述热释电红外探测器的使用场合。
- 格式:doc
- 大小:12.32 KB
- 文档页数:1
光电传感技术论文热释电探测器及其应用This model paper was revised by LINDA on December 15, 2012.光电传感技术热释电探测器及其应用院系电子工程学院光电子技术系班级光信息0802姓名 xxxx学号 xxxxx班内序号08考核成绩摘要论述了热释电电探测器的结构及工作原理。
推导出热释电电流,电流响应率,电压响应率的解析表达式,介绍了热点是探测器的红外探测,图像装置及其他应用,推导了热点是探测器在线开关和离走开关的工作原理、电路设计及应用。
对热释电材料进行了分类,对热释电材料、热释电传感器、热释电探测器的性能作了介绍。
关键词热释电探测器、在线开关、离走开关、热释电材料。
热释电探测器是本世纪70年代迅速发展起来的新型探测器,这种探测器具有室温工作、不需制冷、光谱响应无波长选择性、探测度高等特点,现已广泛应用于入侵报警、火灾报警、气体分析、自动门风诸多领域。
1. 热释电传感器热释电探测器的结构由热释电晶体、电极、吸收层、底衬、FET和负载电阻组成.吸收层上方的硅窗口材料只允许特定波段的红外辐射入射到吸收层上.热释电探测器具有自极化效应,晶体处于低于Curie温度的恒温环境时,其自极化强度保持不变,即极化电荷面密度保持不变,这些电荷被空气中的带电离子中和,当红外辐射入射晶体,被晶体吸收后,晶体温度升高,自极化强度变小,即电荷面密度变小.这样,晶体表面存在多余的中和电荷,这些电荷以电压或电流的形式输出,该输出信号可用来探测辐射.相反,当截断该辐射时,晶体温度降低,自极化强度增大,有相反方向的电流或电压输出。
若在dt时间内,热释电晶体温度变化dAT所引起的极化强度变化为dP,则与极轴垂直的晶体表面产生的电流面密度可表达为dt T d dt J ∆==dp th w τ1>>(1) Td ∆dp 称热电系数,用P 表示,这样,J 可表示为 dt Td p J ∆= (2)入射辐射是角频率为w 的正弦调制光,功率幅度为0W ,该辐射可表示为()jwt e W t W 0=,探测器吸收率为n .此时,探测器温度上升量T ∆由下式确定T G dt T d C e aW jwt ∆+∆=0(3)其中,C 为晶体的热容量,G 为晶体与周围环境的热导率,用Lap1ace 变换方法解方程并利用初始条件0=t ,0=∆T 得()jwte jwC G aW t T +=∆0(4)因此热释电晶体产生的电流可表示为jwtjwe jwC G pAaW dt T d pA I +=∆=0 (5)式中,A 为电极面积。
热释电人体红外报警器的常用芯片的基本知识热释电人体红外报警器是一种广泛应用于家庭、商业、办公等领域的安全防范设备。
它可以通过采集人体的红外热量,来确定人体的存在,并发出警报。
其中,常用芯片是热释电传感器(Pyroelectric Sensor)和控制芯片(Control Chip)。
一、热释电传感器热释电传感器是热释电人体红外报警器的核心部件。
它是一种利用热释电效应制成的微型传感器,具有灵敏度高、可靠性好、功耗低等特点。
其工作原理是通过检测物体的红外辐射,将热量转换成电信号输出,在红外辐射强度变化时能够产生电荷,从而有效地提高探测器的灵敏度。
目前,热释电传感器已广泛应用到各种安防领域中。
二、控制芯片控制芯片是热释电人体红外报警器的另一个核心部件,它主要负责控制热释电传感器的输出信号,并处理传感器采集的数据。
常用的控制芯片有两类,一类是数字控制芯片(Digital Control Chip),另一类是模拟控制芯片(Analog Control Chip)。
数字控制芯片适用于高速数字信号处理,而模拟控制芯片适用于需要高精度信号处理的场合。
三、常见问题及解决方案在使用热释电人体红外报警器时,常见的问题有多种。
以下是其中的几个解决方案:(一)、误报问题误报问题是热释电人体红外报警器常见的问题之一。
误报的原因可能是传感器所处环境温度变化大或者某种因素导致的误报。
一般来说,可以通过调节热释电传感器的灵敏度,来解决误报问题。
(二)、漏报问题漏报问题是另一个常见的问题。
漏报的原因可能是传感器使用寿命老化,或者传感器所处环境温度变化较小。
为了解决漏报问题,可以定期更换传感器或增加热释电传感器的数量。
(三)、传感器定位问题传感器定位问题是一个极为重要的问题。
如果传感器安装位置不对,就可能会导致传感器无法正常工作。
在选择传感器安装位置时,应该注意避免在阳光直射或通风不良的地方,以及避免与其他电子设备干扰。
总之,热释电人体红外报警器可以有效地提高家庭、商业、办公等领域的安全防范能力。
热释电的应用
热释电的应用主要在以下几个方面:
1.热能转换:热释电材料可以将热量转换为电能,主要用于制造热电发电机和太阳能电池等。
2.热成像:由于热释电材料具有很好的红外热成像性能,可以用于制造红外热成像仪和热成像相机等。
3.传感器:热释电材料可被用于制造各种传感器,如温度传感器、压力传感器等。
4.安全防护:热释电材料可以用于制造火灾探测器、热辐射计等,以防止火灾等安全事故的发生。
5.其他应用:此外,热释电材料还可以用于红外探测、红外辐射测量、红外光谱分析等领域。
以上信息仅供参考,如有需要,建议咨询专业人士。
热释电红外传感器原理及应用(测控技术与仪器1002班,刘建军发)【摘要】:随着社会的发展,各种方便于生活的自动控制系统开始进入了人们的生活,以热释电红外传感器为核心的自动门系统就是其中之一。
热释电红外传感器是基于热电效应原理的热电型红外传感器。
其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合虑光镜片窗口组成,其极化随温度的变化而变化。
热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。
设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。
【关键词】:热释电、红外线、自动控制、自动门。
1热释电红外传感器原理1.1热释电红外传感器的原理特性热释电红外传感器和热电偶都是基于热电效应原理的热电型红外传感器。
不同的是热释电红外传感器的热电系数远远高于热电偶,其内部的热电元由高热电系数的铁钛酸铅汞陶瓷以及钽酸锂、硫酸三甘铁等配合滤光镜片窗口组成,其极化随温度的变化而变化。
为了抑制因自身温度变化而产生的干扰该传感器在工艺上将两个特征一致的热电元反向串联或接成差动平衡电路方式,因而能以非接触式检测出物体放出的红外线能量变化并将其转换为电信号输出。
热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。
由于热电元输出的是电荷信号,并不能直接使用因而需要用电阻将其转换为电压形式该电阻阻抗高达104MΩ,故引入的N沟道结型场效应管应接成共漏形式即源极跟随器来完成阻抗变换。
热释电红外传感器由传感探测元、干涉滤光片和场效应管匹配器三部分组成。
设计时应将高热电材料制成一定厚度的薄片,并在它的两面镀上金属电极,然后加电对其进行极化,这样便制成了热释电探测元。
由于加电极化的电压是有极性的,因此极化后的探测元也是有正、负极性的。
1.2 被动式热释电红外传感器的工作原理与特性人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。
人体热释电红外线传感器的原理和应用热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。
热释电红外传感器不受白天黑夜的影响,可昼夜不停地用于监测,广泛地用于防盗报警。
本文就热释电人体红外线传感器的基本原理及应用作以大致介绍:一、热释电人体红外线传感器的基本结构和原理热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将输出的电压信号加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警等。
目前市场上常见的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer 公司的LHi954、LHi958,美国Hamastsu公司的P2288,日本NipponCeramic公司的SCA02-1、RS02D等。
虽然它们的型号不一样,但其结构、外型和特性参数大致相同,大图1 热释电传感器实物图部分可以彼此互换使用。
热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大部分组成,如图1所示。
对不同的传感器来说,探测元的制造材料有所不同。
如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。
将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。
因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。
传感器中两个电容是极性相反串联的。
当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流,传感器无输出。
当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光能能量相等,且达到平衡,极性相反、能图2 双探测元热释电红外传感器量相等的光电流在回路中相互抵消,传感器仍然没有信号输出。
自动门的原理(热释电红外传感器)1 自动门原理在自动门领域,被动式人体热释电红外感应开关应用广泛,因其性能稳定,工作长期稳定可靠而受到用户的欢迎。
该开关主要由人体热释电红外传感器、信号处理电路、控制与执行电路、电源电路等组成。
热释电红外自动门主要由光学系统、热释电红外传感器、信号滤波放大、信号处理和自动门电路组成。
菲涅尔透镜可以将人体辐射的红外线聚焦在热释电红外探测器上,同时也产生交替的红外辐射高灵敏区和盲区,以适应热释电探测器要求信号不断变化的特点。
热释电红外传感器是报警器设计中的核心器件,它能将人体的红外信号转换成电信号进行信号处理。
信号处理主要是对传感器输出的微弱电信号进行放大、滤波、延时、比较,为报警功能的实现奠定基础。
2.自动门感应器原理在该探测技术中,所谓“被动”是指探测器本身不发出任何形式的能量,只是靠接收自然界能量或能量变化来完成探测目的。
被动红外自动门的特点是能够响应人体在探测区域内移动时所引起的红外辐射变化,并能使监控报警器产生报警信号,从而完成报警功能。
当人体辐射的红外线通过菲涅尔透镜被聚焦在热释电红外传感器的探测元上时,电路中的传感器将输出电压信号,然后使该信号先通过一个由C1、C2、R1、R2组成的带通滤波器,该滤波器的上限截止频率为16Hz,下限截止频率为0.16Hz。
由于热释电红外传感器输出的探测信号电压十分微弱(通常仅有1mV左右),而且是一个变化的信号,同时菲涅尔透镜的作用又使输出信号电压呈脉冲形式(脉冲电压的频率由被测物体的移动速度决定,通常为0.1~10Hz左右),所以应对热释红外传感器输出的电压信号进行放大。
本设计运用集成运算放大器LM324来进行两级放大,以使其获得足够的增益。
当传感器探测到人体辐射的红外线信号并经放大后送给窗口比较器时,若信号幅度超过窗口比较器的上下限,系统将输出高电平信号;无异常情况时则输出低电平信号。
在该比较器中,R9、R10、R11用做参考电压,两个运算放大器用做比较,两个二极管的主要作用是使输出更稳定。
热释红外线探测器使用说明书 GH-903GH-903热释红外线探测器是根据人体红外光谱而工作,当人体在其接收范围内活动时,探测器输出报警信号,广泛用于银行、仓库及家庭等场所的安全防范。
GH-903热释红外线探测器是目前性能价格比较高的产品,实验证明在10~1000MHZ的高频干扰下,探测器均能可靠的工作,并对移动通讯有很强的抗干扰能力,电路设计采用计数脉动控制报警信号周期,根据使用情况,选择PCB上“PULSE”的1、3、5、端跳线,即可得到不同周期的报警信号。
一、安装:GH-903线外线探测器安装在室内高于2米的墙壁上或采用吸顶式安装,远离热源,接线排列应规则,探测器透镜前面不应有物体遮物,盖盒斜口面朝下,不应装反以免影响检测效果。
二、使用:检查接线无误,装好探测器盖盒,接通9-16V直流电源指示灯亮,经过1-2分钟后,指示灯熄灭,表示进入正常检测状态,此刻后,如有人再进入检测区,探测器输出报警信号同时指示灯亮。
(此为计数脉动选择在1端状态,选择不同的初始状态,可根据使用情况做合理选择)。
三、计数脉动选择:四、接线端口A&B:防拆开关输出端子C:-:直流电源负极D:+:直流电源正极E&F:NC.C继电器输出端子五、检测范围视图:六、主要技术规格:1、工作电压:9-16VDC.2、工作电流:17mA.3、传感器:P.I.R热释红外线4、计数脉动:1、2或35、报警器继电器输出:常闭干触点,最大切换50VDC,80Ma,6、防拆开关:常闭7、抗静电干扰:10KV8、工作温度:-10℃-60℃ 9、探测范围:12米X 12米 本产品在正常使用的情况下(不包括人为损坏)保用五年, 使用寿命长, 灵敏度高, 外观豪华, 产品经久耐用。
深圳市商斯达实业有限公司荣誉出品欢迎索取免费详细资料、设计选型指南和光盘、样品;产品繁多未能尽录,欢迎来电查询。
中国传感器科技信息网:HTTP:///工控安防网:HTTP:///消费电子专用电路网:/E-MAIL:**************************MSN: suns8888@hotmail.com QQ: 195847376 地址:深圳市福田区福华路福庆街鸿图大厦1602室电话:0755-******** 83376489 83387030 83387016传真:0755-******** 83338339 邮编:518033 手机:(0)139****1329深圳展销部:深圳华强北路赛格电子市场2583号 TEL/FAX:0755-******** 25059422北京分公司:北京海淀区知春路132号中发电子大厦3097号TEL:010-******** 82615020 135******** FAX:************上海分公司:上海市北京东路668号上海賽格电子市场2B35号TEL:021-******** 56703037 137******** FAX:************西安分公司:西安高新开发区20所(中国电子科技集团导航技术研究所) 西安劳动南路88号电子商城二楼D23号TEL:029-8102261913072977981FAX*************成都:TEL:(0)137****6236 SUNSTAR商斯达实业集团是集研发、生产、工程、销售、代理经销、技术咨询、信息服务等为一体的高科技企业,是专业高科技电子产品生产厂家,是具有10多年历史的专业电子元器件供应商,是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一,是一家专业代理和分銷世界各大品牌IC 芯片和電子元器件的连锁经营綜合性国际公司。
热释红外线芯片是一种特殊的芯片,主要用于红外线传感和人体感应。
它可以检测人体释放的红外线,并将其转换为电信号,进而控制电路的通断或者驱动其他设备进行工作。
热释红外线芯片在安防报警、智能照明、智能家居等领域应用广泛,例如感应灯、自动门、智能窗帘等。
热释红外线芯片的主要特点包括:
1. 高灵敏度:热释红外线芯片采用高灵敏度探测器,可以感知人体释放的红外线,即使人体距离传感器一定距离也能感应到。
2. 抗干扰能力强:热释红外线芯片采用特定的滤波器和算法,可以有效排除其他干扰信号的干扰,保证系统的稳定性和可靠性。
3. 寿命长:热释红外线芯片的使用寿命一般较长,可以在长时间内保持稳定的性能表现。
4. 安装方便:热释红外线芯片的安装位置灵活,可以根据实际需求进行选择,同时其体积小、重量轻,方便携带和移动。
总之,热释红外线芯片是一种高效、可靠的红外线传感器件,在智能家居、安防报警等领域应用广泛。
光电传感技术热释电探测器及其应用院系电子工程学院光电子技术系班级光信息0802姓名 xxxx学号 xxxxx班内序号08考核成绩摘要 论述了热释电电探测器的结构及工作原理。
推导出热释电电流,电流响应率,电压响应率的解析表达式,介绍了热点是探测器的红外探测,图像装置及其他应用,推导了热点是探测器在线开关和离走开关的工作原理、电路设计及应用。
对热释电材料进行了分类,对热释电材料、热释电传感器、热释电探测器的性能作了介绍。
关键词 热释电探测器、在线开关、离走开关、热释电材料。
热释电探测器是本世纪70年代迅速发展起来的新型探测器,这种探测器具有室温工作、不需制冷、光谱响应无波长选择性、探测度高等特点,现已广泛应用于入侵报警、火灾报警、气体分析、自动门风诸多领域。
1. 热释电传感器热释电探测器的结构由热释电晶体、电极、吸收层、底衬、FET 和负载电阻组成.吸收层上方的硅窗口材料只允许特定波段的红外辐射入射到吸收层上.热释电探测器具有自极化效应,晶体处于低于Curie 温度的恒温环境时,其自极化强度保持不变,即极化电荷面密度保持不变,这些电荷被空气中的带电离子中和,当红外辐射入射晶体,被晶体吸收后,晶体温度升高,自极化强度变小,即电荷面密度变小.这样,晶体表面存在多余的中和电荷,这些电荷以电压或电流的形式输出,该输出信号可用来探测辐射.相反,当截断该辐射时,晶体温度降低,自极化强度增大,有相反方向的电流或电压输出。
若在dt 时间内,热释电晶体温度变化dAT 所引起的极化强度变化为dP ,则与极轴垂直的晶体表面产生的电流面密度可表达为dt T d dt J ∆==dp th w τ1>> (1)Td ∆dp 称热电系数,用P 表示,这样,J 可表示为dt Td p J ∆= (2)入射辐射是角频率为w 的正弦调制光,功率幅度为0W ,该辐射可表示为()jwt e W t W 0=,探测器吸收率为n .此时,探测器温度上升量T ∆由下式确定T G dt T d C e aW jwt ∆+∆=0 (3)其中,C 为晶体的热容量,G 为晶体与周围环境的热导率,用Lap1ace 变换方法解方程并利用初始条件0=t ,0=∆T 得()jwte jwC G aW t T +=∆0 (4)因此热释电晶体产生的电流可表示为jwtjwe jwC G pAaW dt T d pA I +=∆=0 (5)式中,A 为电极面积。
红外热像仪原理、主要参数和应用红外热像仪原理、主要参数和应用1. 红外线发现与分布1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。
当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。
我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。
1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。
红外线的发现标志着人类对自然的又一个飞跃。
随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。
红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。
红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。
温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。
通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。
运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。
2. 红外热像仪的原理红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。
这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。
光电探测器的分类介绍光电探测器是一种将光信号转换为电信号的器件。
在实际应用中,光电探测器具有广泛的应用场景,如通讯、光学测量、医学、物理实验等领域。
本文将主要介绍光电探测器的分类。
光电探测器基本原理光电探测器是一种将光信号转换为电信号的器件。
其基本原理是光电效应。
光电效应是指当光束照射到金属表面时,引起金属表面电子的发射现象。
这些被发射出来的电子称为光电子。
当光束照射到半导体材料表面时,也会发生类似光电效应的现象,只是光电子的数量较少。
当有光照射到光电探测器的光敏元件上时,光子被吸收并在光敏元件内部产生光电子。
这些光电子被电场引导到输出端,形成电流或电压信号。
光电探测器的分类按探测原理分类1.光电管:通过光电效应将光信号转换为电信号,主要应用于光电倍增管和光电发射管中。
2.光敏电阻:光敏电阻是一种基于光电效应原理,将光能转换成电能的敏感元件,可以用作光电控制器中的光检测器。
3.光敏二极管:光敏二极管是一种利用半导体材料反向偏置增加电场强度,从而增加光电转换效率的光敏元件,主要应用于光电计数器、光电定位器、高速光电开关、丝印电路检测等场合。
4.热释电探测器:热释电探测器利用被测物质向热释电元件放出热量,使元件温升,从而感应出测量信号,主要应用于红外辐射测量中。
5.光电二极管:光电二极管是一种结构简单、响应速度快的光敏元件,主要应用于高速数据通讯和数字测量。
6.晶体管光敏电阻:晶体管光敏电阻又称晶体管光敏电阻复合体,是将晶体管与光敏电阻结合起来制成的元件,能够同时完成信号增强和光电转换的功能。
主要应用于测量、声音放大等领域。
按工作波段分类光电探测器按照工作波段的不同也可以分为多种类型,如下:1.紫外光探测器:工作波长在300nm以下。
2.可见光探测器:工作波长在400nm~700nm范围内。
3.红外光探测器:工作波长在700nm以上至几微米范围内。
4.远红外/热成像探测器:工作波长在几微米至1000微米之间。
热释电传感器原理与应用一、前言热释电红外传感器是一种非常有应用潜力的传感器。
它能检测人或某些动物发射的红外线并转换成电信号输出。
早在1938年,有人就提出利用热释电效应探测红外辐射,但并未受到重视。
直到六十年代,随着激光、红外技术的迅速发展,才又推动了对热释电效应的研究和对热释电晶体的应用开发。
近年来,伴随着集成电路技术的飞速发展,以及对该传感器的特性的深入研究,相关的专用集成电路处理技术也迅速增长。
本文先介绍热释电传感器的原理,然后再描述相关的专用集成电路处理技术。
二、热释电效应当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷,这种由于热变化产生的电极化现象,被称为热释电效应。
通常,晶体自发极化所产生的束缚电荷被来自空气中附着在晶体表面的自由电子所中和,其自发极化电矩不能表现出来。
当温度变化时,晶体结构中的正负电荷重心相对移位,自发极化发生变化,晶体表面就会产生电荷耗尽,电荷耗尽的状况正比于极化程度,图1表示了热释电效应形成的原理。
能产生热释电效应的晶体称之为热释电体或热释电元件,其常用的材料有单晶(LiTaO3 等)、压电陶瓷(PZT等)及高分子薄膜(PV FZ等)[2]热释电传感器利用的正是热释电效应,是一种温度敏感传感器。
它由陶瓷氧化物或压电晶体元件组成,元件两个表面做成电极,当传感器监测范围内温度有ΔT的变化时,热释电效应会在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱电压ΔV。
由于它的输出阻抗极高,所以传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷ΔQ会跟空气中的离子所结合而消失,当环境温度稳定不变时,ΔT=0,传感器无输出。
当人体进入检测区时,因人体温度与环境温度有差别,产生ΔT,则有信号输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出,所以这种传感器能检测人体或者动物的活动。
热释电红外传感器的结构及内部电路见图2所示。
传感器主要有外壳、滤光片、热释电元件PZT、场效应管FET 等组成。
述热释电红外探测器的使用场合。
热释电红外探测器(Pyroelectric Infrared Detector,简称PIR传感器)是一种能
够探测人体红外线辐射的传感器,通常用于安防监控、智能家居、自动化控制等领域中。
PIR传感器能够快速、准确地监测到人体的活动,并与其他设备进行配合,实现各种自动
化活动。
以下是PIR传感器的使用场合:
1. 安防监控:PIR传感器可以用于监测入侵者,并发送警报给安防系统,从而增强安全防范。
在商业和住宅中,它们常常被用作安保的一个组成部分,特别是对于室外的安全
监控。
2. 能源管理:PIR传感器可以用于智能家居智能化管理,例如能够精细控制室内照明,以减少能源浪费。
当室内有人活动时,灯光自动开启,当离开时灯光自动关闭,这不仅方
便了生活,更有助于节省资源。
3. 自动化控制:PIR传感器还可用于各种自动化控制方案中,例如楼梯照明、自动门、智能开关等。
通过安装PIR传感器,可以实现自动化控制,更加便捷高效。
4. 其他应用领域:在一些特殊的应用领域中,如行业检测、医疗卫生领域、科学实
验等,PIR传感器也可以起到重要的作用。
比如在实验室中,管理人员可以使用PIR传感
器来检测危险物品,为实验人员和环境安全提供保障。
总之,PIR传感器可以应用于许多领域,并且随着技术的不断改进和升级,其功能也
日益强大。
随着人们对绿色环保低碳生活的需要不断增加,也将推动PIR传感器的应用领
域不断扩大。
述热释电红外探测器的使用场合。
热释电红外探测器是一种通过检测物体辐射的红外能量来实现
检测的传感器。
由于其高灵敏度、快速响应和广泛的应用场合,热释电红外探测器在安防、消防、医疗、工业控制等领域得到了广泛应用。
首先,热释电红外探测器在安防领域中用于监控区域内的人员活动情况。
通过热释电红外探测器,可以检测到人体辐射出的红外能量,从而实现对区域内人员活动的监测和报警。
该技术广泛应用于机场、银行、商场、办公楼等公共场所,可以有效地提高安全性和防范犯罪。
其次,在消防领域中,热释电红外探测器也被广泛应用。
在大型建筑物、仓库、工厂等场合中,热释电红外探测器可以检测到火灾时产生的高能热辐射,从而及时报警并进行相应的处理。
此外,热释电红外探测器还可以用于医疗领域中的体温检测。
在公共场所、机场、车站等场合中,通过热释电红外探测器可以快速、准确地检测出人体的体温,从而实现对人员的体温监测和疫情防控。
最后,热释电红外探测器还广泛应用于工业控制领域中。
在工业生产中,热释电红外探测器可以用于检测机器设备的温度变化,从而实现对机器设备的监测和维护,提高生产效率和安全性。
总之,热释电红外探测器在安防、消防、医疗、工业控制等领域中的应用越来越广泛,具有重要的意义和价值。
- 1 -。