人教版八年级上册数学学案:12.2三角形全等的判定(1)
- 格式:docx
- 大小:32.81 KB
- 文档页数:2
12.2三角形全等的判定第1课时用“SSS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法1-“SSS”.2.体会尺规作图.3.掌握简单的证明格式.预习阅读教材,完成预习内容.知识探究三边分别相等的两个三角形________(可以简写成“边边边”或“________”).自学反馈1.在△ABC、△DEF中,若AB=DE,BC=EF,AC=DF,则____________.2.已知AB=3,BC=4,CA=6,EF=3,FG=4,要使△ABC≌△EFG,则EG=________.3.如图,通常凳子腿活动后,木工师傅会在凳腿上斜钉一根木条,这是利用了三角形的________.点拨:两个三角形三角、三边六个元素中,满足一个或两个元素相等是无法判定全等的,我们这节课探讨的是三个元素相等中三边对应相等的情况.4.如图,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是________.活动1小组讨论例1.如图,AB=AD,CB=CD,求证:△ABC≌△ADC.证明:在△ABC与△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC(SSS).例2.如图,C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.证明:∵C是AB的中点,∴AC=CB.在△ACD与△CBE中,∵AD=CE,CD=BE,AC=CB,∴△ACD≌△CBE(SSS).点拨:注意运用SSS证三角形全等时的证明格式;在证明过程中善于挖掘“公共边”这个隐含条件.例3.如图,AB=AD,DC=BC,∠B与∠D相等吗?为什么?解:结论:∠B=∠D.理由:连接AC,在△ADC与△ABC中,∵AD=AB,AC=AC,DC=BC,∴△ADC≌△ABC(SSS).∴∠B=∠D.点拨:要证∠B与∠D相等,可证这两个角所在的三角形全等,现有的条件并不满足,可以考虑添加辅助线证明.课堂小结1.本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.2.添加辅助线构造公共边,可以为证明两个三角形全等提供条件,证明两个三角形全等是证明线段相等或角相等的重要方法.第2课时用“SAS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法2——“SAS”.理解满足“SSA”的两个三角形不一定全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.预习阅读教材,完成预习内容.知识探究1.两边和它们的夹角分别相等的两个三角形________(可以简写成“边角边”或“________”).2.有两边和一个角对应相等的两个三角形________全等.点拨:如果给定两个三角形的类型(如两个钝角三角形),两边和其中一边的对角对应相等的两个三角形不一定全等.自学反馈1.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则需要增加的条件是( )A.∠A=∠D B.∠E=∠CC.∠A=∠C D.∠ABD=∠EBC2.如图,AO=BO ,CO=DO ,AD 与BC 交于E ,∠O=40°,∠B=25°,则∠BED 的度数是( )A .60°B .90°C .75°D .85° 3.已知:如图,AB 、CD 相交于O 点,AO=CO ,OD=OB. 求证:∠D=∠B.分析:要证∠D=∠B ,只要证△AOD ≌△COB. 证明:在△AOD 与△COB 中,⎩⎪⎨⎪⎧AO =CO (已知),∠ =∠ (对顶角相等),OD = (已知),∴△AOD ≌△________(SAS). ∴∠D=∠B(__________).4.已知:如图,AB=AC ,∠BAD=∠CAD.求证:∠B=∠C.点拨:1.利用SAS 证明全等时,要注意“角”只能是两组相等边的夹角;在书写证明过程时相等的角应写在中间;2.证明过程中注意隐含条件的挖掘,如“对顶角相等”、“公共角、公共边”等. 活动1 小组讨论例1.已知:如图,AB ∥CD ,AB=CD.求证:AD ∥BC.证明:∵AB ∥CD , ∴∠2=∠1.在△CDB 与△ABD 中,∵CD=AB ,∠2=∠1,BD=DB , ∴△CDB ≌△ABD.∴∠3=∠4. ∴AD ∥BC.点拨:可从问题出发,要证线段平行只需证角相等即可(∠3=∠4),而证角相等可证角所在的三角形全等.例2.如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的关系,并证明你的结论.解:结论:AE=CD,AE⊥CD.理由(提示):延长AE交CD于点F,先证△ABE≌△CBD,得AE=CD,∠BAE=∠BCD.又∠AEB=∠CEF,可得∠CFE=90°,即AE⊥CD.点拨:1.注意挖掘等腰直角三角形中的隐藏条件;2.线段的关系分数量与位置两种关系.课堂小结1.利用对顶角、公共角、直角用SAS证明三角形全等.2.用“分析法”寻找命题结论也是一种推理论证的方法,即从结论出发逐步递推到题中条件,常以此作为分析寻求推理论证的途径.第3课时用“ASA”或“AAS”判定三角形全等学习目标:1.理解和掌握全等三角形判定方法3——“ASA”,判定方法4——“AAS”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.预习:阅读教材,完成预习内容.知识探究1.两角和它们的夹边分别相等的两个三角形________(可以简写成“角边角”或“________”).2.两角和其中一个角的对边分别相等的两个三角形________(可以简写成“角角边”或“________”).3.试总结全等三角形的判定方法,师生共同总结.点拨:三角形全等的条件至少需要三对相等的元素(其中至少需要一条边相等).自学反馈1.能确定△ABC≌△DEF的条件是( )A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙3.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE=DF B .AE=AF C .BD=CD D .∠ADE=∠ADF4.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA=OB ,∠A=∠C.那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.解:△AOD ≌△COB.证明:在△AOD 和△COB 中, ⎩⎪⎨⎪⎧∠A =∠C (已知),OA =OB (已知),∠AOD =∠COB (对顶角相等),∴△AOD ≌△COB(ASA).问:这位同学的回答及证明过程正确吗?为什么?活动1 小组讨论例1 已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ=NQ.求证:HN=PM.证明:∵MQ ⊥PN , ∴∠MQP=∠MQN=90°. ∵NR ⊥MP ,∴∠MRN=90°.∴∠RMH +∠RHM=∠QHN +∠QNH=90°. 又∵∠RHM=∠QHN ,∴∠PMQ=∠QNH. 在△PMQ 与△HNQ 中,∵∠MQP=∠NQH=90°,MQ=NQ ,∠PMQ=∠QNH , ∴△PMQ ≌△HNQ. ∴HN=PM.例2 已知:如图,AB ⊥AE ,AD ⊥AC ,∠E=∠B ,DE=CB. 求证:AD=AC.证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°.∴∠CAD+∠BAD=∠BAE+∠BAD.∴∠CAB=∠DAE.在△ABC与△AED中,∵∠CAB=∠DAE,∠B=∠E,CB=DE,∴△ABC≌△AED.∴AD=AC.课堂小结1.本节内容是已知两个角和一条边对应相等得全等,三个角对应相等不能确定全等.2.三角形全等的判定和全等三角形的性质常在一起进行综合应用,有时还得反复用两次或两次以上,从而达到解决问题的目的.第4课时用“HL”判定直角三角形全等学习目标:1.掌握判定直角三角形全等的一种特殊方法——“斜边、直角边”(即“HL”).2.能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.预习:阅读教材,完成预习内容.知识探究1.判定两直角三角形全等的“HL”这种特殊方法指的是____________.2.直角三角形全等的判定方法有________(用简写).自学反馈1.如图,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则△ABC≌________,全等的根据是________.2.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由.①一个锐角和这个角的对边对应相等;( )②一个锐角和这个角的邻边对应相等;( )③一个锐角和斜边对应相等;( )④两直角边对应相等;( )⑤一条直角边和斜边对应相等.( )3.下列说法正确的是( )A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等点拨:直角三角形除了一般证全等的方法,“HL”可使证明过程简化,但前提是已知两个直角三角形,即在证明格式上表明“Rt△”.活动1小组讨论例1.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC;(2)AD∥BC.证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°.在Rt△ABD与Rt△CDB中,∵AD=CB,BD=DB,∴Rt△ABD≌Rt△CDB(HL).∴AB=DC.(2)∵Rt△ABD≌Rt△CDB(已证),∴∠ADB=∠CBD.∴AD∥BC.例2.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC.证明:连接CD.∵AD⊥AC,BC⊥BD,∴∠A=∠B=90°.在Rt△ADC与Rt△BCD中,∵AC=BD,DC=CD,∴Rt△ADC≌Rt△BCD.∴AD=BC.课堂小结1.“HL”判别法是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形,但两个直角三角形全等的判定,也可以用前面的各种方法.2.证明两个三角形全等的方法有:SSS、SAS、ASA、AAS,以及用HL,注意SSA和AAA条件不能判定两个三角形全等.课堂小练一、选择题1.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D2.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF3.在△ABC和△A/B/C/中,已知∠A=∠A/,AB=A/B/,在下面判断中错误的是( )A.若添加条件AC=A/C/,则△ABC≌△△A/B/C/B.若添加条件BC=B/C/,则△ABC≌△△A/B/C/C.若添加条件∠B=∠B/,则△ABC≌△△A/B/C/D.若添加条件∠C=∠C/,则△ABC≌△△A/B/C/4.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对5.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC6.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以7.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC8.如图,已知△ABC的三个元素,则甲、乙、丙三个三角形中,和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙9.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′10.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C二、填空题11.如图,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是.(将你认为正确的结论的序号都填上)12.如图,已知AB∥CD,AE=CF,则下列条件:①AB=CD;②BE∥DF;③∠B=∠D;④BE=DF.其中不一定能使△ABE≌△CDF的是(填序号)13.在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E,在BC上,BE=BF,连结AE,EF和CF,此时,若∠CAE=30°,那么∠EFC= .14.如图:在△ABC和△FED中,AD=FC,AB=FE,当添加条件时,就可得到△ABC≌△FED.(只需填写一个即可)15.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)参考答案1.C2.C3.B4.C.5.C.6.B7.B8.B9.C10.B11.答案为:①②③.12.答案为:④.13.答案为:30°.14.答案为:BC=ED或∠A=∠F或AB∥EF.15.答案为:BC=BD。
人教版数学八年级上册教学设计12.2《三角形全等的判定》一. 教材分析《三角形全等的判定》是人教版数学八年级上册的教学内容。
本节内容是在学生已经掌握了三角形的基本概念、性质和三角形相似的基础上进行的。
通过学习三角形全等的判定,使学生能够掌握全等三角形的性质,进一步理解和运用全等三角形的判定方法。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念和性质,对三角形有了初步的认识。
但是,对于全等三角形的判定方法,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索和发现全等三角形的判定方法。
三. 教学目标1.知识与技能:使学生掌握三角形全等的判定方法,能够运用全等三角形的性质解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生自主探索和发现问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:三角形全等的判定方法。
2.难点:理解和运用全等三角形的判定方法。
五. 教学方法1.情境教学法:通过设置问题情境,引导学生自主探索和发现全等三角形的判定方法。
2.合作学习法:学生进行小组讨论和交流,培养学生的合作意识和团队精神。
3.实践操作法:引导学生进行实际操作,培养学生的动手能力和实践能力。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.教学多媒体课件。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的三角形图片,引导学生观察和思考:这些三角形之间有什么联系?从而引出全等三角形的概念。
2.呈现(10分钟)通过PPT展示全等三角形的判定方法,引导学生观察和思考:如何判断两个三角形全等?从而引出全等三角形的判定方法。
3.操练(10分钟)让学生分成小组,利用教具进行实际操作,尝试判断两个三角形是否全等。
教师巡回指导,及时纠正学生的错误。
4.巩固(10分钟)让学生独立完成一些判断全等三角形的练习题,教师及时批改和讲解,帮助学生巩固所学知识。
人教版八年级上册数学教案:12.2三角形全等判定三角形全等的判定(第一课时)教学设计学习内容分析^p学习目标描述使学生掌握边边边判定两个三角形全等的方法,会运用这种方法解决问题。
通过有关的证明及应用,教给学生一些基本的数学思想方法,使学生逐步学会分别从题设或结论出发,寻找论证思路,学会用综合法证明问题,从而提高学生分析^p 问题、解决问题的能力。
通过学生探究特殊角度、特殊边长的三角形全等的条件,再由教师利用课件演示数学事实,让学生充分参与到数学学习的过程中来,获得解决问题的经验;通过习题变式,从中体会事物之间的相互联系与区别,从而进一步培养学生的辩证唯物观点。
探究本课的两个判定方法,使学生经历“实践——观察——猜想——验证——归纳——概括”的认知过程,培养学生良好的个性思维品质。
学习内容分析^p提示:可从学习内容概述、知识点划分及其相互间的关系等角度分析^p本课内容选自人教版《义务教育课程标准实验教科书·数学》八年级上册“12.2三角形全等的判定”(第一课时)全等三角形是研究图形的重要工具,只有掌握全等三角形的有关内容,并且能灵活的加以运用,才能学好等腰三角形、四边形和圆等内容,同时为今后研究轴对称、旋转等全等变换打下良好的基础。
此外,也由于它在日常生活中有着广泛的应用,研究全等三角形,具有重要的意义。
发展学生的合情推理和初步的演绎推理能力是《数学课程标准》的重要要求之一。
本章是在七年级下册第七章出现证明和证明格式的基础上,进一步介绍了推理论证的方法。
通过定理内容的规范化书写,并在例习题中注重分析^p 思路,让学生学会思考、学会清楚地表达思考的过程,可以进一步培养学生的推理能力。
同时,“11.2三角形全等的判定”中几种判定方法,是作为基本事实提出来的,通过画图和实验,让学生确信其正确性,符合学生的认知水平。
这样的分析^p 问题、解决问题的方法,对全章乃至以后的学习都是至关重要的。
本节课是全等三角形判定的第一课时,主要探究利用“边边边”方法判定三角形全等,以及简单应用。
第十二章全等三角形12.2 全等三角形的判定第1课时利用“边边边”判定三角形全等一、教学目标【知识与技能】1.掌握“边边边”的内容;2.能初步应用“边边边”条件判定两个三角形全等.3. 能用尺规作一个角等于已知角.【过程与方法】经历探索三角形全等条件的过程,体会用操作、归纳得出数量结论的过程.【情感态度与价值观】通过探索三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好品质以及发现问题的能力.二、课型新授课三、课时第1课时,共4课时。
四、教学重难点【教学重点】探索三角形全等的条件,会应用“边边边”判定两个三角形全等.【教学难点】探索三角形全等的条件,用尺规作一个角等于已知角.五、课前准备教师:课件、三角尺、圆规、直尺等。
学生:三角尺、圆规、直尺。
六、教学过程(一)导入新课为了庆祝国庆节,老师要求同学们回家制作三角形彩旗(如图),那么,老师应提供多少个数据,能保证同学们制作出来的三角形彩旗全等呢?一定要知道所有的边长和所有的角度吗?(二)探索新知1.师生互动,探究两个三角形全等的条件教师问1:什么叫全等三角形?学生回答:能够完全重合的两个三角形叫全等三角形.教师问2:全等三角形有什么性质?学生回答:全等三角形的对应边相等,对应角相等.(出示课件4)教师讲解:我们如何识别两个三角形是否全等呢?我们从“条件尽可能的少”出发,逐步增加条件分类进行操作验证,希望得到我们想要的结论.教师问3:满足一个条件对应相等时,识别两个三角形全等,共有几种情况呢?分别是哪些情况?学生讨论并回答:一共有两种情况,①只给一条边时;②只给一个角时.教师问4:请同学们每人画出一个边长为3cm的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.教师问5:请同学们每人画出一个45°的三角形,然后每个小组内的同学看一下画出的三角形全等吗?学生作图并且比较后回答:不全等.结论:只有一条边或一个角对应相等的两个三角形不一定全等.(出示课件6)教师问6:如果满足两个条件判断两个三角形全等,你能说出有哪几种可能的情况?学生分组讨论、探索、归纳,给出的两个条件可能是:一边一内角、两内角、两边.教师请同学们分别按下列条件做一做.①三角形两条边分别为3cm,4cm.三角形②三角形的一条边为4cm,一内角为30°,.③三角形两内角分别为30°和45°教师问7:同学根据①画出的两个三角形全等吗?学生作出图形并且组内识别后回答:两条边对应相等的两个三角形不一定全等.(出示课件8)教师问8:同学根据②画出的两个三角形全等吗?学生做出图形并且组内识别后回答:一条边一个角对应相等的两个三角形不一定全等.(出示课件9)教师问9:同学根据③画出的两个三角形全等吗?学生做出图形并且组内识别后回答:两个角对应相等的两个三角形不一定全等.(出示课件10)教师分析并归纳结论:只满足两个条件画出的三角形不一定全等.总结点拨:(出示课件11)一个条件①一角;②一边;两个条件①两角;②两边;③一边一角.结论:只给出一个或两个条件时,都不能保证所画的三角形一定全等.教师问10:给出三个条件画三角形,会有几种可能的情况?学生思考后师生归纳:有四种可能,即三角、三边、两边一角、两角一边分别相等.教师问11:已知两个三角形的三个内角分别为30°,60° ,90° 它们一定全等吗?学生作出图形并且组内识别后回答:有三个角对应相等的两个三角形不一定全等.(出示课件13)教师问12:已知两个三角形的三条边都分别为3cm、4cm、6cm .它们一定全等吗?(出示课件14)教师演示作法,学生按要求尺规作图,动手操作,通过比较得出结论.这两个三角形相等.教师问13:任意两个三角形的三条边都分别相等.它们一定全等吗?我们进行下边的操作:做一做:先任意画一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?教师演示作法:(1)画B′C′=BC;(2)分别以B',C'为圆心,线段AB,AC长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C'.(出示课件15)学生按要求尺规作图,动手操作,通过比较得出结论.三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).总结:(出示课件16)“边边边”判定方法文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)几何语言:在△ABC和△ DEF中,{AB=DE,BC=EF,CA=FD,∴△ABC ≌△ DEF(SSS).例1:如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:(1)△ABD ≌△ACD.(2)∠BAD = ∠CAD.(出示课件17)解题思路:①先找隐含条件:公共边AD ;②再找现有条件:AB=AC③最后找准备条件:D 是BC 的中点→BD=CD师生共同解答如下:(出示课件18)证明:(1)∵ D 是BC 中点,∴ BD =DC.在△ABD 与△ACD 中,{AB =AC (已知)BD =CD (已证)AD =AD (公共边) ∴ △ABD ≌ △ACD ( SSS ).(2)由(1)得△ABD≌△ACD ,∴ ∠BAD= ∠CAD.(全等三角形对应角相等)总结点拨:(出示课件19)证明的书写步骤:①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;③摆齐根据:摆出三个条件用大括号括起来;:④写出结论:写出全等结论.例2:已知:如图,AB=AC,AD=AE,BD=CE.求证:∠BAC=∠DAE. (出示课件21)分析:要证∠BAC=∠DAE,而这两个角所在三角形显然不全等,我们可以利用等式的性质将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明△ABD≌△ACE,根据全等三角形的性质可得∠BAD=∠CAE.师生共同解答如下:(出示课件22)证明:在△ABD和△ ACE中,AB=AC,AD=AE,BD=CE,∴ △ ABD≌ △ ACE(SSS),∴∠BAD=∠CAE.∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE.例3:用尺规作一个角等于已知角.已知:∠AOB.求作: ∠A′O′B′=∠AOB.(出示课件24)师生共同解答如下:(出示课件25)作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA,OB 于点C,D;(2)画一条射线O′A′,以点O′为圆心,OC 长为半径画弧,交O′A′于点C′;(3)以点C′为圆心,CD 长为半径画弧,与第(2)步中所画的弧交于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.(三)课堂练习(出示课件28-34)1. 如图,D,F是线段BC上的两点,AB=EC,AF=ED,要使△ABF≌△ECD ,还需要条件___________________(填一个条件即可).2.如图,AB=CD,AD=BC,则下列结论:①△ABC≌△CDB;②△ABC≌△CDA;③△ABD ≌△CDB;④ BA∥DC.正确的个数是( )A . 1个 B. 2个 C. 3个 D. 4个3. 已知:如图,AB=AE,AC=AD,BD=CE,求证:△ABC ≌△AED.4. 已知:∠AOB.求作:∠A'O'B',使∠A'O′B'=∠AOB,(1)如图1,以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;(2)如图2,画一条射线O′A′,以点O′为圆心,OC长为半径作弧,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′;(4)过点D′画射线O′B',则∠A'O'B'=∠AOB.根据以上作图步骤,请你证明∠A'O'B′=∠AOB.5. 如图,AD=BC,AC=BD.求证:∠C=∠D .(提示: 连结AB)6. 如图,AB =AC ,BD =CD ,BH =CH ,图中有几组全 等的三角形?它们全等的条件是什么?参考答案:1. BF=CD2.C3. 证明:∵BD=CE ,∴BD -CD=CE -CD .∴BC=ED .在△ABC 和△ADE 中,AC=AD (已知),AB=AE (已知),BC=ED (已证),∴△ABC≌△AED(SSS ).4. 证明:由作法得OD=OC=O′D′=O′C′,CD=C′D′, 在△OCD 和△O′C′D′中 D COAB∴△OCD≌△O′C′D′(SSS),∴∠COD=∠C′O′D′,即∠A'O'B′=∠AOB.5. 证明:连接AB两点,在△ABD和△BAC中,AD=BC,BD=AC,AB=BA,∴△ABD≌△BAC(SSS)∴∠D=∠C.6.解:(四)课堂小结今天我们学了哪些内容:1.本节课学了判定两个三角形全等的条件数目和全等三角形的判定方法(边边边)2.利用尺规作图作一个角等于已知角(五)课前预习预习下节课(12.2)教材37页到39页的相关内容。
12.2三角形全等的判定
1.三角形全等的判定方法一:边边边(SSS)
(1)边边边:三边
..对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).这个判定方法告诉我们:当三角形的三边确定后,其形状、大小也就随之确定,这就
是三角形的稳定性
...,它在实际生活中应用非常广泛.
(2)书写格式:
①先写出所要判定的两个三角形;
②列出条件:用大括号将两个三角形中相等的边分别写出;
③得出结论:两个三角形全等.
如下图,在△ABC和△A′B′C′中,
∵AB=A′B′,BC=B′C′,AC=A′C′,
∴△ABC≌△A′B′C′(SSS).
警误区书写判定两个三角形全等的条件在书写全等的过程中,等号左边表示同一个三角形的量,等号右边表示另一个三角形的量.如上图,等号左边表示△ABC的量,等号右边表示△A′B′C′的量.
符号“∵”表示“因为”,“∴”表示“所以”,在以后的推理中,这样书写简捷、方便.要注意它们的区别.
(3)作一个角等于已知角.
已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作法:如上图所示,①以点O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;
②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
③以点C′为圆心,CD长为半径画弧,与上一步中所画的弧交于点D′;
④过点D′画射线O′B′,则∠A′O′B′=∠AOB.
【例1】如图所示,已知AB=DC,AC=DB,
求证:△ABC≌△DCB.
分析:已知两边对应相等,由图形可知BC为两个三角形的公共边,所以△ABC≌△DCB(SSS).。
第十二章全等三角形12.2 三角形全等的判定第一课时“边边边”(SSS)判定1 教学目标1.1 知识与技能:[1]了解判定两个三角形全等时,至少要知道三组条件这一原理。
[2]掌握全等三角形的“边边边”(SSS)判定定理,并能运用其解决问题。
[3]能用尺规作图根据已知三角形画出另一全等三角形,并能作一角等于已知角。
1.2过程与方法:[1]在学习SSS定理的过程中熟练尺规作图法,并明白其原理。
1.3 情感态度与价值观:[1]通过学习SSS定理,运用其进行几何证明,在逻辑推导中培养良好的数学思维。
[2]在尺规作图的过程中,培养动手能力和做事仔细认真的良好修养。
2 教学重点/难点/易考点2.1 教学重点[1]SSS判定定理。
[2]尺规作定三角形,尺规作定角。
2.2 教学难点[1]探究满足三角形全等的条件,理解至少三个条件才能证明三角形全等。
[2]数学语言表达和证明三角形全等。
3 专家建议本节内容看似不多,但是教材上的细节值得挖掘。
教师要注重引导学生探究,用探究法使学生清楚,证明三角形全等需要三个条件,这个引入的过程是非常的必要的,符合新课标中的“过程比结论重要”这一思想。
此外,用数学语言证明全等也是一大挑战,学生因为此前的几何基础还不牢固,需要强调和巩固。
4 教学方法观察思考——动手操作——归纳结论——补充讲解——练习提高5 教学用具多媒体,教学用尺规,学生课前准备好尺规。
6 教学过程6.1 引入新课【师】同学们好。
上节课我们学习了全等三角形,知道了全等三角形的性质,大家还记得么?【生】全等三角形的对应边和对应角都相等。
【师】没错,如果反过来想,只要三条边、三个角分别相等,就能判定两个三角形全等,也就是六个等式。
但是,一定要满足全部这些要求才能判定两个三角形全等吗?能不能只要保证其中的一部分,就能保证三角形全等呢?这就是我们接下来学习的内容。
【板书】第十二章全等三角形12.2 三角形全等的判定(第一课时)6.2 新知介绍[1]探究活动:一定要满足六个条件吗?【师】下面先看一个实际的例子,实验室一块三角形玻璃仪器不小心被小明打碎了,老师让小明重去配一块一模一样的,小明该知道哪些条件才能配出来一模一样的玻璃仪器呢?给大家几分钟时间思考一下,前后桌可以商量。
12.2三角形全等的判定(1)
一、教学目标
1、三角形全等的“边边边”的条件.
2、经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
二、重点难点
教学重点:三角形全等的条件.
教学难点:寻求三角形全等的条件.
三、合作探究
1、复习:什么是全等三角形?全等三角形有些什么性质?
如图,△ABC ≌△A ′B ′C ′那么
相等的边是: 相等的角是:
2、(由学生回答,教师引导、指正)
三组对应边相等的两个三角形全等
已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? a .作图方法:
b .以小组为单位,把剪下的三角形重叠在一起,发现 ,•这说明这些三角形都是
的.
c .归纳:三边对应相等的两个三角形 全等,
简写为“边边边”或“SSS ”.
d 、用数学语言表述:
在△ABC 和'''A B C ∆中,
∵''AB A B AC BC =⎧⎪=⎨⎪=⎩ ∴△ABC ≌
用上面的规律可以判断两个三角形 .判
断 ,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.
四、精讲精练
C 'B 'A 'C B A
C 'B 'A 'C B A
例1、如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
A 求证:△ABD≌△ACD.
证明的书写步骤:
①准备条件:证全等时要用的间接条件要先证好;
②三角形全等书写三步骤:
A、写出在哪两个三角形中,
B、摆出三个条件用大括号括起来,
C、写出全等结论。
例2、尺规作图。
已知:∠AOB. 求作:∠DEF,使∠DEF=∠AOB
精练(由学生合作完成、教师点拨)
1、如图,AB=AE,AC=AD,BD=CE,
求证:△ABC ≌△ADE。
2、已知:如图,AD=BC,AC=BD.
求证:∠OCD=∠ODC
五、课堂小结: SSS。