热力学参数状态图
- 格式:ppt
- 大小:11.57 MB
- 文档页数:116
第2章流体的p-V-T关系
主要内容
1) 流体的压力p、摩尔体积V 和温度T是物质最基
本的性质;
2)p、V、T 性质可以通过实验直接测量;
3)pVT+c p ig能推算其它不能直接从实验测量的热力
学性质如H、S、U、G等。
1
)
c
A B
对任何气体,
根据气体的临界参数,即可求出Z
计算常数需要
同时适用于汽液两相,
(1)
(2) EOS
(3)
与立方型状态方程相比,多参数状态方程的优多参数方程的基础是
能同时适用于汽、液两相
在计算和关联烃类混合物时极有价值;计算结果明显高于立方型状态方程;
该方程的数学规律性较弱,给方程的求解。
热力学基本状态参数功和热量1-1 工质和热力系一、工质、热机、热源与冷源1、热机(热力发动机):实现热能转换为机械能的设备。
如:电厂中的汽轮机、燃气轮机和内燃机、航空发动机等。
2、工质:实现热能转换为机械能的媒介物质。
对工质的要求:1)良好的膨胀性; 2)流动性好;3)热力性质稳定,热容量大;4)安全对环境友善;5)价廉,易大量获取。
如电厂中的水蒸汽;制冷中的氨气等。
问题:为什么电厂采用水蒸汽作工质?3、高温热源:不断向工质提供热能的物体(热源)。
如电厂中的炉膛中的高温烟气4、低温热源:不断接收工质排放热的物体(冷源)如凝汽器中的冷却水二、热力系统1、热力系统和外界概念热力系:人为划分的热力学研究对象(简称热力系)。
外界:系统外与之相关的一切其他物质。
边界:分割系统与外界的界面。
在边界上可以判断系统与外界间所传递的能量和质量的形式和数量。
边界可以是实际的、假想的、固定的,或活动的。
注意:热力系的划分,完全取决于分析问题的需要及分析方法的方便。
它可以是一个设备(物体),也可以是多个设备组成的系统。
如:可以取汽轮机内的空间作为一个系统,也可取整个电厂的作为系统。
2、热力系统分类按系统与外界的能量交换情况分1)绝热系统:与外界无热量交换。
2)孤立系统:与外界既无能量(功量、热量)交换,又无质量交换的系统。
注意:实际中,绝对的绝热系和孤立系统是不存在的,但在某些理想情况下可简化为这两种理想模型。
这种科学的抽象给热力学的研究带来很大的方便。
如:在计算电厂中的汽轮机作功时,通常忽略汽缸壁的散热损失,可近似看作绝热系统。
状态及基本状态参数状态参数特点u状态参数仅决定于状态,即对应某确定的状态,就有一组状态参数。
反之,一组确定的状态参数就可以确定一个状态。
状态参数的变化量仅决定于过程的初终状态,而与达到该状态的途径无关。
因此,状态参数的变化量可表示为(以压力p为例):二、基本状态参数1.表压与真空表压力:当气体的压力高于大气压力时(称为正压),压力表的读数(pg),如锅炉汽包、主蒸汽的压力等。
第十一章 热力学参数状态图 §11-1 化合物生成自由能︒∆F 对T 关系图第一章图1-1提供了氧化物的生成自由能︒∆F 的关系图(Ellingham [1])。
关于利用溶解自由能,溶于金属液中各元素的氧化︒∆F 对T 的关系图,我们在其应用方面已进行过多次的讨论。
这里再就纯氧化物的生成自由能对T 的关系图作些补充讨论。
从表1-1查出:TF NiOO Ni s s 3.40114000;22)(2)(+-=︒∆=+(11-1)在T=0时即绝对温度为零时,卡1114000-=︒∆H (图11-1)。
︒∆F 线abc 的斜率等于︒∆S ;例如在点b,︒∆=︒∆-︒∆==S TF H adbd 斜率TF O Al O Al s l 2.51267800;3234)(322)(+-=︒∆=+当生成CO 时,其︒∆S 为正值,而当其他氧化物生成时,其︒∆S 都是负值,所以CO 的︒∆F 线与其他氧化物的︒∆F 线相交。
利用氧化物的︒∆F 对T 的关系图,可以通过列线图直接读出该氧化物在某一温度下的分解压。
以铝的氧化反应为例:((11-2)21ln O pRT F -=︒∆ 当p O2=10-20大气压,则T=1877K (1604℃)。
在图11-2内式(11-2)以线ab 表示。
绘出T=1604℃的垂直线与ab 线相交于m 。
在绝对零的温度线上,取0=︒∆F 的“O”点,连接“O”与m ,则线“O”m 代表下列反应:)10(2)1(220-22===O O ppO O亦即氧由1大气压转变为10-20大气压的自由能。
TRT F F 5.91110ln-20-=+︒∆=∆将O m 线延长交于KML 线,,在该线上的相交点标明10-20。
同样可作出其他类似的列线,并标明氧的平衡分压值。
因此,利用KLM 线即可读出任何温度氧化物的平衡氧分压值,亦即其分解压值。
用图11-2仍可读出式(11-4)中的CO/CO 2比。