动量守衡 模型题
- 格式:ppt
- 大小:182.50 KB
- 文档页数:13
动量守恒-板块模型习题课(总6页) -本页仅作为预览文档封面,使用时请删除本页-动量守恒定律———板块模型专题训练一1、如图所示,一质量M=的长方形木板B放在光滑水平地面上,在其右端放一个质量m=的小木块A。
现以地面为参照系,给A和B以大小均为s,方向相反的初速度,使A开始向左运动,B开始向右运动,但最后A并没有滑离B板。
站在地面的观察者看到在一段时间内小木块A正在做加速运动,则在这段时间内的某时刻木板对地面的速度大小可能是()、质量为2kg、长度为的长木板B在光滑的水平地面上以4m/s的速度向右运动,将一可视为质点的物体A轻放在B的右端,若A与B 之间的动摩擦因数为,A的质量为m=1kg。
2g 求:m/10s(1)说明此后A、B的运动性质(2)分别求出A、B的加速度(3)经过多少时间A从B上滑下(4)A滑离B时,A、B的速度分别为多大A、B的位移分别为多大(5)若木板B足够长,最后A、B的共同速度(6)当木板B为多长时,A恰好没从B上滑下(木板B至少为多长,A才不会从B上滑下)3、质量为mB=m的长木板B静止在光滑水平面上,现有质量为mA=2m的可视为质点的物块,以水平向右的速度大小v0从左端滑上长木板,物块和长木板间的动摩擦因数为μ。
求:(1)要使物块不从长木板右端滑出,长木板的长度L至少为多少(至少用两种方法求解)(2)若开始时长木板向左运动,速度大小也为v0,其它条件不变,再求第(1)问中的L。
v4、如图所示,在光滑水平面上放有质量为2m的木板,木板左端放一质量为m 的可视为质点的木块。
两者间的动摩擦因数为μ,现让两者以V0的速度一起向竖直墙向右运动,木板和墙的碰撞不损失机械能,碰后两者最终一起运动。
求碰后:(1)木块相对木板运动的距离s(2)木块相对地面向右运动的最大距离L动量守恒定律———板块模型专题训练二1、如图所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一v从木块的左端滑向右端,个质量为m的物块(可视为质点),以水平初速度设物块与木块间的动摩擦因数为 ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。
§动量守恒定律常见模型子弹打击木块类模型例题1:设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,设木块对子弹的阻力恒为f ,求:(1)木块至少多长子弹才不会穿出?(2)子弹在木块中运动了多长时间?变式:若不固定木块时,子弹穿透木块后的速度为v 0/3,现固定木块,其它条件相同,则子弹穿过木块时的而速度为多少?例题2:如图质量为M 的模板B 静止在光滑的水平面上,一质量为m 的长度可忽略的小木块A 以速度v 0水平地沿模板的表面滑行,已知小木块与木板间的动摩擦因数为µ,求:(1)木板至少多长小木块才不会掉下来?(2)小木块在木板上滑行了多长时间?拓展1:上题中,如果已知木板长为L ,(端点为A 、B ,中点为O),问v 0在什么范围内才能使小木块滑到OB 之间相对木块静止?v 0拓展2:如图所示,一辆质量m=2kg 的平板车左端放有质量M=3kg 的小滑块,滑块与平板车之间的动摩擦因数µ=0。
4。
开始时平板车和滑块共同以2m/s 的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短、且碰撞后平板车速度大小保持不变,但方向与原来相反。
平板车足够长,以至滑块不会滑出平板车右端(g=10m/s 2).求:(1)平板车第一次与墙壁碰撞后想做运动的最大距离。
(2)平板车第二次与墙壁碰撞前瞬间的速度.(3)为使滑块始终不会滑到平板车右端,平板车至少多长?拓展3:两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L.导轨上面横放着两根导体棒ab 和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0。
若两导体棒在运动中始终不接触,求: (1)在运动中产生的较耳热最多是多少?(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?人船模型动量守恒定律的两个推论:推论1:当系统的动量守恒时,任意一段时间内的平均动量也守恒;推论2:当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。
专题38 动量守恒多种模型的解题思路-备战2021年高考物理考点专项突破题集1.(碰撞模型)甲、乙两球在光滑水平面上沿同一直线、同一方向运动,甲球的动量是p 1=5 kg·m/s ,乙球的动量是p 2=7 kg·m/s ,当甲球追上乙球发生碰撞后,乙球的动量变为p 2′=10 kg·m/s ,设甲球的质量为m 1,乙球的质量为m 2,则m 1、m 2的关系可能是( ) A .m 1=m 2 B .2m 1=m 2 C .4m 1=m 2 D .6m 1=m 2【答案】 C【解析】碰撞过程中动量守恒,可知碰后甲球的动量p 1′=2 kg·m/s 。
由于是甲追碰乙,碰撞前甲的速度大于乙的速度,有p 1m 1>p 2m 2,可得m 2>75m 1;碰撞后甲的速度不大于乙的速度,有p 1′m 1≤p 2′m 2,可得m 2≤5m 1。
碰撞后系统的动能不大于碰前系统的动能,由E k =p 22m 可知p 1′22m 1+p 2′22m 2≤p 212m 1+p 222m 2,解得m 2≥177m 1,联立得177m 1≤m 2≤5m 1,C 正确。
2.(碰撞模型综合)如图所示,在粗糙水平面上A 点固定一半径R =0.2 m 的竖直光滑圆弧轨道,底端有一小孔。
在水平面上距A 点s =1 m 的B 点正上方O 处,用长为L =0.9 m 的轻绳悬挂一质量M =0.1 kg 的小球甲,现将小球甲拉至图中C 位置,绳与竖直方向夹角θ=60°。
静止释放小球甲,摆到最低点B 点时与另一质量m =0.05 kg 的静止小滑块乙(可视为质点)发生完全弹性碰撞。
碰后小滑块乙在水平面上运动到A 点,并无碰撞地经过小孔进入圆轨道,当小滑块乙进入圆轨道后立即关闭小孔,g =10 m/s 2。
(1)求甲、乙碰前瞬间小球甲的速度大小;(2)若小滑块乙进入圆轨道后的运动过程中恰好不脱离圆轨道,求小滑块乙与水平面的动摩擦因数。
动量守恒的十种模型解读和针对性训练弹簧模型模型解读【典例分析】【典例】(2024高考辽吉黑卷)如图,高度0.8m h =的水平桌面上放置两个相同物块A 、B ,质量A B 0.1kg m m ==。
A 、B 间夹一压缩量Δ0.1m x =的轻弹簧,弹簧与A 、B 不栓接。
同时由静止释放A 、B ,弹簧恢复原长时A 恰好从桌面左端沿水平方向飞出,水平射程A 0.4m x =;B 脱离弹簧后沿桌面滑行一段距离B 0.25m x =后停止。
A 、B 均视为质点,取重力加速度210m/s g =。
求:(1)脱离弹簧时A 、B 的速度大小A v 和B v ;(2)物块与桌面间动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E D。
的【针对性训练】1. (2024年3月江西赣州质检)如图甲所示,光滑水平地面上有A 、B 两物块,质量分别为2kg 、6kg ,B 的左端拴接着一劲度系数为200N/m 3的水平轻质弹簧,它们的中心在同一水平线上。
A 以速度v 0向静止的B 方向运动,从A 接触弹簧开始计时至A 与弹簧脱离的过程中,弹簧长度l 与时间t 的关系如图乙所示,弹簧始终处在弹性限度范围内,已知弹簧的弹性势能2p 12E kx =(x 为弹簧的形变量),则( )A. 在0~2t 0内B 物块先加速后减速B. 整个过程中,A 、B 物块构成的系统机械能守恒C. v 0=2m/sD. 物块A 在t 0时刻时速度最小2. (2024河南新郑实验高中3月质检)如图甲所示,一轻弹簧的两端与质量分别为m 1、m 2的两物块A、B 相连接,并静止在光滑水平面上。
现使A 获得水平向右、大小为3m/s 的瞬时速度,从此刻开始计时,两物块的速度随时间变化的规律如图乙所示,从图像提供的信息可得( )A.在t 1、t 3时刻两物块达到共同速度1m/s ,且弹簧都处于伸长状态B.从t 3到t 4时刻间弹簧由压缩状态恢复到原长C.两物体的质量之比为m 1:m 2=1:2D.在t 2时刻A 、B 两物块的动能之比为E k 1:E k 2=8:13. (2024山东济南期末)如图甲所示,物块A 、B 用轻弹簧拴接,放在光滑水平面上,B 左侧与竖直墙壁接触。
动量守恒专题训练(含答案)动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
【例1】质量为M的楔形物块上有圆弧轨道,静止在水平面上。
质量为向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求小球能上升到的最大高度H和物块的最终速度v。
2 •子弹打木块类问题【例3】设质量为m的子弹以初速度v0射向静止在光滑水平面上的质量为M的木块,并留在木块中不再射出,子弹钻入木块深度为d。
求木块对子弹的'平均阻力的大小和该过程中木块前进的距离。
―»IZD71 11777777^7?T .5^7777[―S]3 •反冲问题在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。
这类问题相互作用过程中系统的动能增大,有其它能向动能转化。
可以把这类问题统称为反冲。
【例4】质量为m的人站在质量为M长为L的静止小船的右端,小船的左端靠在岸边。
当他向左走到船的左端时,船左端离岸多远?【例5】总质量为M的火箭模型从飞机上释放时的速度为v O,速度方向水平。
火箭向后以相对于地面的速率u喷出质量为m的燃气后,火箭本身的速度变为多大?4 •爆炸类问题【例6】抛出的手雷在最高点时水平速度为10m/s,这时忽然炸成两块,其中大块质量300g仍按原方向飞行,其速度测得为50m/s,另一小块质量为200g,求它的速度的大小和方向。
5.某一方向上的动量守恒【例7】如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则当线绳与A B成0角时,圆环移动的距离是多少?6.物块与平板间的相对滑动【例8】如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m 的小木块A, R K MA、B间动摩擦因数为□,现给A和B以大小相等、方向相反的初速度v O, 使A开始向左运动,B开始向右运动,最后A不会滑离B,求:(1)A、B最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
动量守恒的十种模型精选训练动量守恒定律是自然界中最普遍、最根本的规律之一,它不仅适用于宏观、低速领域,而且适用于微观、高速领域。
通过对最新高考题和模拟题研究,可归纳出命题的十种模型。
一.碰撞模型【模型解读】碰撞的特点是:在碰撞的瞬间,相互作用力很大,作用时间很短,作用瞬间位移为零,碰撞前后系统的动量守恒。
无机械能损失的弹性碰撞,碰撞后系统的动能之和等于碰撞前系统动能之和,碰撞后合为一体的完全非弹性碰撞,机械能损失最大。
例1. 如图,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间。
A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态。
现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞。
设物体间的碰撞都是弹性的。
针对训练题1.如图,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m 。
两物块与地面间的动摩擦因数均相同。
现使a 以初速度v 0向右滑动。
此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞。
重力加速度大小为g 。
求物块与地面间的动摩擦因数满足的条件。
2. 如下列图,在水平光滑直导轨上,静止着三个质量为m =1 kg 的相同的小球A 、B 、C 。
现让A 球以v 0=2 m/s 的速度向B 球运动,A 、B 两球碰撞后粘在一起继续向右运动并与C 球碰撞,C 球的最终速度v C =1 m/s 。
问:3.如图,小球a 、b 用等长细线悬挂于同一固定点O .让球a 静止下垂,将球b 向右拉起,使细线水平.从静止释放球b ,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求:4.水平光滑轨道AB 与半径为R=2m 竖直面内的光滑圆弧轨道平滑相接,质量为m=0.2kg 的小球从图示位置C(C 点与圆弧圆心的连线与竖直方向的夹角为60°)自静止开始滑下,与放在圆弧末端B 点的质量为M =13kg 的物体M 相碰时,每次碰撞后反弹速率都是碰撞前速率的11/12,设AB 足够长,那么m 与M 能够发生多少次碰撞?5.如下列图,质量均为M =lkg 的A 、B 小车放在光滑水平地面上,A 车上用轻质细线悬挂质量m =0.5kg 的小球。
在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。
2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。
第六章 碰撞与动量守恒定律动量守恒定律及三类模型【考点预测】1.动量守恒的条件2.动量守恒的简单应用3.子弹打木块问题4.爆炸反冲问题5.人船模型问题【方法技巧与总结】一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”在滑动摩擦力作用下做匀加速直线运动.②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为在这一过程中动量守恒.把“子弹”和“木块”看成一个系统:a.系统水平方向动量守恒;b.系统的机械能不守恒;c.对“木块”和“子弹”分别应用动能定理.(2)“木块”固定在水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”静止不动.②处理方法:对“子弹”应用动能定理或牛顿第二定律.2.“反冲”和“爆炸”模型(1)反冲①定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.②特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、发射火箭等.③规律:遵从动量守恒定律.(2)爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.如爆竹爆炸等.3.“人船模型”问题(1)模型介绍两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题即为“人船模型”问题.(2)模型特点①两物体满足动量守恒定律:m1v1-m2v2=0.②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1x2=v1v2=m2m1.③应用x1x2=v1v2=m2m1时要注意:v1、v2和x1、x2一般都是相对地面而言的.【题型归纳目录】题型一:动量守恒的判定题型二:动量守恒定律的理解和基本应用题型三:“人船”模型题型四:“子弹打木块”模型题型五:反冲和爆炸模型【题型一】动量守恒的判定【典型例题】1“世界上第一个想利用火箭飞行的人”是明朝的士大夫万户。
A B C专题一:动量守恒定律的应用例1 质量为m 1的木板静止在光滑的水平面上,在木板上放一个质量为m 2的木块,现给木块一个相对地面的水平速度v 0。
已知木块与木板间的动摩擦因数为μ,因此木板被木块带动,最后木板与木块以共同的速度运动,求:1、木块和木板共同的速度是多少?2、此过程中木块在木板上滑行的距离?3、木板滑行的距离及相互作用时间?4、若木板长度为L,木块的初速度仍为0v ,要使物块不滑出,则两者间的摩擦因数应满足什么条件。
例2.两物块A 、B 用轻弹簧相连,质量均为2 kg ,初始时弹簧处于原长,A 、B 两物块都以v =6 m /s 的速度在光滑的水平地面上运动,质量4 kg 的物块C 静止在前方,如图所示。
B 与C 碰撞后二者会粘在一起运动。
求在以后的运动中:(1)当弹簧的弹性势能最大时,物块A 的速度为多大?(2)系统中弹性势能的最大值是多少?例3、如图所示,坡度顶端距水平面高度为h ,质量为m 1的小物块A 从坡道顶端由静止滑下,从斜面进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,一端与质量为m 2的挡板B 相连,弹簧处于原长时,B 恰位于滑道的末湍O 点.A 与B 碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求(1)物块A 在与挡板B 碰撞前的瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹簧势能E P (设弹簧处于原长时弹性势能为零).例4.在光滑的水平面上,质量为m 1的小球A 以速率v 0向右运动。
在小球的前方O 点处有一质量为m 2的小球B 处于静止状态,如图所示。
小球A 与小球B 发生正碰后小球A 、B 均向右运动。
小球B 被在Q 点处的墙壁弹回后与小球A 在P 点相遇,PQ =1.5PO 。
假设小球间的碰撞及小球与墙壁之间的碰撞都是弹性的,求两小球质量之比m 1/m 2。