备战2021届高考数学二轮复习热点难点突破专题06 数列的综合(一)(原卷版)
- 格式:docx
- 大小:237.47 KB
- 文档页数:8
2021年高考数学二轮复习数列的综合应用训练题理A.18 B.20C.22 D.242.(xx·浙江省名校联考)已知每项均大于零的数列{an }中,首项a1=1且前n项和Sn 满足SnSn-1-Sn-1Sn=2SnSn-1(n∈N*且n≥2),则a81=( )A.638 B.639 C.640 D.6413.(xx·济南模拟)数列{an }中,an+1+(-1)n an=2n-1,则数列{an}的前12项和等于( )A.76 B.78 C.80 D.824.已知曲线C:y=1x(x>0)及两点A1(x1,0)和A2(x2,0),其中x2>x1>0.过A1,A 2分别作x轴的垂线,交曲线C于B1,B2两点,直线B1B2与x轴交于点A3(x3,0),那么( )A.x1,x32,x2成等差数列 B.x1,x32,x2成等比数列C.x1,x3,x2成等差数列 D.x1,x3,x2成等比数列5.(xx·江西宜春模拟)如图所示,当n≥2时,将若干点摆成三角形图案,每条边(包括两个端点)有n个点,若第n个图案中总的点数记为an ,则a1+a2+a3+…+a10=( )A.126 B.135 C.136 D.1406.(xx·辽宁省五校联考)设等差数列{an }的前n项和为Sn,已知(a4-1)3+2013(a4-1)=1,(a2 010-1)3+2 013(a2 010-1)=-1,则下列结论中正确的是( )A.S2 013=2 013,a2 010<a4B.S2 013=2 013,a2 010>a4C.S2 013=2 012,a2 010≤a4D.S2 013=2 012,a2 010≥a47.函数y=x2(x>0)的图像在点(ak ,a2k)处的切线与x轴的交点的横坐标为ak+1,其中k∈N*,若a1=16,则a1+a3+a5=________.8.(xx·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于________.9.对于数列{an },定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an }的“差数列”的通项为2n,则数列{an}的前n项和Sn=________.10.(xx·惠州市调研)已知向量p=(an,2n),向量q=(2n+1,-an+1),n∈N*,向量p与q垂直,且a1=1.(1)求数列{an}的通项公式;(2)若数列{bn }满足bn=log2an+1,求数列{an·bn}的前n项和Sn.11.(xx·南昌市模拟)设正项数列{an }的前n项和为Sn,若{an}和{Sn}都是等差数列,且公差相等.(1)求{an}的通项公式;(2)若a1,a2,a5恰为等比数列{bn}的前三项,记数列cn=24bn12bn-12,数列{cn }的前n项和为Tn.求证:对任意n∈N*,都有Tn<2.12.(xx·湖北襄阳调研)已知数列{an },如果数列{bn}满足b1=a1,bn=an+a n-1,n≥2,n∈N*,则称数列{bn}是数列{an}的“生成数列”.(1)若数列{an}的通项为an=n,写出数列{an}的“生成数列”{bn}的通项公式;(2)若数列{cn }的通项为cn=2n+b(其中b是常数),试问数列{cn}的“生成数列”{qn}是否是等差数列,请说明理由;(3)已知数列{dn }的通项为dn=2n+n,求数列{dn}的“生成数列”{pn}的前n项和Tn.1.选B 由S 10=S 11,得a 11=S 11-S 10=0.由于a 11=a 1+(11-1)×d,所以a 1=a 11+(1-11)×d=0+(-10)×(-2)=20.2.选C 由已知S n S n -1-S n -1S n =2S n S n -1,可得S n -S n -1=2,∴{S n }是以1为首项,2为公差的等差数列,故S n =2n -1,S n =(2n -1)2,∴a 81=S 81-S 80=1612-1592=640.3.选B 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1).取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.4.选A 由题意,B 1,B 2两点的坐标分别为⎝ ⎛⎭⎪⎫x 1,1x 1,⎝ ⎛⎭⎪⎫x 2,1x 2,所以直线B 1B 2的方程为y =-1x 1x 2(x -x 1)+1x 1, 令y =0,得x =x 1+x 2,∴x 3=x 1+x 2,因此,x 1,x 32,x 2成等差数列.5.选C 由已知图形可知,当n≥2时,a n =3(n -1),∴a 1+a 2+a 3+…+a 10=1+3+6+…+27=1+9×3+272=136. 6.选A 设f(x)=x 3+2 013x ,显然f(x)为奇函数和增函数,由已知得f(a 4-1)=-f(a 2 010-1),所以f(a 4-1)=f(-a2 010+1),a4-1=-a2 010+1,a4+a2 010=2,S2 013=2 013a1+a2 0132=2013;显然1>-1,即f(a4-1)>f(a2 010-1),又f(x)为增函数,故a4-1>a2 010-1,即a4>a2 010.7.解析:∵y′=2x,∴k=y′|x=ak =2ak,故切线方程为y-a2k =2ak(x-ak),令y=0得x=12ak,即ak+1=12ak.∴{an }是以16为首项,12为公比的等比数列,即an =16·⎝⎛⎭⎪⎫12n-1.∴a1+a3+a5=16+4+1=21.答案:218.解析:设每天植树的棵数组成的数列为{an},由题意可知它是等比数列,且首项为2,公比为2,所以由题意可得21-2n1-2≥100,即2n≥51,而25=32,26=64,n∈N*,所以n≥6.答案:69.解析:∵an+1-an=2n,∴当n≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n . 当n =1时,a 1=2也适合上式, ∴a n =2n (n ∈N *). ∴S n =2-2n +11-2=2n +1-2.答案:2n +1-210.解:(1)∵向量p 与q 垂直, ∴2n a n +1-2n +1a n =0,即2n a n +1=2n +1a n ,∴a n +1a n=2,∴{a n }是以1为首项,2为公比的等比数列,∴a n =2n -1. (2)∵b n =log 2a n +1,∴b n =n , ∴a n ·b n =n·2n -1,∴S n =1+2·2+3·22+4·23+…+n·2n -1,① ∴2S n =1·2+2·22+3·23+4·24+…+n·2n ,② ①-②得,-S n =1+2+22+23+24+…+2n -1-n·2n =1-2n 1-2-n·2n =(1-n)2n -1, ∴S n =1+(n -1)2n .11.解:(1)设{a n }的公差为d ,则S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n =d 2·n,且a 1-d2=0. 又d =d 2,所以d =12, a 1=d 2=14,a n =2n -14.(2)证明:易知b n =14×3n -1,∴c n =2×3n 3n -12.当n≥2时,2×3n3n-12<2×3n3n -13n -3=2×3n -13n -13n -1-1=13n -1-1-13n -1, ∴当n≥2时,T n =32+2×3232-12+…+2×3n 3n -12<32+⎝ ⎛⎭⎪⎫12-132-1+⎝ ⎛⎭⎪⎫132-1-133-1+…+13n -1-1-13n -1=2-13n -1<2,且T 1=32<2,故对任意n ∈N *,都有T n <2.12.解:(1)当n≥2时,b n =a n +a n -1=2n -1, 当n =1时,b 1=a 1=1适合上式, ∴b n =2n -1(n ∈N *).(2)qn =⎩⎨⎧2+b,n=1,4n+2b-2,n≥2,当b=0时,qn =4n-2,由于qn+1-qn=4,所以此时数列{cn}的“生成数列”{qn}是等差数列.当b≠0时,由于q1=c1=2+b,q2=6+2b,q3=10+2b,此时q2-q1≠q3-q 2,所以数列{cn}的“生成数列”{qn}不是等差数列.综上,当b=0时,{qn}是等差数列;当b≠0时,{qn}不是等差数列.(3)pn=⎩⎨⎧3,n=1,3·2n-1+2n-1,n≥2,当n>1时,Tn=3+(3·2+3)+(3·22+5)+…+(3·2n-1+2n-1),∴Tn=3+3(2+22+23+…+2n-1)+(3+5+7+…+2n-1)=3·2n+n2-4.又n=1时,T1=3,适合上式,∴Tn=3·2n+n2-4.26189 664D 晍36459 8E6B 蹫35481 8A99 誙25381 6325 挥24934 6166 慦QvD23679 5C7F 屿AL36097 8D01 贁 31632 7B90 箐。
专题06 构造函数法解决导数不等式问题(一)以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题小题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个f ′(x ),则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是f (x )本身的单调性,而是包含f (x )的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是f ′(x )的形式,则我们要构造的则是一个包含f (x )的新函数,因为只有这个新函数求导之后才会出现f ′(x ),因此解决导数抽象函数不等式的重中之重是构造函数.构造函数是数学的一种重要思想方法,它体现了数学的发现、类比、化归、猜想、实验和归纳等思想.分析近些年的高考,发现构造函数的思想越来越重要,而且很多都用在压轴题(无论是主观题还是客观题)的解答上.构造函数的主要步骤:(1)分析:分析已知条件,联想函数模型;(2)构造:构造辅助函数,转化问题本质;(3)回归:解析所构函数,回归所求问题.考点一 构造F (x )=x n f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=x n f (x ),则F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];(2)若F (x )=f (x )x n ,则F ′(x )=f ′(x )x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1. 由此得到结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn . 【例题选讲】[例1](1)已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)(2)已知函数f (x )是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x ),且满足xf ′(x )+2f (x )>0,则不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021的解集为( ) A .{x |x >-2 016} B .{x |x <-2 016} C .{x |-2 016<x <0} D .{x |-2 021<x <-2 016}(3)(2015·全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(4)设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.(5)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A .4f (1)<f (2)B .4f (1)>f (2)C .f (1)<4f (2)D .f (1)>4f ′(2)(6)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <b D .c <a <b【对点训练】1.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则不等式(x +2 021)2f (x+2 021)-4f (-2)>0的解集为( )A .(-∞,-2 021)B .(-∞,-2 023)C .(-2 023,0)D .(-2 021,0)2.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x的取值范围是________.3.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.4.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.5.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集 是________________.6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,xf ′(x )-f (x )x 2<0恒成立,则不等式f (x )x>0的解集 为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(0,2)D .(-∞,-2)∪(2,+∞)7.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )<0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )8.设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A .3f (2)>2f (3)B .3f (2)=2f (3)C .3f (2)<2f (3)D .3f (2)与2f (3)大小不确定9.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3 考点二 构造F (x )=e nx f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=e nx f (x ),则F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];(2)若F (x )=f (x )e nx ,则F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx. 由此得到结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )enx . 【例题选讲】[例1](1)若定义在R 上的函数f (x )满足f ′(x )+2f (x )>0,且f (0)=1,则不等式f (x )>1e 2x的解集为 . (2)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为________.(3)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.(4)设定义域为R 的函数f (x )满足f ′(x )>f (x ),则不等式e x -1f (x )<f (2x -1)的解集为________.(5)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)(6)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 021为奇函数,则不等式f (x )+2 021e x <0的解集是( )A .(-∞,0)B .(0,+∞)C .⎝⎛⎭⎫-∞,1eD .⎝⎛⎭⎫1e ,+∞ (7)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 021)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)(8)已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对于任意实数x ,有f (x )-f ′(x )>0,则( )A .e f (2 021)>f (2 022)B .e f (2 021)<f (2 022)C .e f (2 021)=f (2 022)D .e f (2 021)与f (2 022)大小不能确定(9)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 021)>e 2 021f (0)B .f (2)<e 2f (0),f (2 021)>e 2 021f (0)C .f (2)>e 2f (0),f (2 021)<e 2 021f (0)D .f (2)<e 2f (0),f (2 021)<e 2 021f (0)(10)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)【对点训练】1.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的 解集为( )A .⎝⎛⎭⎫-∞,12B .(0,+∞)C .⎝⎛⎭⎫12,+∞ D .(-∞,0) 2.已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数x ,都有f (x )-f ′(x )>0,则不等式f (x )<e x -2的 解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞)3.已知f ′(x )是定义在R 上的连续函数f (x )的导函数,若f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)4.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )>f (x ),且f (x +3)为偶函数,f (6)=1,则不等式f (x )>e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)5.已知函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1,或x >1|D .{x |x <-1,或0<x <1}6.已知函数f (x )的定义域为R ,且f (x )+1<f ′(x ),f (0)=2,则不等式f (x )+1>3e x 的解集为( )A .(1,+∞)B .(-∞,1)C .(0,+∞)D .(-∞,0)7.定义在R 上的可导函数f (x )满足f (x )+f ′(x )<0,则下列各式一定成立的是( )A .e 2f (2021)<f (2019)B .e 2f (2021)>f (2019)C .f (2021)<f (2019)D .f (2021)>f (2019)8.定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e xf (x 1)的大小关系为( )A .1e x f (x 2)>2e x f (x 1)B .1e x f (x 2)<2e x f (x 1)C .1e x f (x 2)=2e x f (x 1)D .1e x f (x 2)与2e x f (x 1)的大小关系不确定9.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln2)<2f (ln3)B .3f (ln2)=2f (ln3)C .3f (ln2)>2f (ln3)D .3f (ln2)与2f (ln3)的大小不确定10.已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2022f (-2022)<f (0),f (2022)>e 2022f (0)B .e 2022f (-2022)<f (0),f (2022)<e 2022f (0)C .e 2022f (-2022)>f (0),f (2022)>e 2022f (0)D .e 2022f (-2022)>f (0),f (2022)<e 2022f (0)考点三 构造F (x )=f (x )sin x ,F (x )=f (x )sin x ,F (x )=f (x ) cos x ,F (x )=f (x )cos x类型的辅助函数 【方法总结】(1)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x +f (x )cos x ;(2)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x -f (x )sin x ;(4)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 由此得到结论:(1)出现f ′(x )sin x +f (x )cos x 形式,构造函数F (x )=f (x )sin x ;(2)出现f ′(x )sin x -f (x )cos x sin 2x 形式,构造函数F (x )=f (x )sin x; (3)出现f ′(x )cos x -f (x )sin x 形式,构造函数F (x )=f (x )cos x ;(4)出现f ′(x )cos x +f (x )sin x cos 2x 形式,构造函数F (x )=f (x )cos x. 【例题选讲】[例1](1)已知函数f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数.当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,则不等式cos xf (x +π2)+sin xf (-x )>0的解集为( ) A .⎝⎛⎭⎫π4,π2 B .⎝⎛⎭⎫-π4,π2 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,-π4 (2)对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,则下列不等式错误的是( ) A .f ⎝⎛⎭⎫π3>2f ⎝⎛⎭⎫π4 B .f ⎝⎛⎭⎫π3>2f (1)cos 1 C .2f (1)cos1>2f ⎝⎛⎭⎫π4 D .2f ⎝⎛⎭⎫π4<3f ⎝⎛⎭⎫π6 (3)定义在⎝⎛⎭⎫0,π2上的函数f (x ),函数f ′(x )是它的导函数,且恒有f (x )<f ′(x )tan x 成立,则( ) A .3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f (1)<2f ⎝⎛⎭⎫π2sin 1 C .2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4 D .3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3 (4)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( )A .2 f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2 f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4C .f (0)<2 f ⎝⎛⎭⎫π4D .f (0)<2f ⎝⎛⎭⎫π3 (5)已知定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cos xf ′(x )+sin xf (x )<0成立,则( ) A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B .3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4(6)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )·cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4C .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4D .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6。
第六章 数列一.基础题组1.【2013年普通高等学校招生全国统一考试(江西卷)理zxxk 】等比数列x ,3x+3,6x+6,…的的第四项等于()A.-24B.0C.12D.242.【2013年普通高等学校统一考试试题新课标Ⅱ数学(理zxxk )卷】等比数列{a n }的前n 项和为S n ,已知S 3 = a 2 +10a 1 ,a 5 = 9,则a 1= ( )(A ) 13(B )- 13(C ) 19(D )- 193.【2013年全国高考新课标(I )理zxxk 科】若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.4.【2013年普通高等学校招生全国统一考试(广东卷)理zxxk 】 在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.5.【2013年普通高等学校招生全国统一考试(辽宁卷)理zxxk 科】{}{}13n n n a S a n a a 已知等比数列是递增数列,是的前项和.若,是方程 26540x x S -+==的两个根,则 .二.能力题组6.【2013年普通高等学校招生全国统一考试(辽宁卷)理zxxk 科】下面是关于公差0d >的等差数列{}n a 的四个命题:{}1:n p a 数列是递增数列;{}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A )12,p p (B )34,p p (C )23,p p (D )14,p p7.【2013年普通高等学校统一考试试题大纲全国理zxxk 科】已知数列{}n a 满足130n n a a ++=,243a =-,则{}n a 的前10项和等于( ) A .106(13)--- B .101(13)9- C .103(13)-- D .103(13)-+8.【2013年普通高等学校招生全国统一考试福建卷理zxxk 】 已知等比数列{}n a 的公比为q ,记m n m n m n m n a a a b +-+-+-+⋅⋅⋅++=)1(2)1(1)1(,m n m n m n m n a a a b +-+-+-*⋅⋅⋅**=)1(2)1(1)1(,()*,N n m ∈,则以下结论一定正确的是( )A. 数列{}n b 为等差数列,公差为m qB. 数列{}n b 为等比数列,公比为m q 2C. 数列{}n c 为等比数列,公比为2m q D. 数列{}n c 为等比数列,公比为mm q9.【2013年普通高等学校招生全国统一考试(湖南卷)】设n S 为数列{}n a 的前n 项和,1(1),,2nn n n S a n N *=--∈则(1)3a =_____;(2)12100S S S ++⋅⋅⋅+=___________.10.【2013年普通高等学校招生全国统一考试(北京卷)理zxxk 】若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = .12.【2013年普通高等学校统一考试试题大纲全国理zxxk 科】等差数列{}n a 的前n 项和为n S .已知232S a ,且124,,S S S 成等比数列,求{}n a 的通项公式.三.拔高题组13.【2013年全国高考新课标(I )理zxxk 科】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( )A 、{S n }为递减数列B 、{S n }为递增数列C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列14.【2013年普通高等学校统一考试江苏数学试题】在正项等比数列{}n a 中,512a =,673a a +=. 则满足1212n n a a a a a a ++⋅⋅⋅+>⋅⋅⋅的最大正整数n 的值为 .15.【2013年普通高等学校招生全国统一考试(广东卷)理zxxk 】 设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<.16.【2013年普通高等学校统一考试江苏数学试题】 设{}n a 是首项为a ,公差为d 的 等差数列(0d ≠),n S 是前n 项和. 记2n n nS b n c=+,n N *∈,其中c 为实数. (1)若0c =,且1b ,2b ,4b 成等比数列,证明:2(,)nk k S n S k n N *=∈; (2)若{}n b 是等差数列,证明0c =.17.【2013年普通高等学校招生全国统一考试(山东卷)】设等差数列{}n a 的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 的前n 项和为n T ,且12n n na T λ++= (λ为常数),令()*2n n cb n N =∈,求数列{}nc 的前n 项和n R .所以11213111121311...4444n n n R --------=+++ 18.【2013年普通高等学校招生全国统一考试(陕西卷)理zxxk 】设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q≠1, 证明数列{1}n a +不是等比数列.19.【2013年普通高等学校招生全国统一考试数学浙江理zxxk 】在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(Ⅰ)求n a d ,;(Ⅱ)若0<d ,求.||||||||321n a a a a ++++20.【2013年普通高等学校招生全国统一考试(江西卷)理zxxk 】正项数列{a n }的前n 项和S n 满足:222(1)()0n n S n n S n n -+--+=(1)求数列{a n }的通项公式a n ;(2)令221(2)n n n b n a +=+,数列{b n }的前n 项和为T n .证明:对于任意n ∈ N*,都有T n <5.6421.【2013年普通高等学校招生全国统一考试湖北卷理zxxk 科】 已知等比数列{}n a 满足:23||10a a -=,123125a a a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅰ)是否存在正整数m ,使得121111m a a a +++≥?若存在,求m 的最小值;若不存在,说明理zxxk 由.22.【2013年普通高等学校统一考试天津卷理zxxk 科】 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.23.【2013年普通高等学校招生全国统一考试(北京卷)理zxxk 】 已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +…的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值;(II)设d 为非负整数,证明:d n =-d (n =1,2,3…)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3…),则{a n }的项只能是1或2,且有无穷多项为1.假设{}n a (2)n ≥,中存在大于2的项,24.【2013年普通高等学校招生全国统一考试(上海卷)理zxxk 】 给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理zxxk 由.25.【2013年普通高等学校招生全国统一考试(四川卷)理zxxk 科】 在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的首项、公差及前n 项和.。
新高中数学《数列》专题解析一、选择题1.设{a n }为等比数列,{b n }为等差数列,且S n 为数列{b n }的前n 项和.若a 2=1,a 10=16且a 6=b 6,则S 11=( ) A .20 B .30 C .44 D .88【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a 2=1,a 10=16列式求得q 2,进一步求出a 6,可得b 6,再由等差数列的前n 项和公式求解S 11. 【详解】设等比数列{a n }的公比为q ,由a 2=1,a 10=16,得810216a q a ==,得q 2=2. ∴4624a a q ==,即a 6=b 6=4,又S n 为等差数列{b n }的前n 项和, ∴()1111161111442b b S b+⨯===.故选:C. 【点睛】本题考查等差数列与等比数列的通项公式及性质,训练了等差数列前n 项和的求法,是中档题.2.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】 因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.3.已知数列{}n a 为等比数列,前n 项和为n S ,且12a =,1n n b a =+,若数列{}n b 也是等比数列,则n S =( ) A .2n B .31n - C .2n D .31n -【答案】C 【解析】 【分析】设等比数列{}n a 的公比为q ,写出,n n a b .由数列{}n b 是等比数列,得2213b b b =,求出q ,即求n S . 【详解】设等比数列{}n a 的公比为q ,112,2n n a a q -=∴=Q ,121n n b q -∴=+,13b ∴=,221b q =+,2321b q =+,{}n b Q 也是等比数列, 2213b b b ∴=,即()()2221321q q +=+解得1q =,2,2n n a S n ∴=∴=. 故选:C . 【点睛】本题考查等比数列的性质,属于基础题.4.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.5.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( ) AB.CD.3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】 ∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.6.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21C .63-D .21【答案】C 【解析】 【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.7.等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( ) A .(0,)+∞ B .8,75⎛⎫+∞⎪⎝⎭C .83,7525⎛⎫⎪⎝⎭D .83,7525⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】根据题意可知101a >,91a ≤,把1a 的值代入列不等式解得即可. 【详解】由题意,设数列{}n a 的公差为d ,首项1125a =,则10911a a >⎧⎨≤⎩,即101919181a a d a a d =+>⎧⎨=+≤⎩,解得837525d <≤. 故选:D. 【点睛】本题主要考查了等差数列的通项公式的应用,要熟练记忆等差数列的通项公式.8.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可. 【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.9.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.10.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案. 【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.11.在等差数列{}n a 中,2436a a +=,则数列{}n a 的前5项之和5S 的值为( ) A .108B .90C .72D .24【解析】由于152436a a a a +=+=,所以1555()5369022a a S +⨯===,应选答案A . 点睛:解答本题的简捷思路是巧妙运用等差数列的性质152436a a a a +=+=,然后整体代换前5项和中的15=36a a +,从而使得问题的解答过程简捷、巧妙.当然也可以直接依据题设条件建立方程组进行求解,但是解答过程稍微繁琐一点.12.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.13.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.14.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.15.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】 【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a 是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.16.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =, 设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A. 【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+; (2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ;(3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.17.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( ) A .23岁 B .32岁C .35岁D .38岁【答案】C 【解析】 【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案. 【详解】设这位公公的第n 个儿子的年龄为n a ,由题可知{}n a 是等差数列,设公差为d ,则3d =-,又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁. 故选C . 【点睛】本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.18.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( )A .20,3⎛⎤ ⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.19.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.43钱B.73钱C.83钱D.103钱【答案】C【解析】【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a =﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.20.执行如图所示的程序框图,若输入,则输出的S的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
2021年高考数学重点难点讲解数列综合应用教案旧人教版纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率,减薄率,银行信贷,浓度匹配,养老保险,圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.●难点磁场(★★★★★)已知二次函数y=f(x)在x=处取得最小值- (t>0),f(1)=0.(1)求y=f(x)的表达式;(2)若任意实数x都满足等式f(x)·g(x)+anx+bn=xn+1[g(x)]为多项式,n∈N*),试用t 表示an和bn;(3)设圆Cn的方程为(x-an)2+(y-bn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,…);{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn、Sn.●案例探究[例1]从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?命题意图:本题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力,本题有很强的区分度,属于应用题型,正是近几年高考的热点和重点题型,属★★★★★级题目.知识依托:本题以函数思想为指导,以数列知识为工具,涉及函数建模、数列求和、不等式的解法等知识点.错解分析:(1)问an、bn实际上是两个数列的前n项和,易与“通项”混淆;(2)问是既解一元二次不等式又解指数不等式,易出现偏差.技巧与方法:正确审题、深刻挖掘数量关系,建立数量模型是本题的灵魂,(2)问中指数不等式采用了换元法,是解不等式常用的技巧.解:(1)第1年投入为800万元,第2年投入为800×(1-)万元,…第n 年投入为800×(1-)n -1万元,所以,n 年内的总投入为an=800+800×(1-)+…+800×(1-)n -1=800×(1-)k -1=4000×[1-()n ]第1年旅游业收入为400万元,第2年旅游业收入为400×(1+),…,第n 年旅游业收入400×(1+)n -1万元.所以,n 年内的旅游业总收入为bn=400+400×(1+)+…+400×(1+)k -1=400×()k -1.=1600×[()n -1](2)设至少经过n 年旅游业的总收入才能超过总投入,由此bn -an >0,即:1600×[()n -1]-4000×[1-()n ]>0,令x=()n ,代入上式得:5x2-7x+2>0.解此不等式,得x <,或x >1(舍去).即()n <,由此得n ≥5.∴至少经过5年,旅游业的总收入才能超过总投入.[例2]已知Sn=1++…+,(n ∈N*)设f(n)=S2n+1-Sn+1,试确定实数m 的取值范围,使得对于一切大于1的自然数n ,不等式:f(n)>[logm(m -1)]2-[log(m -1)m ]2恒成立. 命题意图:本题主要考查应用函数思想解决不等式、数列等问题,需较强的综合分析问题、解决问题的能力.属★★★★★级题目.知识依托:本题把函数、不等式恒成立等问题组合在一起,构思巧妙.错解分析:本题学生很容易求f(n)的和,但由于无法求和,故对不等式难以处理.技巧与方法:解决本题的关键是把f(n)(n ∈N*)看作是n 的函数,此时不等式的恒成立就转化为:函数f(n)的最小值大于[logm(m -1)]2-[log(m -1)m ]2.解:∵Sn=1++…+.(n ∈N*)0)421321()421221(42232122121321221)()1(1213121)(112>+-+++-+=+-+++=+-+++=-+++++++=-=∴++n n n n n n n n n n n f n f n n n S S n f n n 又∴f(n+1)>f(n)∴f(n)是关于n 的增函数∴f(n) min=f(2)=∴要使一切大于1的自然数n ,不等式f(n)>[logm(m -1)]2-[log(m -1)m ]2恒成立只要>[logm(m -1)]2-[log(m -1)m ]2成立即可由得m >1且m ≠2此时设[logm(m -1)]2=t 则t >0 于是⎪⎩⎪⎨⎧>->02011209t t 解得0<t <1由此得0<[logm(m -1)]2<1解得m >且m ≠2.●锦囊妙计1.解答数列综合题和应用性问题既要有坚实的基础知识,又要有良好的思维能力和分析、解决问题的能力;解答应用性问题,应充分运用观察、归纳、猜想的手段,建立出有关等差(比)数列、递推数列模型,再综合其他相关知识来解决问题.2.纵观近几年高考应用题看,解决一个应用题,重点过三关:(1)事理关:需要读懂题意,明确问题的实际背景,即需要一定的阅读能力.(2)文理关:需将实际问题的文字语言转化数学的符号语言,用数学式子表达数学关系.(3)事理关:在构建数学模型的过程中;要求考生对数学知识的检索能力,认定或构建相应的数学模型,完成用实际问题向数学问题的转化.构建出数学模型后,要正确得到问题的解,还需要比较扎实的基础知识和较强的数理能力.●歼灭难点训练一、选择题1.(★★★★★)已知二次函数y=a(a+1)x2-(2a+1)x+1,当a=1,2,…,n,…时,其抛物线在x轴上截得的线段长依次为d1,d2,…,dn,…,则 (d1+d2+…+dn)的值是( )A.1B.2C.3D.4二、填空题2.(★★★★★)在直角坐标系中,O是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是_________.3.(★★★★)从盛满a升酒精的容器里倒出b升,然后再用水加满,再倒出b升,再用水加满;这样倒了n次,则容器中有纯酒精_________升.4.(★★★★★)据2000年3月5日九届人大五次会议《政府工作报告》:“xx年国内生产总值达到95933亿元,比上年增长7.3%,”如果“十·五”期间(xx年~xx年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为_________亿元.三、解答题5.(★★★★★)已知数列{an}满足条件:a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n=1,2,…).(1)求出使不等式anan+1+an+1an+2>an+2an+3(n∈N*)成立的q的取值范围;(2)求bn和,其中Sn=b1+b2+…+bn;(3)设r=219.2-1,q=,求数列{}的最大项和最小项的值.6.(★★★★★)某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额除以n发给第2位职工,按此方法将奖金逐一发给每位职工,并将最后剩余部分作为公司发展基金.(1)设ak(1≤k≤n)为第k位职工所得奖金金额,试求a2,a3,并用k、n和b表示ak(不必证明);(2)证明ak>ak+1(k=1,2,…,n-1),并解释此不等式关于分配原则的实际意义;(3)发展基金与n和b有关,记为Pn(b),对常数b,当n变化时,求Pn(b).7.(★★★★)据有关资料,1995年我国工业废弃垃圾达到7.4×108吨,占地562.4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石20吨,设环保部门1996年回收10万吨废旧物资,计划以后每年递增20%的回收量,试问:(1)xx年回收废旧物资多少吨?(2)从1996年至xx年可节约开采矿石多少吨(精确到万吨)?(3)从1996年至xx年可节约多少平方公里土地?8.(★★★★★)已知点的序列An(xn,0),n∈N,其中x1=0,x2=a(a>0),A3是线段A1A2的中点,A4是线段A2A3的中点,…,An是线段An-2An-1的中点,….(1)写出xn与xn-1、xn-2之间关系式(n≥3);(2)设an=xn+1-xn,计算a1,a2,a3,由此推测数列{an}的通项公式,并加以证明;(3)求xn.参考答案难点磁场解:(1)设f(x)=a(x -)2-,由f(1)=0得a=1.∴f(x)=x2-(t+2)x+t+1.(2)将f(x)=(x -1)[x -(t+1)]代入已知得:(x -1)[x -(t+1)]g(x)+anx+bn=xn+1,上式对任意的x ∈R 都成立,取x=1和x=t+1分别代入上式得:且t ≠0,解得an=[(t+1)n+1-1],bn=[1-(t+1n)(3)由于圆的方程为(x -an)2+(y -bn)2=rn2,又由(2)知an+bn=1,故圆Cn 的圆心On 在直线x+y=1上,又圆Cn 与圆Cn+1相切,故有rn+rn+1=|an+1-an |=(t+1)n+1设{rn}的公比为q ,则②÷①得q==t+1,代入①得rn=∴Sn=π(r12+r22+…+rn2)=[(t+1)2n -1]歼灭难点训练一、1.解析:当a=n 时y=n(n+1)x2-(2n+1)x+1由|x1-x2|=,得dn=,∴d1+d2+…+dn1)111(lim )(lim 1111113121211)1(132121121=+-=+++∴+-=+-++-+-=+++⋅+⋅=∞→∞→n d d d n n n n n n n n答案:A二、2.解析:由1,x1,x2,4依次成等差数列得:2x1=x2+1,x1+x2=5解得x1=2,x2=3.又由1,y1,y2,8依次成等比数列,得y12=y2,y1y2=8,解得y1=2,y2=4,∴P1(2,2),P2(3,4).∴=(3,4) ∴,5||,22,14862121===+=OP OP OP 110252221sin ||||21102sin ,102722514||||cos 21212121212121=⨯⨯⨯==∴=∴=⨯=∴∆OP P OP S OP P OP OP OP P P OP 答案:13.解析:第一次容器中有纯酒精a -b 即a(1-)升,第二次有纯酒精a(1-)-,即a(1-)2升,故第n 次有纯酒精a(1-)n 升.答案:a(1-)n4.解析:从xx 年到xx 年每年的国内生产总值构成以95933为首项,以7.3%为公比的等比数列,∴a5=95933(1+7.3%)4≈1xx0(亿元).① ②答案:1xx0三、5.解:(1)由题意得rqn -1+rqn >rqn+1.由题设r >0,q >0,故从上式可得:q2-q -1<0,解得<q <,因q >0,故0<q <;(2)∵0,212212212221212121≠=++=++=∴==---+++++++q a a q a q a a a a a b b q a a a a a a n n n n n n n n n n n n n n n n .b1=1+r ≠0,所以{bn}是首项为1+r ,公比为q 的等比数列,从而bn=(1+r)qn-1.当q=1时,Sn=n(1+r),1)1(),2()3()1( ,0)10( ,111lim ,0)1)(1(1lim 1lim ,1)1)(1(,1;11)1)(1(1lim 1lim,1)1)(1(,10;0)1(1lim 1lim -∞→∞→∞→∞→∞→∞→∞→+=⎪⎩⎪⎨⎧≥<<+-==-+-=--+=>+-=-+-=--+=<<=+=n n n n n n n n n n n n n n n n n n n q r b q q r q S q r q S qq r S q r q q r q S qq r S q r n S 有由所以时当时当.2.2011log )1)(1(log log )1(log ])1[(log ])1[(log log log 2222122212-+=-+++=++=-+n q n r q n r q r q r b b n n n n,从上式可知,当n -20.2>0,即n ≥21(n ∈N*)时,Cn 随n 的增大而减小,故1<Cn ≤C21=1+=2.25 ①当n -20.2<0,即n ≤20(n ∈N*)时,Cn 也随n 的增大而减小,故1>Cn ≥C20=1+=-4 ②综合①②两式知,对任意的自然数n 有C20≤Cn ≤C21,故{Cn}的最大项C21=2.25,最小项C20=-4.6.解:(1)第1位职工的奖金a1=,第2位职工的奖金a2=(1-)b ,第3位职工的奖金a3=(1-)2b ,…,第k 位职工的奖金ak= (1-)k -1b;(2)ak -ak+1=(1-)k -1b >0,此奖金分配方案体现了“按劳分配”或“不吃大锅饭”的原则.(3)设fk(b)表示奖金发给第k 位职工后所剩余数,则f1(b)=(1-)b,f2(b)=(1-)2b,…,fk(b)=(1-)kb.得Pn(b)=fn(b)=(1-)nb,故.7.解:设an 表示第n 年的废旧物资回收量,Sn 表示前n 年废旧物资回收总量,则数列{an}是以10为首项,1+20%为公比的等比数列.(1)a6=10(1+20%)5=10×1.25=24.8832≈25(万吨) (2)S6=2.016.1101%)201(]1%)201[(1066-⨯=-+-+=99.2992≈99.3(万吨) ∴从1996年到xx 年共节约开采矿石20×99.3≈1986(万吨)(3)由于从1996年到xx 年共减少工业废弃垃圾4×99.3=397.2(万吨),∴从1996年到xx 年共节约:≈3 平方公里.8.解:(1)当n ≥3时,xn=;a a x x x x x x x a a x x x x x x x a a x x a 41)21(21)(212,21)(212,)2(2332334212212232121=--=--=-+=-=-=--=-+=-==-=由此推测an=(-)n-1a(n ∈N)证法一:因为a1=a >0,且 1111121)(2122----+-=-=-=-+=-=n n n n n n n n n n n a x x x x x x x x x a (n ≥2) 所以an=(-)n-1a.证法二:用数学归纳法证明:(ⅰ)当n=1时,a1=x2-x1=a=(-)0a,公式成立;(ⅱ)假设当n=k 时,公式成立,即ak=(-)k -1a 成立.那么当n=k+1时,ak+1=xk+2-xk+1=k k k k k k a x x x x x 21)(212111-=--=-++++ .)21()21(21111公式仍成立a a )(k k -+--=--=据(ⅰ)(ⅱ)可知,对任意n ∈N ,公式an=(-)n-1a 成立.(3)当n ≥3时,有xn=(xn -xn -1)+(xn -1-xn -2)+…+(x2-x1)+x1 =an -1+an -2+…+a1,由(2)知{an}是公比为-的等比数列,所以a.。
高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。
数学2021年高考二轮复习数列题型解题方法总结题型归纳数列是高中数学的重要内容,又是学习高等数学的基础。
下面是整理的数列题型解题方法总结,希望对考生提高成绩有帮助。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
知识整合1. 在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2. 在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
3. 培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.数学____高考二轮复习数列题型解题方法总结分享到这里,更多内容请关注高考数学题型归纳栏目。
高考二轮复习数学考点突破之数列
2021年高考二轮温习数学考点打破之数列
1.本专题是高中数学的重要内容之一,在高考试题中普通有2~3个题 (1~2个选择、填空题,1个解答题),合计20分左右,约占总分的13%.选择题、填空题的难度普通是中等,解答题时常会出现与函数、三角、不等式等知识交汇的效果,故多为中等偏上乃至较难的效果.
2.数列是高中数学的重要内容,又是学习初等数学的基础.高考对本章的考察比拟片面,等差数列,等比数列的考察每年都不会遗漏,有关数列的试题普通是综合题,经常把数列与不等式的知识综合起来考察,也常把数列与数学归结法综合在一同考察.探求性效果是高考的热点,常有数列解答题中出现.
3.近两年来,高考关于数列方面的命题主要有以下三个方面:(1)数列自身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式. (2)数列与其他知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合.(3)数列的运用效果,其中主要是以增长率效果为主.试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,有一些中央用数列与几何的综合,或与函数、不等式的综协作为最后一题,难度较大.热
点,常有数列解答题中出现.。
【2022高考真题】1. 【2022高考安徽卷理第5题】y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯..一.,则实数a 的值为( ) A,121-或 B.212或 C.2或1 D.12-或2.【2022高考北京版理第6题】若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为( )A .2B .2-C .12 D .12-3. 【2022高考福建卷第11题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤-+≤+-008201x y x y x 则y x z +=3的最小值为________.4. 【2022高考福建卷第13题】要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元).5. 【2022高考广东卷理第3题】若变量x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M 和m ,则M m -=( )A.8B.7C.6D.56.【2022高考湖南卷第14题】若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≤k y y x x y 4,且y x z +=2的最小值为6-,则____=k .7.【2022辽宁高考理第16题】对于0c >,当非零实数a ,b 满足224240a ab b c -+-=,且使|2|a b +最大时,345a b c-+的最小值为 .8. 【2022全国1高考理第9题】不等式组1,24,x y x y +≥⎧⎨-≤⎩的解集为D,有下面四个命题:1:(x,y)D,x 2y 2p ∀∈+≥-, 2:(x,y)D,x 2y 2p ∃∈+≥, 3:(x,y)D,x 2y 3p ∀∈+≤ 4:(x,y)D,x 2y 1p ∃∈+≤-,其中的真命题是( )A .23,p pB .12,p pC .13,p pD .14,p p10. 【2022山东高考理第5题】已知实数y x ,满足)10(<<<a a a yx,则下面关系是恒成立的是( )A.111122+>+y x B.)1ln()1(ln 22+>+y x C.y x sin sin > D.33y x >11. 【2022山东高考理第9题】 已知,x y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数(0,0)z ax by a b =+>>在该约束条件下取到最小值25时,22a b +的最小值为( )A.5B.4C.5D.212. 【2022四川高考理第4题】若0a b >>,0x d <<,则肯定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c< 4.若0a b >>,0c d <<,则肯定有( ) A .a b c d > B .a b c d < C .a b d c > D .a b d c<13. 【2022四川高考理第5题】执行如图1所示的程序框图,假如输入的,x y R ∈,则输出的S 的最大值为( )A .0B .1C .2D .314. 【2022浙江高考理第13题】当实数x,y满足240,10,1,x yx yx+-≤⎧⎪--≤⎨⎪≥⎩时,14ax y≤+≤恒成立,则实数a的取值范围是________. 【考点定位】线性规划.15. 【2022天津高考理第2题】设变量x,y满足约束条件0,20,12,yx yyx+-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y=+的最小值为()(A)2(B)3(C)4(D)51 6. 【2022大纲高考理第14题】设,x y满足约束条件2321x yx yx y-≥⎧⎪+≤⎨⎪-≤⎩,则4z x y=+的最大值为.17. 【2022高考上海理科】若实数x,y 满足xy=1,则2x +22y 的最小值为______________.18.【2022高考安徽卷第21题】设实数0>c ,整数1>p , *N n ∈. (1)证明:当1->x 且0≠x 时,px x p+>+1)1(;(2)数列{}n a 满足pc a 11>,pn n n a pc a p p a -++-=111,证明:p n n c a a 11>>+. ①【2021高考真题】(2021·天津理)8. 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +<的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是( ) (A) 15,02⎛⎫- ⎪ ⎪⎝⎭(B) 13,02⎛⎫- ⎪ ⎪⎝⎭(C) 15,02130,2⎛⎫+⋃⎛ ⎪ ⎪⎝⎫- ⎪ ⎝⎭⎪⎭(D) 52,1⎛⎫-- ⎪ ⎝⎭∞⎪ (2021·上海理)15.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞(C) (2,)+∞(D) [2,)+∞(2021·陕西理)9. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x(单位m)的取值范围是 ( )(A) [15,20] (B) [12,25] (C) [10,30](D) [20,30](2021·山东理)12.设正实数,,x y z 满足22340x xy y z -+-=,则当zxy取得最大值时,z y x 212-+的最大值为A.0B. 1C.49D. 3 (2021·湖南理)10.已知222,,,236,49a b c a b c a b c ∈++=++则的最小值为 .(2021·广东理)9.不等式220x x +-<的解集为___________.(2021·湖南理)20.(本小题满分13分)在平面直角坐标系xOy 中,将从点M 动身沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”。
专题06 选词填空和补全短文(原卷版)目录一、常州市(无)二、连云港市(选词填空和补全短文)三、南京市(选词填空)四、南通市(选词填空)五、苏州市(补全短文)六、宿迁市(补全短文)七、泰州市(无)八、无锡市(无)九、盐城市(无)十、扬州市(无)十一、镇江市(无)十二、淮安市(选词填空)十三、徐州市(选词填空)一、常州市(无)二、连云港市七、用单词的正确形式完成句子66.Don’t ________, Sam. You will succeed next time.67.Our city is beautiful. It ________ Mount Huaguo since a long time ago. 68.—What are Paul and Bob doing these days?—They ________ a survey of after-school activities.69.It took Lisa ________ time and effort to complete the project.70.—What’s WWF exactly, Millie?—It ________ World Wide Fund for Nature.71.After weeks of space travel, Chang’ e 5 ________ brought back rocks from the moon.72.Three new schools ________ in our hometown next year, won’t they?73.Today more and more foreign people ________ Chinese folk music.74.It’s reported that polar bears are ________ because of global warming (全球变暖).75.—Why weren’t you in the room at 10 o’clock this morning, Betty?—Oh, I ________ my grandma in the garden.四、补全短文7选5There are not many nations that can say their national dish has become international. 46.Both are famous all over the world, and both have made the history of Italian food. People have been eating pizza, in one form or another, for centuries. They eat it everywhere-at home, in restaurants, or on street corners.47.Long ago, pieces of flatbread, topped with mushrooms and herbs (香料), were a simple and tasty meal. They were mostly for those who didn’t have enough money to buy plates, or who were on the go. In the 18th century, Naples, in southern Italy, had become one of the largest cities in Europe, and it was growing fast. Lots of city people were poor and they were always rushing around to look for work. 48.Pizzas were cut to meet the customers needs. They were inexpensive, used easy-to-find ingredients (原料), and could be made with plenty of flavor.It was in America that pizza found its second home. 49.Soon, pizza spread across the country with the rapid development of the city. It was increasingly considered as a fast food. People might like New York-style thin pizza, or Chicago deep-dish thick pizza. Some want extra cheese on their pizzas while others only like vegetables. 50.For a lot of people in western countries, when they cannot decide what to eat, they order pizzas. A.Nobody knows where pizza came from.B.The secret is, almost everyone likes pizzas.C.Italy has two such dishes, spaghetti and pizza.D.A number of people refused to eat pizzas in Italy.E.They needed food that was cheap and easy to eat.F.In 1905, the first pizzeria, Lombardi’s, was opened in New York City.G.The word “pizza” came from the Latin word “pinsa” meaning flatbread.三、南京市六、短文选词填空Yesterday, I went to Chaotian Palace Plaza. There were different stands where artists could demonstrate their skills and teach the visitors! It was an 51.experience for me.What caught my attention first was 52., that is, making images out of paper. It was difficult, but a lot of fun! With help from the artist, I 53.to make one in the shape of a fish. Then I went into a section decorated 54.a traditional Chinese study, with two beautiful Chinese paintings of a pine tree and some bamboo hung 55.. There was also an old man writing Chinese calligraphy: his writing was so free and elegant!四、南通市七、多句选词填空51.As the ________ of the popular film Hi, mom, Jia Ling is welcomed by more people.52.Wendy once spent a year in Los Angeles for further study in her ________.53.My pet cat likes playing with ________ tail while my pet dog loves running after balls.54.Marie Curie’s success in the discovery of radium is ________ connected with her hard work.55.Millie asks Andy to fix her broken bicycle, however, he is ________ about it.56.—Excuse me, where is Mr. Wu?—He ________ for the foreign students at the school gate.57.—I ________ myself yesterday, and I’m much lighter than before.—Really? Are you on a diet?58.The central computer ________ the traffic lights, now let the students go first.59.—I called you yesterday evening, but you didn’t answer me.—Sorry, I ________ to my pen friend far in Moscow.60.Liu Hao always works to high standards, and he never ________ himself behind others.五、苏州市(补全短文)四、补全短文7选5It was a very hot day. As I was sitting on the bench, waiting for class to begin, I saw Timothy waving a brown paper bag at Jenna. Happily, the two of them walked away to somewhere.33.They stopped at a quieter area behind the library. “Strange,” I thought. “They must be up to something!”I watched them from behind a large tree and saw Jenna pass some money to Timothy. Timothy then passed the paper bag to Jenna. Both of them were smiling and seemed very happy. 34.Timothy must be selling answers to the holiday worksheets to Jenna! It made sense to me as Timothy was an excellent student and Jenna always needed help in her homework. I could not stop myself and jumped out from behind the tree. I cried, “35.”Timothy and Jenna were surprised. “What is happening?” Jenna asked. After I told them what I had thought, they laughed. I turned out that in the bag was a special comic book bought by Timothy’s brother. 36.Once Iheard the explanation, I turned red. I wished the ground would swallow(吞下)me then to save me from the shame. I said sorry for my mistake and quickly ran away. 37.A.I will never trust them again.B.A thought suddenly came into my mind.C.Out of curiosity, I followed Timothy and Jenna.D.Timothy was only collecting money from Jenna for the comic book.E.I will never jump to conclusions again.F.I saw what the two of you had done.G.Luckily, they invited me to join them.六、宿迁市(补全短文)四、阅读还原7选5Pollution is one of the biggest problems in the world today. In many places, rubbish is thrown into lakes and rivers. 46.In some cities, the air is filled with pollution. 47.If it is not cleaned up, more people will be hurt.48.Land and water pollution kills many animals every year.If we do not act to improve the environment, more living things will be killed by pollution.49.We should separate rubbish into different groups. In this way, it can be recycled and reused. We had better plant more trees. 50.What’s more, we shouldn’t put the waste into lakes or rivers.If we can do these, we will make the world a better place to live in.A.This makes some old people and children ill.B.As well as people, animals are also harmed by pollution.C.We can make our lakes and rivers cleaner and cleaner.D.It’s time for all of us to take action right away!E.Because of this, these places have already been polluted.F.Trees reduce dust and help keep the air clean.G.A few of us should take action to protect the environment.七、泰州市(无)八、无锡市(无)九、盐城市(无)十、扬州市(无)十一、镇江市十二、淮安市(选词填空)四、多句选词填空根据句子意思,从方框中选用恰当的单词或短语填空。
专题6-2数列大题综合18种题型目录讲高考................................................................................................................................................................................1题型全归纳......................................................................................................................................................................2【题型一】恒成立求参...............................................................................................................................................2【题型二】数列“存在型”求参.............................................................................................................................2【题型三】“存在型”证明题.................................................................................................................................3【题型四】数列“存在型不定方程型...................................................................................................................3【题型五】双数列相同项“存在型”...................................................................................................................4【题型六】新数列与“子数列”型........................................................................................................................4【题型七】“下标”数列型......................................................................................................................................5【题型八】指数型常规裂项求和.............................................................................................................................5【题型九】“指数等差型”裂项求和...................................................................................................................5【题型十】“指数分子拆分型”裂项求和..........................................................................................................6【题型十一】“正负裂和”型裂项求和...............................................................................................................7【题型十二】“分离常数型”裂项求和...............................................................................................................7【题型十三】先放缩再裂项求和.............................................................................................................................7【题型十四】前n 项积型...........................................................................................................................................8【题型十五】解数列不等式......................................................................................................................................8【题型十六】证明数列不等式.................................................................................................................................9【题型十七】求和:范围最值型.............................................................................................................................9【题型十八】“隐和型”...........................................................................................................................................9专题训练. (10)讲高考1.(·湖南·高考真题)数列{}n a 22122π0,2,1cos 4sin ,1,2,3,22n nn n a a a a n π+⎛⎫===++=⋅⋅⋅ ⎪⎝⎭.(1)求34,a a ,并求数列{}n a 的通项公式;(2)设()13212422,,2kk k k k k kS S a a a T a a a W k T *-=+++=+++=∈+N ,求使1k W >的所有k 的值,并说明理由.2.(2022·天津·统考高考真题)设{}n a 是等差数列,{}n b 是等比数列,且1122331a b a b a b ==-=-=.(1)求{}n a 与{}n b 的通项公式;(2)设{}n a 的前n 项和为n S ,求证:()1111n n n n n n n S a b S b S b +++++=-;(3)求211(1)nkk k k k a a b +=⎡⎤--⎣⎦∑.3.(2022·全国·统考高考真题)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.4.(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.5.(2021·全国·统考高考真题)记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n n S b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.题型全归纳【题型一】恒成立求参【讲题型】例题1.已知正项数列{}n a 的前n 项和为n S,且1n a +=.(1)求{}n a 的通项公式;(2)数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,且()112nn n n n T a S λ++≤对任意的*N n ∈恒成立,求实数λ的取值范围.(参考数据:132 1.26≈)已知数列{}n a 中,111,31n n a a a +==+.(1)求证:12n a ⎧⎫+⎨⎬⎩⎭是等比数列,并求{}n a 的通项公式;(2)数列{}n b 满足()1312nn n nn b a +=-⋅⋅,数列{}n b 的前n 项和为n T ,若不等式()(8)42252n T n n λλ+-≤-+成立的自然数n 恰有4个,求正整数λ的值.【题型二】数列“存在型”求参【讲题型】例题1.设正项数列{}n a 的前n 项和为n S ,首项为1,已知对任意整数,m n ,当n m >时,m n m n m S S q S --=⋅(q 为正常数)恒成立.(1)求证:数列{}n a 是等比数列;(2)证明:数列1{}n n SS +是递增数列;(3)是否存在正常数c ,使得{lg()}n c S -为等差数列?若存在,求出常数c 的值;若不存在,说明理由.【练题型】已知n S 是数列{}n a 的前n 项和,且11a =,数列n n S a ⎧⎫⎨⎩⎭是公差为12的等差数列.(1)求数列{}n a 的通项公式;(2)记数列{}2nn a 的前n 项和为n T ,是否存在实数t 使得数列2n n T t +⎧⎫⎨⎬⎩⎭成等差数列,若存在,求出实数t 的值;若不存在,说明理由.【题型三】“存在型”证明题【讲题型】例题1.已知正项数列{}n a ,其前n 项和n S ,满足()12N n n nS a n a *=+∈.(1)求证:数列{}2n S 是等差数列,并求出n a 的表达式;(2)数列{}n a 中是否存在连续三项12,,k k k a a a ++,使得()12111,,N k k k k a a a *++∈构成等差数列?请说明理由.在数列{}n a 中,已知10a =,26a =,且对于任意正整数n 都有2156n n n a a a ++=-.(1)令12n n n b a a +=-,求数列{}n b 的通项公式;(2)设m 是一个正数,无论m 为何值,是否都有一个正整数n 使13n na m a +-<成立.【题型四】数列“存在型不定方程型【讲题型】例题1.设公比为正数的等比数列{}n a 的前n 项和为n S ,已知38a =,248S =,数列{}n b 满足24log n n b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*N m ∈,使得12m m m b b b ++⋅是数列{}n b 中的项?若存在,求出m 的值;若不存在,请说明理由.已知数列{}n a 满足()121232n n n a a a a -⋅⋅⋅= .(1)证明:{}n a 是等比数列.(2)判断()223*8mm -∈N 是否可能是数列{}na 中的项.若是,求出m 的最大值;若不是,请说明理由.【题型五】双数列相同项“存在型”【讲题型】例题1.已知{}n a 是等差数列,{}n b 是公比不为1的等比数列,1122532,,a b a b a b ====.(1)求数列{}{},n n a b 的通项公式;(2)若集合*,,N M b b a m k ==∈∣,且1100k ≤≤,求M 中所有元素之和.已知数列{}n a 的通项公式为21n a n =+,等比数列{}n b 满足211b a =-,321b a =-.(1)求数列{}n b 的通项公式;(2)记{}n a ,{}n b 的前n 项和分别为n S ,n T ,求满足n m T S =(410n <≤)的所有数对(),n m .【题型六】新数列与“子数列”型【讲题型】例题1.已知数列{}n a ,{}n b 其前n 项和分别为n S ,n T 且分别满足23122n S n n =-,()31N 22n n T b n +=-∈.(1)求数列{}n a ,{}n b 的通项公式.(2)将数列{}n a ,{}n b 的各项按1a ,1b ,2a ,2b …n a ,n b 顺序排列组成数列{}n c ,求数列{}n c 的前n 项和n M .【练题型】已知等差数列{}n a 和等比数列{}n b 满足3121,8,log n n a b a b ===,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n a 中不在数列{}n b 中的项按从小到大的顺序构成数列{}n c ,记数列{}n c 的前n 项和为n S ,求50S .【题型七】“下标”数列型【讲题型】例题1.已知数列{}n a ,{}n b ,n S 是数列{}n a 的前n 项和,已知对于任意*N n ∈,都有323n n a S =+,数列{}n b 是等差数列,131log b a =,且25b +,41b +,63b -成等比数列.(1)求数列{}n a 和{}n b 的通项公式.(2)记2,,n n n a n c b n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前n 项和n T .【练题型】定义集合{}1*2N k M k -=∈,数列{}n a 满足12,0,n n a n M a n M-+∉⎧=⎨∈⎩(1)定义数列122n n n b a -+=,证明:{}n b 为等比数列(2)记数列{}n a 的前n 项和为n S ,求满足2310n S =的正整数n【题型八】指数型常规裂项求和【讲题型】例题1.设数列{}n a 的前n 项和为()*,226n n n S S a n n =+-∈N .(1)求数列{}n a 的通项公式;(2)若数列112n n n a a ++⎧⎫⎨⎬⎩⎭的前m 项和127258m T ,求m 的值.已知数列{}n a 满足1123333n n nn a a a n -+++=⋅ .(1)求数列{}n a 的通项公式;(2)令()()111nn n n a b a a +=++,设{}n b 的前n 项和为n S ,若n m S >对*N n ∈恒成立,求实数m的取值范围.【题型九】“指数等差型”裂项求和【讲题型】例题1..等差数列{}n a 的前n 项和为n S ,数列{}n b 是等比数列,满足13a =,11b =,2210b S +=,5232a b a -=.(1)求数列{}n a 和{}n b 的通项公式;(2)令n n n c a b =⋅,设数列{}n c 的前n 项和为n T ,求n T ;(3)令()121nn n n n b d a a +-⋅=-⋅,设数列{}n d 的前n 项和为n K ,求证:13n K <.天津市宝坻区第四中学2022-2023学年高二上学期期末数学试题已知{}n a 为等差数列,{}n b 为公比大于0的等比数列,且11a =,12b =,2312b b +=,4642a a b +=.(1)求{}n a 和{}n b 的通项公式;(2)设22,381,.n nn n n n n a n b c a n a a b ++⎧⎪⎪=⎨+⎪⋅⎪⎩为偶数;为奇数求数列{}n c 的前2n 项和2n T .【题型十】“指数分子拆分型”裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和为n S ,152a =,124n n S a +=-.(1)求{}n a 的通项公式;(2)若()()()121111n n n n n a b a a +--=++,求数列{}n b 的前n 项和为nT .已知数列{}n a 是公比1q >的等比数列,前三项和为13,且1a ,22a +,3a 恰好分别是等差数列{}n b 的第一项,第三项,第五项.(1)求{}n a 和{}n b 的通项公式;(2)已知*k ∈N ,数列{}n c 满足21,21,2n n n n nn k b b c a b n k +⎧=-⎪=⎨⎪=⎩,求数列{}n c 的前2n 项和2n S ;(3)设()()2(810)12121n n n n n a d a a +--=++,求数列{}n d 的前n 项和n T .【题型十一】“正负裂和”型裂项求和【讲题型】例题1.记正项数列{}n a 的前n 项积为n T ,且121n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1441n n n n n b T T ++=-⋅,求数列{}n b 的前2n 项和2n S .已知数列{}n a 的满足11a =,m n m n a a a +=+()*,m n ∈N .(1)求{}n a 的通项公式;(2)记121(1)n n n n n b a a ++=-⋅,数列{}n b 的前2n 项和为2n T ,证明:2213n T -<≤-.【题型十二】“分离常数型”裂项求和【讲题型】例题1.数列{}n a12a =且324,3,a a a 成等差数列.(1)求数列{}n a 的通项公式;(2)若2122log ,n nn n n b b b ac b b +-==+,求数列{}n c 的前n 项和n S .已知等差数列{}n a 的通项公式为()22n a n c c =-<,记数列{}n a 的前n 项和为()*N n S n ∈,且数列为等差数列.(1)求数列}n a 的通项公式;(2)设数列14n n n S a a +⎧⎫⎨⎬⎩⎭的前n 项和为()*N n T n ∈,求{}n T 的通项公式.【题型十三】先放缩再裂项求和【讲题型】例题1.已知数列{}n a 的前n 项和()2n S n n λλ=+∈R ,且36a =,正项等比数列{}n b 满足:11b a =,2324.b b a a +=+(1)求数列{}n a 和{}n b 的通项公式;(2)若2022n nc b =-,求数列{}n c 的前n 项和n T ;(3)证明:()2131nii i b b =<-∑.【练题型】已知函数()e 1xf x a x =--,a ∈R(1)讨论函数()f x 的单调性;(2)若()0f x ≥恒成立,①求a 的取值范围;②设*n ∈N ,证明:()()1121ln 1.32121ini i i +=⎡⎤+<⎢⎥++⎢⎥⎣⎦∑【题型十四】前n 项积型【讲题型】例题1.在等比数列{}n a 中,18a =,前n 项和为2,1n S S -是1S 和3S 的等差中项.(1)求{}n a 的通项公式;(2)设12n n T a a a =⋅ ,求n T 的最大值.已知数列{}n a 满足()*123N ,2n n a a n n n -+=+∈≥,且24a =.(1)求数列{}n a 的通项公式;(2)数列{}n b 满足()12,1log ,2n nn n b a n +=⎧⎪=⎨≥⎪⎩,*N n ∈,若()*1238N k b b b b k ⋅⋅=∈ ,求k 的值.【题型十五】解数列不等式【讲题型】例题1.已知数列{}n a 的首项135a =,且满足1321n n n a a a +=+.(1)已知数列11n a ⎧⎫-⎨⎬⎩⎭是等比数列,求公比q ;(2)若11100ni ia =<∑,求满足条件的最大整数n .【练题型】已知等差数列{}n a 的前n 项和为n S ,且412716,28a a S +==.(1)求{}n a 的通项公式;(2)若数列{}n b 满足43n nn a a b =,且{}n b 的前n 项和为n T ,求满足不等式31n n a T ⋅->的n 的值.【题型十六】证明数列不等式【讲题型】例题1.已知等差数列{}n a 满足312a =,5748a a +=,{}n a 的前n 项和为n S .(1)求n a 及n S 的通项公式;(2)记12111n n T S S S =++⋅⋅⋅+,求证:1142n T ≤<.【练题型】已知数列{}n a ,11a =,11nn na a a +=+.(1)求数列{}n a 通项公式;(2)若数列{}n b 满足:2111n n i i i i b a -===∑∑.(i )证明:1n b ≤;(ii )证明:11112321nn ++++≤- .【题型十七】求和:范围最值型【讲题型】例题1.已知各项均为正数的数列{}n a 的前n 项和为n S ,11a =,且11111n n n n S a S a +++-=+.(1)求数列{}n a 的通项公式;(2)设13n n n a ab -=,且数列{}n b 的前n 项和为n T ,求n T 的取值范围.【练题型】已知数列{}n a 的前n 项和为n S ,且满足 2 3n n S a n =+-,*n ∈N .(1)求数列{}n a 的通项公式;(2)21n n n b a =-,数列{}n b 是否存在最大项,若存在,求出最大项.【题型十八】“隐和型”【讲题型】例题1.已知等差数列{an }的首项a 1=1,公差d >0,且其第二项、第五项、第十四项分别是等比数列{bn }的第二、三、四项.(1)求数列{an }与{bn }的通项公式;(2)设数列{cn }对任意自然数n 均有1231123nn nc c c c a b b b b +++++= 成立,求1232023c c c c ++++ 的值.【练题型】已知等比数列{}n a 的前n 项和为3614126n S S S ==,,.(1)求数列{}n a 的通项公式;(2)当*n ∈N 时,112141nn n n a b a b a b -++⋯+=-,求数列{}n b的通项公式.1.已知n T 为数列{}n a 的前n 项积,且131n na T =-.(1)证明:数列{}n T 是等差数列;(2)记()1651nn n n n b T T ++=-⋅,求数列{}n b 的前n 项和n S .2.记n S 为数列{}n a 的前n 项和,已知()12121n n na n a a S +-++=- .(1)求n S ;(2)设()121n n n b n n S ++=+,数列{}n b 的前n 项和为n T ,证明:1n T <.3.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(1)求数列{}n a 的通项公式;(2)设14(1)2n a n n n b λ-=+-⋅(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有1n n b b +>成立.4.(河北省邯郸市2023届高三上学期期末数学试题)设n S 为数列{}n a 的前n 项和,已知0n a >,2364n n n a a S +=+.(1)求数列{}n a 的通项公式;(2)若11n n n c a a +=,记数列{}n c 的前n 项和为n T ,证明:112812n T ≤<.5(2022秋·贵州贵阳·高三贵阳一中校考阶段练习)已的数列{}n a 的首项123a =,112n n n n a a a a ++=-,+n ∈N .(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭等比数列;(2)记12111n n T a a a =++⋅⋅⋅+,若7n T <,求n 的最大值.。
专题06 数列的综合(一)专题点拨1.①若{a n }是公差为d 的等差数列,则d >0时,{a n }是递增数列;0d < 时,{a n }是递减数列;d =0时,{a n }是常数列.①等差数列的通项公式a n =a 1+(n -1)d (n ≥1)可推广为数列通项公式a n =a m +(n -m )d (m ,n ①N *且n >m ). ①若m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ①N *),当{a n }是有穷数列,则与首末两项等距离的两项之和,等于首末两项之和.①项数成等差数列,则相应的项也成等差数列,即a k ,a k +m ,a k +2m ,…(k ,m ①N *)成等差数列. 2.设S n 是等差数列{a n }的前n 项和,则①S k ,S 2k -S k ,S 3k -S 2k ,…构成的数列是等差数列;①⎩⎨⎧⎭⎬⎫S n n 也是一个等差数列;真题赏析1.(2016·上海)已知数列{a n }和{b n },其中a n =n 2,n ①N *,{b n }的项是互不相等的正整数,若对于任意n ①N *,{b n }的第a n 项等于{a n }的第b n 项,149161234lg lg b b b b b b b b =__________.2.(2016·上海)无穷数列由k 个不同的数组成,S n 为的前n 项和.若对任意n ①N *,S n ①{2,3},则k 的最大值为__________.3.(2017·上海)已知S n 和T n 分别为数列与数列的前n 项和,且a 1=e 4,S n =e S n +1-e 5,a n =e b n (n ①N *),则当T n 取得最大值时,n 的值为________.4.(2018·上海)给定无穷数列{a n },若无穷数列{b n }满足:对任意n①N *,都有|b n ﹣a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为的等比数列,b n =a n+1+1,n①N *,判断数列{b n }是否与{a n }接近,并说明理由;(2)设数列{a n }的前四项为:a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M={x|x=b i ,i=1,2,3,4},求M 中元素的个数m.例题剖析【例1】在等差数列{a n }中,若a 1+a 2+a 3+a 4=30,则a 2+a 3=________.【变式训练1】已知{a n }为等差数列,S n 为其前n 项和,若a 1=6,a 3+a 5=0,则S 6=________.【例2】等差数列{}n a 的前n 项和为n S ,2110a =,3144S =,则n S 取得最大值时n 的为( )A . 25B . 27C . 25 或 26D . 26 或 27【变式训练2】已知n S 是数列{}n a 的前n 项和,12a =,24a =,36a =,数列12{}n n n a a a ++++是公差为2的等差数列,则25(S = )A .233B .282C .466D .650【例3】在等差数列{}n a 中,13515a a a ++=,61a l =. (1) 求数列{}n a 的通项公式;(2) 对任意*m N ∈,将数列{}n a 中落入区间1(2m +,212)m +内的项的个数记为{}m b ,记数列{}m b 的前m项和m S ,求使得2018m S >的最小整数m ; (3) 若*n N ∈,使不等式1111(21)n n nn a n a a a λ+++++成立, 求实数λ的取值范围 .【变式训练3】已知数列{}a n 的前n 项和S n =3n 2+8n ,{}b n 是等差数列,且a n =b n +b n +1.(1)求数列{}b n 的通项公式;(2)令c n =(a n +1)n +1(b n +2)n. 求数列{}c n 的前n 项和T n .【例4】(2019·普陀区二模)设数列{a n }满足:a 1=2,2a n +1=t ⋅a n+1(其中t 为非零实常数). (1)设t =2,求证:数列{a n }是等差数列,并求出通项公式;(2)设t =3,记b n =|a n+1−a n |,求使得不等式b 1+b 2+b 3+⋯+b k ≥3940成立的最小正整数k ;(3)若t ≠2,对于任意的正整数n ,均有a n <a n+1,当a p+1、a t+1、a q+1依次成等比数列时,求t 、p 、q 的值.巩固训练一、填空题1.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.2.设等比数列{}a n 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.3.已知函数()2xf x a b =+的图象过点(2,9)和点(4,45),若数列{}n a 的前n 项和()n S f n =,数列2{}3na log 的前n 项和为n T ,则使得55n T 成立的最小正整数n = . 4.已知数列{}n a 满足1223n n na a a +=+-,其首项1a a =,若数列{}n a 是单调递增数列, 则实数a 的取值范围是 . 二、选择题5.记数列{}n a 的前n 项和为n S . 已知11a =,*1()2()n n n n S S a n N +-=∈,则2018(S = )A .10093(21)-B .10093(21)2- C .20183(21)-D .20183(21)2- 6.对于数列1x ,2x ,若使得0n m x ->对一切*n N ∈成立的m 的最小值存在,则称该最小值为此数列的“准最大项”,设函数()sin ()f x x x x R =+∈及数列1y ,2y ,且1006()y y y R =∈,若111()()(*)()()22n n n n n n n f y y y y n N f y y y ππ-+-⎧⎪=∈⎨+-<⎪⎩,则当01y =时,下列结论正确的应为( )A .数列1y ,2y ,的“准最大项”存在,且为2πB .数列1y ,2y ,的“准最大项”存在,且为3π C .数列1y ,2y ,的“准最大项”存在,且为4π D .数列1y ,2y ,的“准最大项”不存在7.已知数列{}n a 是等差数列, 数列{}n b 是等比数列, 且满足20172019a a π+=,10114b b =,2018120(2a tanb b =+则 )A .2B .2C .3D 三、解答题8.等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }各项均为正数,b 1=1,且b 2+S 2=12,{b n }的公比q =S 2b 2.(1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.9.已知数列{a n }的前n 项和为S n ,a 1=0,a 1+a 2+a 3+…+a n +n =a n +1,n ①N *.(1)求证:数列{a n +1}是等比数列;(2)设数列{b n }的前n 项和为T n ,b 1=1,点(T n +1,T n )在直线x n +1-y n =12上,若不等式b 1a 1+1+b 2a 2+1+…+b n a n +1≥m -92+2a n对于n ①N *恒成立,求实数m 的最大值.10.已知数列{}n a ,{}n b 均为各项都不相等的数列,n S 为{}n a 的前n 项和,*11()n n n a b S n N +=+∈.(1) 若11,2n na b ==,求4a 的值; (2) 若{}n a 是公比为(1)q q ≠的等比数列, 求证: 数列11n b q ⎧⎫+⎨⎬-⎩⎭为等比数列; (3) 若{}n a 的各项都不为零,{}n b 是公差为d 的等差数列, 求证:2a ,3a ,⋯,n a ,⋯成等差数列的充要条件是12d =.11.已知数列中,为它前项之和,且(),.(1)设,求证为等比数列;(2)设,求证为等差数列;(3)求数列的通项公式及前项之和的公式.新题速递1.(2020•虹口区一模)设等差数列{}n a 的前n 项和n S ,若2712a a +=,48S =,则n a = . 2.(2020•浦东新区一模)设{}n a 是等差数列,且13a =,3518a a +=,则n a = .3.(2020•宝山区一模)已知{}n a 、{}n b 均是等差数列,n n n c a b =,若{}n c 前三项是7、9、9,则10c = . 4.(2020•松江区一模)已知数列{}n a 满足:①*()n a N n N ∈∈;②当*2()k n k N =∈时,2n na =;③当*2()k n k N ≠∈时,1n n a a +<,记数列{}n a 的前n 项和为n S .(1)求1a ,3a ,9a 的值; (2)若2020n S =,求n 的最小值;(3)求证:242n n S S n =-+的充要条件是*211()n a n N +=∈.5.(2020•静安区一模)设{}n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值;(2)设*11,2()n a n a b n N ==∈,数列{}n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ,求d 的取值范围.。