通过设置工作空间来指定工作目录、结果输出路径等。
正确设置工作空间可以提高工作效率并方便管理文件。
4. ADAMS模型的建立与编辑4.1 模型概念在ADAMS中,模型是指多体系统的虚拟表示。
建立一个准确的模型是进行动力学分析和仿真的前提。
4.2 模型创建ADAMS提供了丰富的建模工具和元件库,通过拖拽和连接不同的元件可以创建复杂的多体系统模型。
MSC Adams是一种常用的多体动力学仿真软件,它可以用于研究和分析机械系统、运动学和动力学特性。
下面简要介绍MSC Adams的基础知识和实例解析:
1. 多体动力学基础:
-刚体和连接:MSC Adams使用刚体模型来表示物体,可以定义物体的质量、惯性矩阵和几何形状。
通过连接件(约束)将多个物体连接在一起,可以模拟各种机构系统。
-动力学模型:通过定义物体的受力和力矩,可以建立动力学模型。
这些力可以包括重力、摩擦力、弹簧力等,可以根据需要进行自定义。
-运动学分析:可以分析物体的位置、速度、加速度以及各个连接件之间的相对运动关系。
2. 实例解析:
-车辆悬挂系统:通过建立车辆悬挂系统的多体动力学模型,可以分析车轮与地面的接触力、悬挂系统的行程和动态响应等。
这有助于改善车辆的悬挂性能和乘坐舒适性。
-机械臂运动学和动力学分析:通过建立机械臂的多体动力学模型,可以分析机械臂在不同工作状态下的位姿、速度和加速度。
这有助于优化机械臂的设计和运动控制算法。
-飞机起落架系统:通过建立飞机起落架系统的多体动力学模型,
可以分析起落架在着陆和起飞时的动态响应和受力情况。
这有助于改进起落架的设计和耐久性。
-振动系统:通过建立振动系统的多体动力学模型,可以分析系统的固有频率、振动模态和受力情况。
这有助于评估结构的稳定性和设计适当的减振措施。
以上是MSC Adams多体动力学仿真的基础知识和一些实例解析。
通过使用MSC Adams,工程师和研究人员可以更好地理解和优化复杂机械系统的动力学特性。