数据结构基础知识要点说明
- 格式:doc
- 大小:6.82 MB
- 文档页数:18
数据结构是计算机科学的一个关键领域,主要研究非数值计算的程序设计问题中,计算机的操作对象以及它们之间的关系和操作。
数据元素是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。
数据结构主要包含三个方面的含义:逻辑结构、存储结构、数据运算。
同时,数据类型、抽象数据类型也是数据结构的重要组成部分。
让我们详细了解一下这些知识点:
1. 逻辑结构:这是数据元素之间的逻辑关系,包括线性结构(如线性表、栈、队列)和非线性结构(如树、图、集合)。
2. 存储结构:也称为物理结构,是逻辑结构在计算机中的表示。
3. 数据类型:是一个值的集合以及定义在这个值集上的一组操作的总称。
4. 抽象数据类型:通常由用户定义,用以表示应用问题的数据模型以及定义在该模型上的一组操作。
5. 数组和链表:包括其定义、初始化、基本操作等。
特别是单链表的定义和初始化,这是一个常见的考试知识点。
6. 栈和队列:包括其定义、基本操作等。
7. 树和图:包括二叉树、AVL树、堆、B树、红黑树、图等数据结构的定义、基本操作和应用。
8. 时间复杂度和空间复杂度:算法的效率分析主要依赖于时间复杂
度和空间复杂度的估算。
9. 各种数据结构的应用和实现:需要理解每种数据结构的优缺点,以及各自适用的场景,能够根据实际问题选择合适的数据结构。
数据结构的重点知识点数据结构是计算机科学中非常重要的基础知识,它主要研究数据的组织、存储和管理方式。
在学习数据结构的过程中,有一些重点知识点需要特别关注和理解。
本文将从以下几个方面介绍数据结构的重点知识点。
一、线性表线性表是数据结构中最基本、最简单的一种结构。
它包括顺序表和链表两种实现方式。
1. 顺序表顺序表是线性表的一种实现方式,它使用一个连续的存储空间来存储数据。
顺序表的主要操作包括插入、删除和查找等。
2. 链表链表是线性表的另一种实现方式,它使用节点来存储数据,并通过指针将这些节点连接起来。
链表的主要操作包括插入、删除和查找等。
二、栈和队列栈和队列是线性表的特殊形式,它们的主要特点是插入和删除操作只能在特定的一端进行。
1. 栈栈是一种先进后出(LIFO)的数据结构,它的插入和删除操作都在栈顶进行。
栈的主要操作包括入栈和出栈。
2. 队列队列是一种先进先出(FIFO)的数据结构,它的插入操作在队尾进行,删除操作在队头进行。
队列的主要操作包括入队和出队。
三、树和二叉树树是一种用来组织数据的非线性结构,它由节点和边组成。
树的重点知识点主要包括二叉树、二叉搜索树和平衡树等。
1. 二叉树二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点。
二叉树的主要操作包括遍历、插入和删除等。
2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中的所有节点的值都小于根节点的值,右子树中的所有节点的值都大于根节点的值。
二叉搜索树的主要操作包括查找、插入和删除等。
四、图图是由节点和边组成的一种复杂数据结构。
图的重点知识点主要包括有向图和无向图、图的遍历和最短路径算法等。
1. 有向图和无向图有向图和无向图是图的两种基本形式,它们的区别在于边是否有方向。
有向图的边是有方向的,而无向图的边没有方向。
2. 图的遍历图的遍历是指对图中的每个节点进行访问的过程。
常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
数据结构知识点总结一、基本概念数据:所有能被输入到计算机并被处理的符号的集合。
数据元素:数据的基本单位,也称为结点、节点或记录。
数据项:构成数据元素的不可分割的最小单位。
抽象数据类型:抽象数据组织和与之相关的操作,通常采用数据对象、数据关系、基本操作集这样的三元组来表示。
二、逻辑结构数据的逻辑结构是从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。
数据元素之间的关系(逻辑结构)可分为四类:集合结构:数据元素之间除了“属于同一集合”的关系外,别无其它关系。
线性结构:数据元素之间存在一对一的关系,如数组、链表、队列和栈等。
树形结构:数据元素之间存在一对多的关系,如二叉树、多叉树等。
图结构或网状结构:数据元素之间存在多对多的关系。
三、存储结构数据对象在计算机中的存储表示称为数据的存储结构,也称物理结构。
数据元素在计算机中有两种基本的储存结构:顺序存储结构:借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系,通常借助程序设计语言的数组类型来描述。
链式存储结构:无需占用一整块存储空间,数据元素的存储位置不必连续,而是通过指针链接形成逻辑关系。
四、数据结构的运算数据结构中的运算包括插入、删除、查找、遍历等,这些运算的实现依赖于具体的逻辑结构和存储结构。
五、数据结构的应用数据结构在各个领域都有广泛的应用,如数据库系统、计算机网络、图形处理等。
通过合理地选择和设计数据结构,可以提高程序的运行效率,降低存储空间的占用。
六、数据结构与算法的关系数据结构和算法是相辅相成的。
数据结构是算法的基础,算法的实现依赖于特定的数据结构。
同时,算法的优化也往往需要对数据结构进行改进和调整。
总结来说,数据结构是计算机科学中的核心概念之一,它涉及数据的组织、存储和运算等多个方面。
理解和掌握数据结构的基本知识点和原理,对于提高编程能力和解决实际问题具有重要意义。
数据结构大纲知识点一、绪论。
1. 数据结构的基本概念。
- 数据、数据元素、数据项。
- 数据结构的定义(逻辑结构、存储结构、数据的运算)- 数据结构的三要素之间的关系。
2. 算法的基本概念。
- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)- 算法的评价指标(时间复杂度、空间复杂度的计算方法)二、线性表。
1. 线性表的定义和基本操作。
- 线性表的逻辑结构特点(线性关系)- 线性表的基本操作(如初始化、插入、删除、查找等操作的定义)2. 顺序存储结构。
- 顺序表的定义(用数组实现线性表)- 顺序表的基本操作实现(插入、删除操作的时间复杂度分析)- 顺序表的优缺点。
3. 链式存储结构。
- 单链表的定义(结点结构,头指针、头结点的概念)- 单链表的基本操作实现(建立单链表、插入、删除、查找等操作的代码实现及时间复杂度分析)- 循环链表(与单链表的区别,操作特点)- 双向链表(结点结构,基本操作的实现及特点)三、栈和队列。
1. 栈。
- 栈的定义(后进先出的线性表)- 栈的基本操作(入栈、出栈、取栈顶元素等操作的定义)- 顺序栈的实现(存储结构,基本操作的代码实现)- 链栈的实现(与单链表的联系,基本操作的实现)- 栈的应用(表达式求值、函数调用栈等)2. 队列。
- 队列的定义(先进先出的线性表)- 队列的基本操作(入队、出队、取队头元素等操作的定义)- 顺序队列(存在的问题,如假溢出)- 循环队列的实现(存储结构,基本操作的代码实现,队空和队满的判断条件)- 链队列的实现(结点结构,基本操作的实现)- 队列的应用(如操作系统中的进程调度等)四、串。
1. 串的定义和基本操作。
- 串的概念(字符序列)- 串的基本操作(如连接、求子串、比较等操作的定义)2. 串的存储结构。
- 顺序存储结构(定长顺序存储和堆分配存储)- 链式存储结构(块链存储结构)3. 串的模式匹配算法。
- 简单的模式匹配算法(Brute - Force算法)的实现及时间复杂度分析。
数据结构知识点整理第一点:数据结构的基本概念与类型数据结构是计算机科学中的一个重要分支,它研究的是如何有效地存储、组织和管理数据,以便于计算机可以高效地进行数据的读取、插入、删除等操作。
数据结构的基本概念主要包括两个方面:数据的逻辑结构与数据的物理结构。
1.1 数据的逻辑结构数据的逻辑结构主要描述数据的逻辑关系,不涉及数据的存储方式。
常见的逻辑结构有:•线性结构:如线性表、栈、队列、串等。
线性结构的特点是数据元素之间存在一对一的关系,每个数据元素只有一个直接前驱和一个直接后继。
•非线性结构:如树、图等。
非线性结构的特点是数据元素之间存在一对多或者多对多的关系。
其中,树结构是一种重要的非线性结构,它具有层次性,每个数据元素(树节点)有零个或多个子节点。
1.2 数据的物理结构数据的物理结构主要描述数据在计算机内存中的存储方式,它直接影响了计算机对数据的访问效率。
常见的物理结构有:•顺序存储结构:如数组、链表等。
顺序存储结构将数据元素按照一定的顺序存放在计算机内存中,相邻的数据元素在内存中也是相邻的。
•链式存储结构:如单链表、双向链表、循环链表等。
链式存储结构通过指针将不连续的数据元素连接起来,每个数据元素只存储数据本身以及指向下一个数据元素的指针。
1.3 数据结构的应用场景不同的数据结构适用于不同的应用场景。
例如:•线性表:适用于顺序访问数据元素的场景,如学生成绩管理系统。
•栈和队列:适用于后进先出(LIFO)或先进先出(FIFO)的场景,如表达式求值、任务调度等。
•树结构:适用于具有层次关系的数据组织,如文件系统的目录结构、HTML文档的DOM树等。
•图结构:适用于表示复杂的关系,如社交网络、交通网络等。
第二点:常见数据结构算法与应用在计算机科学中,算法是解决问题的一系列清晰指令。
结合数据结构,算法可以有效地解决实际问题。
以下是一些常见的数据结构及其相关算法与应用。
2.1 线性表的算法与应用线性表是最基本的逻辑结构。
数据结构基础知识总结数据结构是计算机科学中非常重要的一门基础学科,它研究的是不同数据类型之间以及数据元素之间的组织关系和操作方法。
在计算机程序的设计和实现过程中,合理选择和使用数据结构可以提高程序的效率和性能。
本文将总结数据结构的基础知识,包括线性结构、非线性结构和常见的数据结构算法。
一、线性结构线性结构是指数据元素之间存在着一对一的前驱和后继关系。
常见的线性结构有顺序表、链表和栈。
1. 顺序表顺序表是一种用一组连续的存储单元依次存储线性排列的数据元素的结构。
其特点是可以随机访问元素,但插入和删除操作较慢。
2. 链表链表是一种用一组不连续的存储单元存储线性排列的数据元素的结构。
链表的插入和删除操作较快,但访问元素需要遍历链表。
3. 栈栈是一种先进后出的线性结构。
它有两个基本操作:入栈和出栈。
栈可以用数组或链表实现。
二、非线性结构非线性结构是指数据元素之间存在多对多的关系,常见的非线性结构有树和图。
1. 树树是一种由n(n>=1)个有限节点组成的集合,它满足以下条件:有且只有一个特定的节点被称为根节点,除根节点外的其余节点被分成m(m>=0)个互不相交的有限集,每个集合本身又是一个树。
树的常见应用有文件系统、数据库索引等。
2. 图图是由顶点的有限非空集合和顶点之间的边的集合组成。
图可以分为有向图和无向图,顶点之间的关系可以是一对一、一对多或多对多。
图的常见应用有社交网络、路由算法等。
三、常见的数据结构算法1. 查找算法查找算法用于在给定的数据集合中找到满足特定条件的数据元素。
常见的查找算法有顺序查找、二分查找和哈希查找。
2. 排序算法排序算法用于将给定的数据集合按照特定的规则进行排序。
常见的排序算法有冒泡排序、插入排序、选择排序、快速排序和归并排序。
3. 树的遍历算法树的遍历算法用于按照特定顺序访问树中的所有节点。
常见的树的遍历算法有前序遍历、中序遍历和后序遍历。
总结:数据结构是计算机程序设计中非常重要的一部分。
数据结构基础知识要点数据结构是计算机科学中非常重要的一个概念,它是指数据对象及其关系的集合,是计算机存储、组织数据的方式。
掌握数据结构的基础知识是学习编程和算法设计的关键,下面将介绍一些数据结构的基本要点。
一、线性结构线性结构是最简单的数据结构之一,它的特点是数据元素之间存在一对一的关系。
常见的线性结构有数组、链表、队列和栈。
1. 数组数组是一种顺序存储结构,它将相同类型的元素按照一定的顺序排列在一块连续的存储空间中。
数组的特点是随机访问速度快,但插入和删除操作需要移动大量元素。
2. 链表链表是一种动态存储结构,它通过指针相互连接数据元素。
链表的特点是插入和删除操作方便,但查找元素时需要遍历链表。
3. 队列队列是一种先进先出(FIFO)的数据结构,在队列的一端插入元素,在另一端删除元素。
队列可以用数组或链表实现。
4. 栈栈是一种后进先出(LIFO)的数据结构,在栈的一端插入和删除元素。
栈可以用数组或链表实现。
二、树形结构树形结构是一种分层存储结构,它的特点是一个节点可以拥有多个子节点。
常见的树形结构有二叉树和二叉搜索树。
1. 二叉树二叉树是一种每个节点最多有两个子节点的树形结构。
二叉树的特点是查找和插入操作的时间复杂度为O(logn),但存在极端情况下二叉树可能退化成链表,时间复杂度为O(n)。
2. 二叉搜索树二叉搜索树是一种有序二叉树,左子树的节点值小于根节点,右子树的节点值大于根节点。
二叉搜索树的特点是插入、删除和查找操作的时间复杂度为O(logn),但存在极端情况下可能退化成链表。
三、图形结构图形结构是一种多对多的数据关系,它由节点和边组成。
常见的图形结构有有向图和无向图。
1. 有向图有向图中,节点之间的连接是有方向的,边从一个节点指向另一个节点。
有向图可以用邻接矩阵或邻接表来表示。
2. 无向图无向图中,节点之间的连接是无方向的,边没有箭头。
无向图也可以用邻接矩阵或邻接表来表示。
四、排序和搜索算法排序和搜索算法是应用数据结构的常见算法。
数据结构知识点总结一、数据结构的分类数据结构可以分为线性结构和非线性结构两大类。
1. 线性结构线性结构是最简单、最常用的数据结构之一,它的特点是每个数据元素都只有一个前驱和一个后继,形成一个线性序列。
常见的线性结构包括:数组、链表、栈和队列。
- 数组:数组是由相同类型的元素按一定顺序排列而成的数据集合。
数组的元素可以通过下标直接访问,具有随机访问的特性。
- 链表:链表是一种线性表,由一系列节点组成,节点可以动态分配。
链表的节点之间通过指针进行连接,可以实现随机插入和删除操作。
- 栈:栈是一种特殊的线性表,只能在表尾进行插入和删除操作。
后进先出(LIFO)是栈的特点。
- 队列:队列也是一种特殊的线性表,只能在表尾进行插入操作,表头进行删除操作。
先进先出(FIFO)是队列的特点。
2. 非线性结构非线性结构是一些数据元素之间存在着多对多的关系,各元素之间并不是简单的前驱和后继关系。
常见的非线性结构包括:树和图。
- 树:树是一种非线性的数据结构,它由节点和边组成。
树中有一个特殊的节点称为根节点,其他节点按照父子关系连接起来,形成层次结构。
- 图:图是由顶点集合和边集合组成的一种数据结构。
图的边可以是有向边或无向边,顶点之间可以存在环。
二、数据结构的基本操作数据结构的基本操作包括:插入、删除、查找、更新等。
这些操作是对数据结构中的元素进行处理和管理的基本手段。
1. 插入操作插入操作是将一个新的元素插入到数据结构中的适当位置,使得整个数据结构保持有序性或其他特定的结构性质。
2. 删除操作删除操作是从数据结构中移除一个元素,使得整个数据结构保持有序性或其他特定的结构性质。
3. 查找操作查找操作是根据给定的条件在数据结构中找到符合条件的元素。
4. 更新操作更新操作是对数据结构中的元素进行修改,使得元素的值变为新给定的值。
三、常用的数据结构算法1. 排序算法排序算法是对一组元素按照指定规则进行排序的算法。
常见的排序算法包括:冒泡排序、选择排序、插入排序、快速排序、归并排序等。
第1章绪论1.1 数据结构的基本概念数据元是数据的基本单位,一个数据元素可由若干个数据项完成,数据项是构成数据元素的不可分割的最小单位。
例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。
数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
数据类型是一个值的集合和定义在此集合上一组操作的总称。
•原子类型:其值不可再分的数据类型•结构类型:其值可以再分解为若干成分(分量)的数据类型•抽象数据类型:抽象数据组织和与之相关的操作抽象数据类型(ADT)是指一个数学模型以及定义在该模型上的一组操作。
抽象数据类型的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。
通常用(数据对象、数据关系、基本操作集)这样的三元组来表示。
#关键词:数据,数据元素,数据对象,数据类型,数据结构数据结构的三要素:1.逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据,独立于计算机。
分为线性结构和非线性结构,线性表、栈、队列属于线性结构,树、图、集合属于非线性结构。
2.存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构,包括数据元素的表示和关系的表示,依赖于计算机语言,分为顺序存储(随机存取)、链式存储(无碎片)、索引存储(检索速度快)、散列存储(检索、增加、删除快)。
3.数据的运算:包括运算的定义和实现。
运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
1.2 算法和算法评价算法是对特定问题求解步骤的一种描述,有五个特性:有穷性、确定性、可行性、输入、输出。
一个算法有零个或多个的输入,有一个或多个的输出。
时间复杂度是指该语句在算法中被重复执行的次数,不仅依赖于问题的规模n,也取决于待输入数据的性质。
一般指最坏情况下的时间复杂度。
空间复杂度定义为该算法所耗费的存储空间。
算法原地工作是指算法所需辅助空间是常量,即O(1)。
第2章线性表2.1 线性表的定义和基本操作线性表是具有相同数据类型的n个数据元素的有限序列。
数据结构知识点总结一、数据结构基础概念数据结构是指数据元素之间的关系,以及对数据元素进行操作的方法的总称。
数据结构是计算机科学中非常基础的概念,它为计算机程序的设计和实现提供了基础架构。
数据结构的研究内容包括数据的逻辑结构、数据的存储结构以及对数据进行操作的算法。
1.1 数据结构的分类数据结构可以根据数据的逻辑关系和数据的物理存储方式进行分类,常见的数据结构分类包括线性结构、树形结构、图结构等。
1.2 数据结构的基本概念(1)数据元素:数据结构中的基本单位,可以是原子类型或者复合类型。
(2)数据项:数据元素中的一个组成部分,通常是基本类型。
(3)数据结构的逻辑结构:指数据元素之间的逻辑关系,包括线性结构、树形结构、图结构等。
(4)数据结构的存储结构:指数据元素在计算机内存中的存储方式,包括顺序存储结构和链式存储结构等。
1.3 数据结构的特点数据结构具有以下几个特点:(1)抽象性:数据结构是对现实世界中的数据进行抽象和模型化的结果。
(2)实用性:数据结构是在解决实际问题中得出的经验总结,是具有广泛应用价值的。
(3)形式化:数据结构具有精确的数学定义和描述,可以进行分析和证明。
(4)计算性:数据结构是为了使计算机程序更加高效而存在的。
二、线性结构线性结构是数据元素之间存在一对一的关系,是一种最简单的数据结构。
常见的线性结构包括数组、链表、栈和队列等。
2.1 线性表线性表是数据元素之间存在一对一的关系的数据结构,可以采用顺序存储结构或者链式存储结构实现。
(1)顺序存储结构:线性表采用数组的方式进行存储,数据元素在内存中连续存储。
(2)链式存储结构:线性表采用链表的方式进行存储,数据元素在内存中非连续存储,通过指针将它们进行连接。
2.2 栈栈是一种特殊的线性表,只允许在一端进行插入和删除操作,这一端称为栈顶。
栈的操作遵循后进先出(LIFO)的原则。
2.3 队列队列也是一种特殊的线性表,允许在一端进行插入操作,另一端进行删除操作,这两端分别称为队尾和队首。
第一章1、什么是数据结构①数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等的学科。
②数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
③4类基本结构:⑴集合;⑵线性(一个前驱,一个后继)结构;⑶树形结构;⑷图状结构或网状结构。
2、数据结构的二元组表示:Data_Structure=(D,S)//D是数据元素的有限集,S是D上关系的有限集。
3、算法的5大特性:⑴有穷性;4、衡量算法的标准:时间复杂度和空间复杂度5、数据的逻辑结构分四类6、数据结构写出逻辑结构,反之。
第二章0、线性表的基本概念。
1、线性表的顺序存储的基本操作:Insert, E Is=n/2 Delete. E dl=(n-1)/22、线性表的顺序存储的特点:连续地址,随机查找。
3、线性表的链式存储的特点:地址不保证连续,顺序查找。
(1)重点1:结构类型P28Typedef struct LNode{ElemType data;Struct LNode *next;}LNode,*LinkList;(2)重点2:基本方法Status GetElem_L(LinkList L,int i,ElemType &e); Status ListInsert_L(LinkList &L,int i,ElemType e); Status ListDelete_L(LinkList &L,int i,ElemType &e); void CreateList_L(LinkList &L,int n);void Print(LinkList L){ LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ printf(“%d,”,p->data);while(p->next){p=p->next; printf(“%d,”,p->data); } printf(“\n”);}}void CountNodes(LinkList L,int &nd){ nd=0;//LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ nd++;//while(p->next){p=p->next; nd++;}//}}voidCountAve(LinkList L,int &av){ int n=0,s=0//av=0;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ s=s+p->data; n++;//while(p->next){p=p->next;s=s+p->data; n++;}// av=s/n;}return av;//}void PrintMax(LinkList L,){ int max;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ max=p->data;while(p->next){p=p->next; if(p->data>max) max=p->data;}//printf(“max=%d\n”,max);}}void DeletaMaxNode(LinkList L,){ int max;LinkList q,t;//q---记录p的前驱结点指针,t-----保存最大结点的前驱指针。
第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2。
数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系.2.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3。
树形结构:结构中的数据元素之间存在“一对多“的关系.若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4.图状结构:结构中的数据元素存在“多对多"的关系.若结构为非空集,折每个数据可有多个(或零个)直接后继.(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系.2.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
计算机基础知识:数据结构基础知识
1.数据结构
数据结构是指相互之间存在一定关系的数据元素的集合,即数据结构是一个二元组
Data Structure = (D, R),其中D是数据元素的集合,R是D上关系的集合。
按照视点的
不同,数据结构分为逻辑结构和存储结构。
2.数据结构的分类
(1)数据逻辑结构
数据的逻辑结构是指数据元素之间逻辑关系的整体。
根据数据元素之间逻辑关系的不同,数据结构分为四类:
1) 集合:数据元素之间就是“属于同一个集合”,除此之外,没有任何关系;
2) 线性结构:数据元素之间存在着一对一的线性关系;
3) 树结构:数据元素之间存在着一对多的层次关系;
4) 图结构:数据元素之间存在着多对多的任意关系。
注意:数据结构分为两类:线性结构和非线性结构。
(2)数据存储结构
数据的存储结构又称为物理结构,是数据及其逻辑结构在计算机中的表示。
通常有两种存储结构:顺序存储结构和链接存储结构。
顺序存储结构的基本思想是:用一组连续的存储单元依次存储数据元素,数据元素之间的逻辑关系是由元素的存储位置来表示的。
链接存储结构的基本思想是:用一组任意的存储单元存储数据元素,数据元素之间的逻辑关系是用指针来表示的。
注意:存储结构除了存储数据元素之外,必须存储数据元素之间的逻辑关系。
第1章绪论内容提要:◆数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。
数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。
数据——所有能被计算机识别、存储和处理的符号的集合。
数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。
◆算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。
时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。
◆用计算语句频度来估算算法的时间复杂度。
第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。
线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。
链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。
通过指针来实现!◆线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。
核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2)插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。
数据结构【基础知识点总结】一、数据数据(Data)是信息的载体,它能够被计算机识别、存储和加工处理。
它是计算机程序加工的原料,应用程序处理各种各样的数据。
计算机科学中,所谓数据就是计算机加工处理的对象,它可以是数值数据,也可以是非数值数据。
数值数据是一些整数、实数或复数,主要用于工程计算、科学计算和商务处理等;非数值数据包括字符、文字、图形、图像、语音等。
二、数据元素复制代码数据元素(Data Element)是数据的基本单位。
在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。
例如,学生信息检索系统中学生信息表中的一个记录、八皇后问题中状态树的一个状态、教学计划编排问题中的一个顶点等,都被称为一个数据元素。
有时,一个数据元素可由若干个数据项(Data Item)组成,例如,学籍管理系统中学生信息表的每一个数据元素就是一个学生记录。
它包括学生的学号、姓名、性别、籍贯、出生年月、成绩等数据项。
这些数据项可以分为两种:一种叫做初等项,如学生的性别、籍贯等,这些数据项是在数据处理时不能再分割的最小单位;另一种叫做组合项,如学生的成绩,它可以再划分为数学、物理、化学等更小的项。
通常,在解决实际应用问题时是把每个学生记录当作一个基本单位进行访问和处理的。
复制代码三、数据对象数据对象(Data Object)或数据元素类(Data Element Class)是具有相同性质的数据元素的集合。
在某个具体问题中,数据元素都具有相同的性质(元素值不一定相等),属于同一数据对象(数据元素类),数据元素是数据元素类的一个实例。
例如,在交通咨询系统的交通网中,所有的顶点是一个数据元素类,顶点A 和顶点B 各自代表一个城市,是该数据元素类中的两个实例,其数据元素的值分别为A 和B。
四、数据结构复制代码数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。
数据结构基础知识要点说明第⼀章数据结构1.定义数据结构是计算机存储、组织数据的⽅式。
数据结构是抽象数据类型的物理实现。
2.数据结构包括如下⼏个⽅⾯:(1) 数据元素之间的逻辑关系,即数据的逻辑结构。
(2) 数据元素及其关系在计算机存储器中的存储⽅式,即数据的存储结构,也称为数据的物理结构。
(3) 施加在该数据上的操作,即数据的运算。
2.逻辑结构类型(1) 集合结构。
交通⼯具的集合,动物的集合(2) 线性结构。
⼀对⼀,综合素质测评产⽣的学⽣排名(3) 树形结构。
⼀对多,单位的组织结构图,族谱(4) 图形结构。
多对多,⽣产流程、施⼯计划、⽹络建设图等3.存储结构类型(1) 顺序存储⽅法。
数组(2) 链式存储⽅法。
链表(3) 索引存储⽅法(4) 散列存储⽅法4.算法通常把具体存储结构上的操作实现步骤或过程称为算法。
C语⾔⾥通常表现为解决问题的步骤程序 = 算法(加⼯数据) + 数据结构(数据的存储和组织)5.算法的五个特征(1) 有穷性:在有穷步之后结束。
(2) 确定性:⽆⼆义性。
(3) 可⾏性:可通过基本运算有限次执⾏来实现。
(4) 有输⼊:可有零个或多个。
(5) 有输出:⾄少有⼀个输出。
6.算法分析(1)时间复杂度:(算法的⼯作量⼤⼩)通常把算法中包含基本运算次数的多少称为算法的时间复杂度,也就是说,⼀个算法的时间复杂度是指该算法的基本运算次数。
算法中基本运算次数T(n)是问题规模n的某个函数f(n),记作:T(n)=O(f(n))(2) 空间复杂度:实现算法所需的存储单元多少第⼆章线性表1.线性表的基本概念线性表是具有相同特性的数据元素的⼀个有限序列。
该序列中所含元素的个数叫做线性表的长度,⽤n表⽰,n≥0。
2.线性结构的基本特征为:(1) 集合中必存在唯⼀的⼀个“第⼀元素”;(2) 集合中必存在唯⼀的⼀个“最后元素”;(3) 除最后⼀个元素之外,均有唯⼀的后继(后件);(4) 除第⼀个元素之外,均有唯⼀的前驱(前件)。
数据结构必考知识点归纳数据结构是计算机科学中的核心概念之一,它涉及到数据的组织、存储、管理和访问方式。
以下是数据结构必考知识点的归纳:1. 基本概念:- 数据结构的定义:数据结构是数据元素的集合,这些数据元素之间的关系,以及在这个集合上定义的操作。
- 数据类型:基本数据类型和抽象数据类型(ADT)。
2. 线性结构:- 数组:固定大小的元素集合,支持随机访问。
- 链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
- 单链表:每个节点指向下一个节点。
- 双链表:每个节点同时指向前一个和下一个节点。
- 循环链表:最后一个节点指向第一个节点或第一个节点指向最后一个节点。
3. 栈(Stack):- 后进先出(LIFO)的数据结构。
- 主要操作:push(入栈)、pop(出栈)、peek(查看栈顶元素)。
4. 队列(Queue):- 先进先出(FIFO)的数据结构。
- 主要操作:enqueue(入队)、dequeue(出队)、peek(查看队首元素)。
- 特殊类型:循环队列、优先队列。
5. 递归:- 递归函数:一个函数直接或间接地调用自身。
- 递归的三要素:递归终止条件、递归工作量、递归调用。
6. 树(Tree):- 树是节点的集合,其中有一个特定的节点称为根,其余节点称为子节点。
- 二叉树:每个节点最多有两个子节点的树。
- 二叉搜索树(BST):左子树的所有节点的值小于或等于节点的值,右子树的所有节点的值大于或等于节点的值。
7. 图(Graph):- 图是由顶点(节点)和边(连接顶点的线)组成的。
- 图的表示:邻接矩阵、邻接表。
- 图的遍历:深度优先搜索(DFS)、广度优先搜索(BFS)。
8. 排序算法:- 基本排序:选择排序、冒泡排序、插入排序。
- 效率较高的排序:快速排序、归并排序、堆排序。
9. 查找算法:- 线性查找:在数据结构中顺序查找。
- 二分查找:在有序数组中查找,时间复杂度为O(log n)。
数据结构基础知识总结数据结构是计算机科学中的一门重要课程,它研究如何组织和存储数据,以及如何在数据上进行操作和处理。
数据结构是计算机程序设计的基础,它能够帮助我们更好地理解计算机程序的本质,并提高程序的效率和可靠性。
本文将对数据结构的基础知识进行总结。
一、线性结构线性结构是指所有元素按照线性顺序排列,每个元素最多只有一个前驱和一个后继。
常见的线性结构有数组、链表、栈和队列。
1. 数组数组是一种线性结构,它由相同类型的元素组成,每个元素占用相同大小的内存空间,并按照一定顺序存储在连续的内存单元中。
数组可以通过下标来访问其中的元素,时间复杂度为O(1)。
2. 链表链表也是一种线性结构,它由节点组成,每个节点包含一个数据域和一个指针域。
指针域指向下一个节点或者上一个节点。
链表可以分为单向链表、双向链表和循环链表等多种形式。
3. 栈栈是一种特殊的线性结构,它只允许在栈顶进行插入和删除操作。
栈的特点是先进后出,后进先出。
栈可以用数组或链表来实现。
4. 队列队列也是一种特殊的线性结构,它只允许在队尾进行插入操作,在队头进行删除操作。
队列的特点是先进先出,后进后出。
队列可以用数组或链表来实现。
二、树形结构树形结构是一种非线性结构,它由节点和边组成,每个节点最多有一个父节点和多个子节点。
常见的树形结构有二叉树、堆、AVL树和红黑树等。
1. 二叉树二叉树是一种特殊的树形结构,每个节点最多有两个子节点。
二叉树可以分为满二叉树、完全二叉树、平衡二叉树等多种形式。
2. 堆堆是一种特殊的完全二叉树,它满足父节点的值总是大于或小于子节点的值。
堆可以分为大顶堆和小顶堆两种形式。
3. AVL树AVL树是一种自平衡二叉搜索树,它保证任何一个节点左右子树高度差不超过1,并且左右子树也是一棵AVL树。
4. 红黑树红黑树是一种自平衡二叉搜索树,它满足以下性质:每个节点要么是红色,要么是黑色;根节点是黑色;每个叶子节点都是黑色的空节点;如果一个节点是红色的,则它的两个子节点都是黑色的;任意一条从根到叶子的路径上不能出现连续的两个红色节点。
数据结构重点整理第一点:数据结构的基本概念与类型数据结构是计算机科学中用于存储、组织和管理数据的一种方式。
它涉及多种不同的技术和算法,旨在提高数据处理的效率和可靠性。
数据结构可以根据其组织和操作方式的不同,分为多种基本类型,包括但不限于:1.1 线性结构线性结构是最常见的数据结构类型,其特点是数据元素之间存在一对一的关系。
常见的线性结构有:•数组:一种固定大小的数据集合,元素按顺序存储,可以通过索引快速访问。
•链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
•栈:遵循后进先出(LIFO)原则的线性结构,主要用于解决递归和深度优先搜索等问题。
•队列:遵循先进先出(FIFO)原则的线性结构,常用于广度优先搜索和任务调度等场景。
1.2 非线性结构非线性结构的数据元素之间存在一对多或多对多的关系,可以更有效地模拟现实世界中的复杂关系。
常见的非线性结构有:•树:由节点组成的层次结构,每个节点包含数据部分和指向子节点的指针。
•图:由顶点(节点)和边组成的结构,用于模拟实体之间的复杂关系和网络结构。
第二点:数据结构在实际应用中的重要性数据结构在现代计算机科学和软件开发中扮演着至关重要的角色。
掌握和应用合适的数据结构可以大幅提高程序的性能、可维护性和可扩展性。
2.1 性能优化选择合适的数据结构对于优化程序性能至关重要。
例如,使用哈希表可以实现对数据的快速查找和插入,而使用平衡树可以实现更高效的数据更新和删除操作。
对于大规模数据处理,合适的数据结构可以显著降低计算复杂度,提高程序的响应速度。
2.2 代码可读性和可维护性良好的数据结构设计可以提高代码的可读性和可维护性。
清晰的数据结构使代码更易于理解和修改,降低出现bug的风险,并提高开发效率。
此外,合理的结构设计可以避免不必要的数据冗余和耦合,使得系统更加模块化和灵活。
2.3 算法实现数据结构是算法实现的基础。
许多高效的算法,如排序、搜索、动态规划等,都依赖于特定的数据结构。
数据结构重点知识点第一章概论1. 数据是信息的载体。
2. 数据元素是数据的基本单位。
3. 一个数据元素可以由若干个数据项组成。
4. 数据结构指的是数据之间的相互关系,即数据的组织形式。
5. 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算①数据元素之间的逻辑关系,也称数据的逻辑结构,数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。
②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构。
数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。
③数据的运算,即对数据施加的操作。
最常用的检索、插入、删除、更新、排序等。
6. 数据的逻辑结构分类: 线性结构和非线性结构①线性结构:若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。
线性表是一个典型的线性结构。
栈、队列、串等都是线性结构。
②非线性结构:一个结点可能有多个直接前趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
7.数据的四种基本存储方法: 顺序存储方法、链接存储方法、索引存储方法、散列存储方法(1)顺序存储方法:该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
通常借助程序语言的数组描述。
(2)链接存储方法:该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。
通常借助于程序语言的指针类型描述。
(3)索引存储方法:该方法通常在储存结点信息的同时,还建立附加的索引表。
索引表由若干索引项组成。
若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引,稠密索引中索引项的地址指示结点所在的存储位置。
若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引稀疏索引中索引项的地址指示一组结点的起始存储位置。
索引项的一般形式是:(关键字、地址)关键字是能唯一标识一个结点的那些数据项。
第一章数据结构1.定义数据结构是计算机存储、组织数据的方式。
数据结构是抽象数据类型的物理实现。
2.数据结构包括如下几个方面:(1) 数据元素之间的逻辑关系,即数据的逻辑结构。
(2) 数据元素及其关系在计算机存储器中的存储方式,即数据的存储结构,也称为数据的物理结构。
(3) 施加在该数据上的操作,即数据的运算。
2.逻辑结构类型(1) 集合结构。
交通工具的集合,动物的集合(2) 线性结构。
一对一,综合素质测评产生的学生排名(3) 树形结构。
一对多,单位的组织结构图,族谱(4) 图形结构。
多对多,生产流程、施工计划、网络建设图等3.存储结构类型(1) 顺序存储方法。
数组(2) 链式存储方法。
链表(3) 索引存储方法(4) 散列存储方法4.算法通常把具体存储结构上的操作实现步骤或过程称为算法。
C语言里通常表现为解决问题的步骤程序 = 算法(加工数据) + 数据结构(数据的存储和组织)5.算法的五个特征(1) 有穷性:在有穷步之后结束。
(2) 确定性:无二义性。
(3) 可行性:可通过基本运算有限次执行来实现。
(4) 有输入:可有零个或多个。
(5) 有输出:至少有一个输出。
6.算法分析(1)时间复杂度:(算法的工作量大小)通常把算法中包含基本运算次数的多少称为算法的时间复杂度,也就是说,一个算法的时间复杂度是指该算法的基本运算次数。
算法中基本运算次数T(n)是问题规模n的某个函数f(n),记作:T(n)=O(f(n))(2) 空间复杂度:实现算法所需的存储单元多少第二章线性表1.线性表的基本概念线性表是具有相同特性的数据元素的一个有限序列。
该序列中所含元素的个数叫做线性表的长度,用n表示,n≥0。
2.线性结构的基本特征为:(1) 集合中必存在唯一的一个“第一元素”;(2) 集合中必存在唯一的一个“最后元素”;(3) 除最后一个元素之外,均有唯一的后继(后件);(4) 除第一个元素之外,均有唯一的前驱(前件)。
3.定义顺序表线性表逻辑结构顺序表存储结构typedefstruct{ElemType data[MAXCOUNT]; //定义存放顺序表元素的数组int length; //length为存放线性表的实际长度}SqList; //顺序表类型4.顺序表上的运算及其实现(1). 建立顺序表CreateList创建一个空的顺序表,要完成线性表所需空间的分配和其他初始化设置。
(2) 求线性表的长度ListLength(3) 输出线性表DispList(4) 在线性表中的指定位置插入一个元素InsertElem(5) 根据键值查找指定元素FindElemByNum(6) 获取指定位置的元素信息GetElem(7) 删除指定位置的元素DelElem(8) 释放线性表DestroyList5.线性表的链式存储——单链表(data域和指针域next)由于顺序表中的每个元素至多只有一个前驱元素和一个后继元素,即数据元素之间是一对一的逻辑关系,所以当进行链式存储时,一种最简单也最常用的方法是:在每个结点中除包含有数据域外,只设置一个指针域,用以指向其后继结点,这样构成的表称为线性单向表,简称单链表;7.单链表的定义LinkList类型的定义如下:typedefstructLNode /*定义单链表结点类型*/{ElemType data;structLNode *next; /*指向后继结点*/}LinkList;8.顺序表上的运算及其实现1、创建单链表LinkList *CreateList();2、初始化单链表void InitList(LinkList *list);3、释放单链表void DestroyList(LinkList *list);4、获取单链表中元素的数量intListLength(LinkList *list);5、输出单链表中的所有数据void DispList(LinkList *list);6、获取单链表中指定位置的元素intGetElem(LinkList *list, intloc, ElemType *pElem);7、根据键值查找指定元素intFindElemByNum(LinkList *list, char *keyCh, ElemType *pElem);8、采用头插法向单链表中插入一个元素intInsertElem_Head(LinkList *list, ElemTypemyElem);9、采用尾插法向单链表中插入一个元素intInsertElem_Foot(LinkList *list, ElemTypemyElem);10、向单链表中的指定位置插入一个元素ntInsertElem_Loc(LinkList *list, intloc, ElemTypemyElem);11、删除指定位置的元素intDelElem(LinkList *list, intloc, ElemType *pElem);9.线性表的链式存储——双链表(data域指针域next 和pre前驱)对于双链表,采用类似于单链表的类型定义,其DLinkList类型的定义如下:typedefstructDNode /*定义双链表结点类型*/{ElemType data;structDNode *prior; /*指向前驱结点*/structDNode *next; /*指向后继结点*/} DLinkList在双链表中p所指的结点之后插入一个*s结点。
其操作语句描述为:s->next=p->next; /*将s插入到p之后*/p->next->prior=s;s->prior=p;p->next=s;归纳起来,删除双链表L中*p结点的后续结点。
其操作语句描述为:p->next=q->next;q->next->prior=p;10.循环链表循环链表是另一种形式的链式存储结构。
它的特点是表中最后一个结点的指针域不再是空,而是指向表头结点,整个链表形成一个环。
由此,从表中任一结点出发均可找到链表中其他结(a)循环单链表第三章栈和队列1.栈的定义及基本运算栈是限定只能在表尾进行插入和删除的线性表,并将表尾称为栈顶,表头称为栈底。
栈的基本运算如下:(1)判栈空IsEmpty(S). 若栈为空则返回“真“,否则返回”假“;(2)入栈操作(压栈)Push(S,x) 将新元素压入栈中,使其成为栈顶元素;(3)出栈操作(弹栈)Pop(S, x) 若栈不空则返回栈顶元素,并从栈中删除栈顶元素,否则返回NULL;(4)取栈顶元素GetTop(s,x) 若栈不空则返回栈顶元素,否则返回NULL;(5)置空栈Clear(s) 将当前栈设定为空栈;2.顺序栈的存储结构及算法实现1>顺序栈顺序栈利用一组连续的存储单元存放从栈底到栈顶的诸元素。
typedefstruct{int *data;int capacity;int top;}Stack;2>顺序栈的基本运算的实现(1)入栈操作int Push(Stack S, Datatype x);(2)出栈操作int Pop(Stack s, Datatype *x);(3)取栈顶操作intGetTop(Stack S, Datatype *x);3.栈的链表存储结构1>栈可以用单链表作为存储结构,链表的结点结构描述如下:typedef char ElemType;typedefstructLsnode{ElemType data;structLsnode *next;} Lsnode;//结点的类型标识符Lsnode *top;2>栈的相关术语1.初始化空栈voidIniStack(Lsnode *top){top->next=NULL;}调用此函数之前,在主调函数中(例如main( ))说明一个指针变量后,先为它申请分配一个结点,然后调用初始化函数。
2.入栈操作链栈入栈操作的含义是:将一个元素推入指定的链栈中。
对该操作应设置两个参数,即在参数中指定一个链栈及入栈的元素。
假设指定的链栈top,入栈元素x其类型为ElemType,入栈操作取名为push,则该操作可表示为:viod Push(Lsnode *top,ElemType x)操作的功能为在由top指向的链栈中插入元素x,使x成为栈顶元素。
3. 出栈操作链栈出栈操作的含义是:从链栈中弹出栈顶结点并返回该结点中的元素值。
对该操作应设置一个参数,即在参数中指定一个链栈。
假设指定的链栈top,出栈操作取名为pop,则该操作可表示为:ElemTypePop(Lsnode *top)操作的功能为从由top指向的链栈中弹出栈顶结点并返回该结点中的元素值。
4.队列的基本操作进队算法:根据队列的结构,若队尾指针不在队的最大长度上,则首先队尾指针加1,元素进队,否则就是队满,无法进队。
ADDQUEUE(queue,r,f,in)/* 在queue队列中进一个元素in,f和r分别是队首和队尾的标志 */{if(r==n){printf("队满");}else{r++;queue[r]=in;}}出队算法:出队首先要判断队列中是否有元素,即R是否等于F,R=F可能出现在初态,也可能出现在出队、进队的动态变化中。
DELQUEUE(queue,r,f,out)/* 在queue队列中退出一个元素到out,f和r分别是队首和队尾的标志 */{if(f==r){printf("队空");}elseout=queue[++f];}5.链队的存储结构及其运算当队空时,Front=NULL;Rear=NULL;所谓队满,是指在可利用的空间表中,所有的结点被取完,即AV=NULL时,才表示队满。
根据队列的操作特点,进队和退队分别在表的两端进行,具体表现为“先进先出”。
从链队的结构可看出,进队的基本操作步骤为(设进队结点的地址为x):Rear->next=x;x->next=NULL;Rear=x;第四章串1.串的基本概念串结构的形式化定义为:String=(D,R)其中,D={ ai︱ai∈character,i=1,2…n,n≥0},R={< a i-1 ai>︱a i-1,ai∈D,i=1,2,…n } 串的基本运算有:(1)初始化ClearString(s):初始化串s。
(2)StrAssign(s,ch):串赋值。
(3)StrCopy(s,t):串复制。
(4)StrConcat(t,s1,s2):串联接。
(5)求串长StrLen(s):返回s串的元素个数,即s串的长度。