北京市朝阳区2013年中考一模数学试题
- 格式:doc
- 大小:792.50 KB
- 文档页数:7
北京市朝阳区2013年初中毕业考试数学试卷第Ⅰ卷(选择题32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1. -7 的相反数是A . 7B .-7C .71 D .71-2.中国航空母舰“辽宁号”的满载排水量为67500吨。
将数67500用科学记数法表示为A .0.675×105B . 6. 75×104C . 67.5×103D . 675×1023.把4张形状、质地完全相同的卡片分别写上数字1,2,3,4,再将这些卡片放在一个不透明的盒子里,随机从中抽取1张卡片,则抽取的卡片上的数字为奇数的概率是A .41 B .31 C .21 D . 14.北京2013年3月的一周中每天最高气温如下:7, 13,15,16,15,17,19,则在这一周中,最高气温的众数和中位数分别是A .15和15B .15和16C . 16和15D .19和16 5. 如图,已知直线l 1//l 2,∠1=40°,则∠2的度数为A .30°B . 40°C . 50°D . 60° 6.如图,⊙O 的半径为5,AB 是弦,OC ⊥AB 于点C ,若OC=3,则AB 的长为A . 3B . 4C . 6D .87.二次函数21(1)32y x =-+的顶点在A.第一象限. B .第二象限.C .第象限D .第象限.8.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,AB=3,一动点P以1cm/s的速度延折线OB—BA运动,那么点P的运动时间x(s)与点C、O、P围成的三角形的面积y之间的函数图象为A B C D第Ⅱ卷(共68分)二.填空题(共5道小题,每小题4分,共20分)9. 若-2是方程062=+-mxx的一个根,则m= .10. 分解因式:2218m-=.11.侧面展开图是扇形的几何体是 .12.如图,菱形ABCD的一条对角线BD上一点O,到菱形一边AB的距离为2,那么点O到另外一边BC的距离为_________.13.若关于x的一元二次方程kx2-2x+1 = 0有两个实数根,则k的取值范围是.三.解答题(共9道小题,14题—20题每小题5分,21题6分,22题7分,共48 分)14.(本小题5分)计算:()1-)32(-45in2-82-1︒+s.解:15.(本小题5分)求不等式组()⎪⎩⎪⎨⎧≥-+>-12131325xxx的整数解.解:6如图所示,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,且BF=AC. 求证:DF=DC. 证明:17.列方程或方程组解应用题(本小题5分)动物园的门票售价:成人票每张50元,儿童票每张30元. 某日动物园售出门票700张,共得29000元. 请问当日儿童票售出多少张?解:18.(本小题5分)某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm ,测量时精确到1cm ):(1)请根据所提供的信息补全频数分布直方图;(2)写出该样本中,七年级学生身高的中位数所在组的范围; ;(3)如果该校七年级共有500名学生,那么估计该校七年级身高在160cm 及160cm 以上的学生共有 人;(4)若该校所在区的七年级学生平均身高为155 cm ,请结合以上信息,对该校七年级学生的身高情况提出一个你的见解./cm165~170cm已知:一次函数2+=x y 与反比例函数xk y =相交于A 、B 两点且A 点的纵坐标为4.(1)求反比例函数的解析式; (2)求△AOB 的面积. 解:20.(本小题5分)如图,AB 为⊙O 的直径,BC 是弦,OE ⊥BC ,垂足为F ,且与⊙O 相交于点E ,连接CE 、AE ,延长OE 到点D ,使∠ODB=∠AEC. (1)求证:BD 是⊙O 的切线; (2)若cosD=54,BC=8,求AB 的长.(1)证明:(2)解:如图,抛物线c xy +-=243与x 轴分别交于点A 、B ,直线2343+-=x y 过点B ,与y 轴交于点E ,并与抛物线c x y +-=243相交于点C .(1)求抛物线c xy +-=243的解析式;(2)直接写出点C 的坐标;(3)若点M 在线段A B 上以每秒1个单位长度的速度从点A 向点B 运动(不与点A 、B 重合),同时,点N 在射线B C 上以每秒2个单位长度的速度从点B 向点C 运动.设点M 的运动时间为t 秒,请写出M N B △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,M N B △的面积最大,最大面积是多少?解:在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,求AB 的长.北京市朝阳区2013年初中毕业考试数学试卷参考答案及评分标准一、选择题(共8道小题,每小题4分,共32分)二、填空题(共5道小题,每小题4分,共20分)9. -5 10. )(3)3(2-+a a 11. 圆锥 12. 2 13. k ≤1且k ≠0三、解答题(共9道小题,14题—20题每小题5分,21题6分,22题7分,共48 分) 14.解:原式23222221-⨯-+=.…………………………………………………………………4分.212-=………………………………………………………………………………5分15.解: 523(1)132x x x ->+⎧⎪⎨-≥⎪⎩ ①1 ②解① 得 x >25. …………………………………………………………………………2分解② 得 x ≤4. ……………………………………………………………………………4分 原不等式组的整数解为3和4. ……………………………………………………………5分16. 证明:∵AD ⊥BC ,∴∠BDF =∠ADC =90°. ……………………………………………………………………1分 ∴∠A +∠C =90°.又∵BE ⊥AC , ∴∠B +∠C =90°.∴∠B =∠A . …………………………………………………………………………………2分 又∵BF=AC ,…………………………………………………………………………………3分∴△BDF ≌△ADC . …………………………………………………………………………4分 ∴DF =DC . …………………………………………………………………………………5分17.解:设当日儿童票售出x 张,成人票售出y 张. ………………………………………………1分根据题意,得⎨⎧=+=+.290005030,700y x y x ……………………………………………………………………3分 解得⎩⎨⎧==.400,300y x …………………………………………………………………………………4分答:当日儿童票售出300张,成人票售出400张. ……………………………………………5分18. 解:(1)补图(图略); …………………………………………………………………………2分(2)155—160;…………………………………………………………………………………3分 (3)160 ;………………………………………………………………………………………4分 (4)如:该校七年级多数学生的身高达到或者超过区平均身高. ………………………5分(说明:其他合理解答均可)19.(1)根据题意,得4= x+2,解得x =2.∴A (2,4). 把A (2,4)代入xk y =,解得8=k . ∴xy 8=. …………………………………………2分(2)当0=y 时,02=+x ,2-=x .∴B (-2,0). ………………………………………3分 ∴OB =2.如图,作AC ⊥x 轴于点C ,∵A (2,4),∴AC =4. ∴S △AOB =.421=⋅⋅AC OB …………………………5分20.(1)证明:∵∠D =∠AEC ,∠AEC =∠ABC ,∴∠D =∠ABC . ………………………………………………………………………1分 ∵OF ⊥BC , ∴∠D +∠DBC =90°. ∴∠ ABC +∠DBC =90°.∴BD 是⊙O 的切线. ……………………………………………………………2分(2)解:如图,连接AC .∵ AB 是⊙O 的直径,∴∠ACB =90°.………………………………………3分 ∵∠ABC =∠D . ∴cos ∠ABC= cos D =54.即B C A B=54,……………………………………………4分∵BC =8,∴AB =10. …………………………………………5分21.解:(1)由2343+-=x y ,当0=y 时,解得2=x . ∴B (2,0).∵抛物线c x y +-=243经过点B (2,0),∴3=c .∴此抛物线的解析式为3432+-=x y .………………………………………………2分(2)C (1-,49). ………………………………………………………………………3分(3) 如图,作ND ⊥x 轴于点D ,由2343+-=x y 得E (0,23). ∴BE=25.由3432+-=x y 得A (-2,0). ∴AB=4.由题意,得AM =t ,BM =4-t ,BN =2t . 由△BND ∽△BEO ,得BE BN OEDN =.∴56t DN =. ………………………………………4分∴△MNB 的面积S 56)4(2121t t ND BM ⋅-⋅=⋅⋅=.∴t t S 512532+-=.…………………………………5分 即512)2(532+--=t S ,自变量t 的取值范围是0<t <4. t= 2时,512=最大S .…………………………………6分22. (1)证明:在矩形ABCD 中,∠A =∠FDM =90°.又∵AM =DM ,∠AME =∠DMF , ∴△AME ≌△DMF .∴ME =MF . ………………………………………2分 (2)解:如图,过点G 作GH ⊥AD 于点H .∴四边形ABGH 是矩形.∵△EGF 是等腰直角三角形, 由(1)得,ME =MF , ∴ME =MG , ∠EMG =90°.∴∠AME +∠DMG =∠HGM +∠DMG= 90°. ∴∠AME =∠HGM . 又∵∠A =∠MHG ,∴△AME ≌△HGM . ……………………………3分 ∴AM=HG . ∴AB=HG=AM=21AD=2. ………………………4分(3)解:如图,过点G 作GH ⊥AD ,交AD 的延长线于点H .∴四边形ABGH 是矩形.∵△EGF 是等边三角形,∠MEG =60°, 由(1)得,ME =MF , ∴∠EMG =90°.∴∠AME +∠HMG =∠AME +∠AEM = 90°. ∴∠AEM =∠HMG . 又∵∠A =∠AHG ,∴△AEM ∽△HGM . ……………………………5分 ∴EMMG AMGH =.∴tan ∠MEG=EMMG AMGH == tan 60°=3.又∵AM=21AD=2,∴AB=GH=23.…………………………………7分。
新世纪教育网精选资料 版权全部 @新世纪教育网九年级综合水平质量调研数学试卷2013.3学校 ___________________ 班级 _______________姓名 ________________ 学号 _____________考1. 本试卷共 8 页,共五道大题, 25 道小题,满分 120 分,考试时间 120 分钟 .生 2. 在试卷和答题卡上正确填写学校.班级.姓名.学号.须3. 试题答案一律填涂或书写在 答题卡 上,在试卷上作答无效 .知4. 考试结束,请将本试卷和答题卡一并交回.注 意 1 . 考生要按规定的要求在机读答题卡上作答,题号要对应,填涂要规范.事项 2 . 考试结束后,试卷和机读答题卡由监考人一并回收.第一卷(机读卷 32 分)一 1.4 的算术平方根是选 A . 2B .± 2C . 16D .± 16择2. 如图,已知 △ ABC 为直角三角形, ∠ C=90°,若 C题 沿图中虚线剪去∠ C , 则∠ 1+∠ 2 等于D本 A.90°B. 135 °E12题C. 150 °D. 270 °BA32第 2分题图,3.布袋中装有 1 个红球, 2 个白球, 3 个黑球,它们除颜色外完好同样,从袋中任每 小 意摸出一个球,摸出的球是白球..的概率是题 A .1B .1C . 1D .543626分4.某班的 9 名同学的体重分别是(单位:千克): 61,59, 70,59, 65,67,59,63,57,这组数据的众数和中位数分别是A . 59,61B .59,63C . 59, 65D . 57,61 5.全世界可被人类利用的淡水总量仅占地球上总水量的 0.00003 ,所以珍惜水、保护 水,是我们每一位公民当仁不让的责任.此中数字 0.00003 用科学记数法表示为A .3 10 4B .3 10 5C .0.310 4D .0.3 10 56.如图,模块①-⑤均由 4 个棱长为 1 的小正方体构成,模块⑥由 15 个棱长为 1的小正方体构成 .现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为 3 的大正方体 . 则以下选择方案中,能够达成任务的为新世纪教育网精选资料版权全部@新世纪教育网一选择题本题32分,每小题4分A.模块②,④,⑤B.模块①,③,⑤C.模块①,②,⑤D.模块③,④,⑤7.如图,两个齐心圆,大圆的弦 AB与小圆相切于点 P,大圆的弦CD经过点 P,且 CD=13, PC=4,则两圆构成的圆环的面积是A.16πB.36πC.52πD.81π第 7题图8. 矩形 ABCD 中,AD8cm, AB 6cm .动点E从点C开始沿边 CB 向点B以 2cm/s 的速度运动至点 B 停止,动点 F从点 C 同时出发沿边CD 向点 D 以 1cm/s 的速度运动至点D停止.如图可获得矩形CFHE ,设运动时间为 x(单位: s),此时矩形 ABCD 去掉矩形 CFHE 后节余部分的面积为y(单位: cm2) ,则 y 与 x 之间的函数关系用图象表示大概是以下图第 8题图中的注 1.第Ⅱ卷包含 4 道填空和 13 道解答,共 8 . 答前要真,看清目意要求,按要求真作答.事2.答笔迹要工整,画要清楚,卷面要整.3.考生除画能够用笔外,答必用色或黑色笔、珠笔.二填空本共16分,每小4分三解答本第二卷(非机读卷88 分)9.若分式 x 24的 0, x 的.x210.如,点 A、 B 、C是半径6的⊙O上的点,BB 30,AC 的_____________.AOC第 10如,在△ ABC 中, D、 E 分 AB、 AC 上的点, DE∥A 11.BC.若 AD =3, DB= 5,DE = 1.2, BC=.D EB C第 1112. 如,在ABC 中,A,ABC 的平分与ACD 的均分交于点A,得 A,11A1=. A1 BC 的均分与A1CD 的均分交于点A2,得A2,⋯⋯,A2009 BC 的均分与A2009CD的均分第 12交于点 A2010,得 A2010,A2010=.13.(本小 5 分)( 3 1)04sin6027题14. (本小题 5 分)共3x1430解不等式组x,并把它的解集表示在数轴上.2x2分,每小题5分15. (本小题 5 分)A D如图, E、F 是平行四边形ABCD 对角线 AC E上两点, BE ∥ DF ,求证:AF CE 。
北京市朝阳区2013年中考数学一模试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.请用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.2.(4分)(2013•朝阳区一模)中国航空母舰“辽宁号”的满载排水量为67500吨.将数675003.(4分)(2013•朝阳区一模)把4张形状、质地完全相同的卡片分别写上数字1,2,3,4,再将这些卡片放在一个不透明的盒子里,随机从中抽取1张卡片,则抽取的卡片上的数字为B∴抽取的卡片上的数字为奇数的概率是=4.(4分)(2013•朝阳区一模)北京2013年3月的一周中每天最高气温如下:7,13,15,5.(4分)(2013•朝阳区一模)如图所示,直线l1∥l2,∠1=40°,则∠2为()6.(4分)(2013•朝阳区一模)如图,⊙O的半径为5,AB为弦,OC⊥AB,垂足为C,若OC=3,则弦AB的长为()==47.(4分)(2013•朝阳区一模)二次函数y=(x ﹣1)2+3的顶点在( )y=8.(4分)(2013•朝阳区一模)如图,矩形ABCD 的两条对角线相交于点O ,∠BOC=120°,AB=3,一动点P 以1cm/s 的速度延折线OB ﹣BA 运动,那么点P 的运动时间x (s )与点C 、O 、P 围成的三角形的面积y 之间的函数图象为( )BAB=•=•二.填空题(共5道小题,每小题4分,共20分)9.(4分)(2013•朝阳区一模)如果2是方程x2﹣mx+6=0的一个根,那么m=5.10.(4分)(2013•朝阳区一模)因式分解:2x2﹣18=2(x+3)(x﹣3).11.(4分)(2013•朝阳区一模)侧面展开图是矩形的简单几何体是圆柱,棱柱.12.(4分)(2013•朝阳区一模)如图所示,菱形ABCD的一条对角线BD上一点O到菱形一边AB的距离为3,那么O点到另外一边BC的距离为3.13.(4分)(2013•朝阳区一模)若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是k≤1且k≠0.三.解答题(共9道小题,14题-20题每小题5分,21题6分,22题7分,共48分)14.(5分)(2013•朝阳区一模)计算:(1﹣)0+﹣2sin45°﹣()﹣1.﹣×﹣=﹣15.(5分)(2013•朝阳区一模)求不等式组的整数解.则不等式组16.(5分)(2013•朝阳区一模)如图所示,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,且BF=AC.求证:DF=DC.17.(5分)(2013•朝阳区一模)动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,共得29000元.求成人票和儿童票各售出多少张.,解得18.(5分)(2013•朝阳区一模)某学校为了解该校七年级学生的身高情况,抽样调查了部分同学身高,将所得数据处理后,制成扇形统计图和频数分布直方图(部分)如下(每组只含最低值不含最高值,身高单位:cm,测量时精确到1cm):(1)请根据所提供的信息补全频数分布直方图;(2)写出该样本中,七年级学生身高的中位数所在组的范围;155~160cm;(3)如果该校七年级共有500名学生,那么估计该校七年级身高在160cm及160cm以上的学生共有160人;(4)若该校所在区的七年级学生平均身高为155cm,请结合以上信息,对该校七年级学生的身高情况提出一个你的见解.19.(5分)(2013•朝阳区一模)已知:一次函数y=x+2与反比例函数y=相交于A、B两点且A点的纵坐标为4.(1)求反比例函数的解析式;(2)求△AOB的面积.y=得,y=组成方程组得,,,×4+20.(5分)(2013•朝阳区一模)如图,AB为⊙O的直径,BC是弦,OE⊥BC,垂足为F,且与⊙O相交于点E,连接CE、AE,延长OE到点D,使∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)若cosD=,BC=8,求AB的长.都对BF=CF=ABC=,=521.(6分)(2013•朝阳区一模)如图,抛物线y=﹣x2+c与x轴分别交于点A、B,直线y=﹣x+过点B,与y轴交于点E,并与抛物线y=﹣x2+c相交于点C.(1)求抛物线y=﹣x2+c的解析式;(2)直接写出点C的坐标;(3)若点M在线段AB上以每秒1个单位长度的速度从点A向点B运动(不与点A、B 重合),同时,点N在射线BC上以每秒2个单位长度的速度从点B向点C运动.设点M 的运动时间为t秒,请写出△MNB的面积S与t的函数关系式,并求出点M运动多少时间时,△MNB的面积最大,最大面积是多少?=x+过点﹣)联立抛物线及直线解析式可得:或,,)BE==EBO=,EBO==(×t=t t=((.﹣t最大面积是22.(7分)(2013•朝阳区一模)在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB=2.=cot60,== HG=AM=2=cot60===AM=2 AB=HG=2.。
2013年北京市朝阳区高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)(2013•朝阳区一模)i为虚数单位,复数的虚部是()A.B.C.D.考点:复数的基本概念;复数代数形式的乘除运算.专题:计算题.分析:利用复数的除法法则,把分子、分母分别乘以分母的共轭复数即可得出.解答:解:复数==的虚部是.故选A.点评:熟练掌握复数的运算法则和共轭复数是解题的关键.2.(5分)(2013•朝阳区一模)已知集合M={x|﹣2<x<3},N={x|lg(x+2)≥0},则M∩N=()A.(﹣2,+∞)B.(﹣2,3)C.(﹣2,﹣1]D.[﹣1,3)考点:交集及其运算.专题:函数的性质及应用.分析:解对数不等式可以求出集合N,进而根据集合交集及其运算,求出M∩N.解答:解:∵N={x|lg(x+2)≥0}=[﹣1,+∞),集合M={x|﹣2<x<3},则M∩N=[﹣1,3)故选D.点评:本题考查的知识点是对数不等式的解法,集合的交集及其运算,其中解不等式求出集合N是解答本题的关键.3.(5分)(2013•朝阳区一模)已知向量,.若,则实数m的值为()A.﹣3 B.C.D.考点:平行向量与共线向量;平面向量的坐标运算.专题:平面向量及应用.分析:先求得得==(3,1),再由,则这两个向量的坐标对应成比例,解方程求得实数m的值.解答:解:由题意可得==(3,1),若,则这两个向量的坐标对应成比例,即,解得m=﹣3,故选A.点评:本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于中档题.4.(5分)(2013•朝阳区一模)在极坐标系中,直线与曲线ρ=2cosθ相交于A,B两点,O为极点,则∠AOB的大小为()A.B.C.D.考点:点的极坐标和直角坐标的互化.专题:直线与圆.分析:把极坐标方程化为直角坐标方程,求出AC,DC的值,可得∠AOC的值,从而得到∠AOB=2∠AOC 的值.解答:解:直线ρcosθ=即x=,曲线ρ=2cosθ即ρ2=2ρcosθ,即(x﹣1)2+y2=1,表示以C(1,0)为圆心,以1为半径的圆.如图.Rt△ADC中,∵cos∠ACO==,∴∠ACO=,在△AOC中,AC=OC,∴∠AOC=,∴∠AOB=2∠AOC=,故选C.点评:本题考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,求出∠ACO是解题的关键.5.(5分)(2013•朝阳区一模)在下列命题中,①“”是“sinα=1”的充要条件;②的展开式中的常数项为2;③设随机变量ξ~N(0,1),若P(ξ≥1)=p,则.其中所有正确命题的序号是()A.②B.③C.②③D.①③考点:命题的真假判断与应用.专题:计算题.分析:①利用特殊值α=,判断出为假命题.②利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.③根据随机变量ξ~N(0,1),正态曲线关于x=0对称,得到对称区间对应的概率相等,根据大于1的概率得到小于﹣1的概率,根据对称轴一侧的区间的概率是,得到结果.解答:解:①是假命题.α=,是能推得sinα=1,反之,sinα=1,α可以为或其他数值.②:的通项为T r+1=C()r=2r﹣4C4r x12﹣4r令12﹣4r=0得r=3∴展开式的常数项为T4=C43=2;正确;③:∵随机变量ξ~N(0,1),∴正态曲线关于x=0对称,∵P(ξ≥1)=p,∴P(ξ<﹣1)=p,∴P(﹣1<ξ<0)=﹣p,正确.故选C.点评:本题考查命题真假的判断,考查了充要条件、二项式定理、正态分布等知识.6.(5分)(2013•朝阳区一模)某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.C.D.8考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:三视图复原的几何体是长方体的三分之二,依据三视图的数据,得出长方体长、宽、高,即可求出几何体的体积.解答:解:三视图复原的几何体是长方体,长方体长、宽、高分别是:2,2,3,所以这个几何体的体积是2×2×3=12,长方体被一个平面所截,得到的几何体的是长方体的三分之二,如图所示,则这个几何体的体积为12×=8.故选D.点评:此题考查了由三视图判断几何体,考查三视图的读图能力,计算能力,空间想象能力,本题是基础题,常考题型.7.(5分)(2013•朝阳区一模)抛物线y2=2px(p>0)的焦点为F,已知点A,B为抛物线上的两个动点,且满足∠AFB=120°.过弦AB的中点M作抛物线准线的垂线MN,垂足为N,则的最大值为()A.B.1C.D.2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设|AF|=a,|BF|=b,连接AF、BF.由抛物线定义得2|MN|=a+b,由余弦定理可得|AB|2=(a+b)2﹣ab,进而根据基本不等式,求得|AB|的取值范围,从而得到本题答案.解答:解:设|AF|=a,|BF|=b,连接AF、BF由抛物线定义,得|AF|=|AQ|,|BF|=|BP|在梯形ABPQ中,2|MN|=|AQ|+|BP|=a+b.由余弦定理得,|AB|2=a2+b2﹣2abcos120°=a2+b2+ab配方得,|AB|2=(a+b)2﹣ab,又∵ab≤()2,∴(a+b)2﹣ab≥(a+b)2﹣(a+b)2=(a+b)2得到|AB|≥(a+b).所以≤=,即的最大值为.故选:A点评:本题在抛物线中,利用定义和余弦定理求的最大值,着重考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等知识,属于中档题.8.(5分)(2013•朝阳区一模)已知函数f(x)=2x+1,x∈N*.若,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,则称(x0,n)为函数f(x)的一个“生成点”.函数f(x)的“生成点”共有()A.1个B.2个C.3个D.4个考点:函数的值;数列的求和.专题:压轴题;新定义.分析:由f(x0)+f(x0+1)+…+f(x0+n)=63,得(2x0+1)+[2(x0+1)+1]+…+[2(x0+n)+1]=63,化简可得(n+1)(2x0+n+1)=63,由,得或,解出即可.解答:解:由f(x0)+f(x0+1)+…+f(x0+n)=63,得(2x0+1)+[2(x0+1)+1]+…+[2(x0+n)+1]=63所以2(n+1)x0+2(1+2+…n)+(n+1)=63,即(n+1)(2x0+n+1)=63,由,得或,解得或,所以函数f(x)的“生成点”为(1,6),(9,2).故选B.点评:本题考查数列求和及函数求值,考查学生对问题的阅读理解能力解决问题的能力.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)(2013•朝阳区一模)在等比数列{a n}中,2a3﹣a2a4=0,则a3=2,{b n}为等差数列,且b3=a3,则数列{b n}的前5项和等于10.考点:等比数列的通项公式;等比数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a2a4=,代入已知可解得a3=2,进而可得b3=a3=2,代入等差数列的求和公式可得S5==,计算即可.解答:解:由等比数列的性质可得a2a4=,代入可得2a3﹣=0,解得a3=2,或a3=0(舍去);故b3=a3=2,由等差数列的求和公式和性质可得:数列{b n}的前5项和S5===5×2=10故答案为:2;10点评:本题考查等比数列和等差数列的性质和求和公式,属基础题.10.(5分)(2013•朝阳区一模)在△ABC中,a,b,c分别为角A,B,C所对的边.已知角A为锐角,且b=3asinB,则tanA=.考点:正弦定理.专题:解三角形.分析:由条件,利用正弦定理可得sinB=3sinAsinB,求得sinA的值,再由同角三角函数的基本关系求得tanA的值.解答:解:在△ABC中,角A为锐角,且b=3asinB,由正弦定理可得sinB=3sinAsinB,∵sinA≠0,故sinA=,∴cosA==tanA==,故答案为.点评:本题主要考查正弦定理,同角三角函数的基本关系,属于中档题.11.(5分)(2013•朝阳区一模)执行如图所示的程序框图,输出的结果S=20.考点:程序框图.分析:题目首先给累加变量S和循环变量i赋值,S=0,i=0.先执行一次运算S=S+2i﹣1,然后判断i≥6是否成立,不成立继续执行i=i+2,S=S+2i﹣1,成立时结束循环,输出S.解答:解:框图首先给累加变量S和循环变量i赋值,S=0,i=0.执行S=0+2×0﹣1=﹣1;判断0≥6不成立,执行i=0+2=2,S=﹣1+2×2﹣1=2;判断2≥6不成立,执行i=2+2=4,S=2+2×4﹣1=9;判断4≥6不成立,执行i=4+2=6,S=9+2×6﹣1=20;判断6≥6成立,跳出循环,输出S的值为20.故答案为20.点评:本题考查了程序框图,考查了直到型结构,直到型结构是先执行后判断,不满足条件执行循环,满足条件跳出循环,算法结束,是基础题.12.(5分)(2013•朝阳区一模)如图,圆O是△ABC的外接圆,过点C作圆O的切线交BA的延长线于点D.若,AB=AC=2,则线段AD的长是1;圆O的半径是2.考点:与圆有关的比例线段.专题:选作题.分析:①由切割线定理得CD2=DA•DB,即可得出DA;②由余弦定理可得∠DCA,利用弦切角定理可得∠ABC=∠DCA,再利用正弦定理得即可.解答:解:①∵CD是⊙O的切线,由切割线定理得CD2=DA•DB,CD=,DB=DA+AB=DA+2,∴,又DA>0,解得DA=1.②在△ACD中,由余弦定理可得cos∠ACD===,∵0<∠ACD<π,∴.根据弦切角定理可得∠ABC=∠DCA=.由正弦定理可得==4,∴R=2.故答案分别为1,2.点评:熟练掌握切割线定理、弦切角定理、正弦定理、余弦定理是解题的关键.13.(5分)(2013•朝阳区一模)函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x).当x∈[0,1]时,f(x)=2x.若在区间[﹣2,3]上方程ax+2a﹣f(x)=0恰有四个不相等的实数根,则实数a的取值范围是.考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:问题等价于在区间[﹣2,3]上函数f(x)与y=a(x+2)的图象有四个不同的交点,由函数的性质可作出它们的图象,由斜率公式可得边界,进而可得答案.解答:解:在区间[﹣2,3]上方程ax+2a﹣f(x)=0恰有四个不相等的实数根,等价于在区间[﹣2,3]上函数f(x)与y=a(x+2)的图象有四个不同的交点,由f(x+2)=f(x)可得函数的周期为2,且为偶函数,函数y=a(x+2)的图象为过定点(﹣2,0)且斜率为a的直线,作出它们的图象可得:由图图可知,当直线介于CB和CA之间符合题意,而由斜率公式可得k CB==,k CA==,故实数a的取值范围是:,故答案为:点评:不本题考查方程根的存在性及个数的判断,数形结合是解决问题的关键,属中档题.14.(5分)(2013•朝阳区一模)在平面直角坐标系xOy中,已知点A是半圆x2﹣4x+y2=0(2≤x≤4)上的一个动点,点C在线段OA的延长线上.当时,则点C的纵坐标的取值范围是[﹣5,5].考点:平面向量数量积的运算.专题:压轴题;平面向量及应用.分析:设点C(a,b),由题意可得=λ,且λ>0,当点A在点M(2,2)时,由=20,且a=b,解得b的值.当点A在点N(2,﹣2)时,由=20,且a=﹣b,解得b的值,从而求得C的纵坐标的取值范围.解答:解:半圆x2﹣4x+y2=0(2≤x≤4)即(x﹣2)2+y2=4 (2≤x≤4),设点C(a,b),由于与的方向相同,故=λ,且λ>0,当点A在点M(2,2)时,=2a+2b=20,且a=b,解得b=5.当点A在点N(2,﹣2)时,=2a+(﹣2b)=20,且a=﹣b,解得b=﹣5.综上可得,则点C的纵坐标的取值范围是[﹣5,5],故答案为[﹣5,5].点评:本题主要考查两个向量共线的性质,两个向量坐标形式的运算,体现了数形结合与分类讨论的数学思想,属于中档题三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•朝阳区一模)已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值及函数f(x)的单调递增区间;(Ⅱ)当时,求函数f(x)的取值范围.考点:二倍角的余弦;两角和与差的正弦函数;二倍角的正弦;正弦函数的单调性.专题:三角函数的图像与性质.分析:(Ⅰ)利用两角和的正弦公式,二倍角公式化简函数f(x)的解析式为,由此求得它的最小正周期.令,求得x的范围,即可得到函数f(x)的单调递增区间.(Ⅱ)因为,根据正弦函数的定义域和值域求得函数f(x)的取值范围.解答:解:(Ⅰ)==.…(4分)因为f(x)最小正周期为π,所以ω=2.…(6分)所以.由,k∈Z,得.所以函数f(x)的单调递增区间为[],k∈Z.…(8分)(Ⅱ)因为,所以,…(10分)所以.…(12分)所以函数f(x)在上的取值范围是[].…(13分)点评:本题主要考查两角和的正弦公式,二倍角公式,正弦函数的单调性和周期性,正弦函数的定义域和值域,属于中档题.16.(13分)(2013•朝阳区一模)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字﹣1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;(Ⅲ)在两次试验中,记卡片上的数字分别为ξ,η,试求随机变量X=ξ•η的分布列与数学期望EX.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(Ⅰ)根据古典概型概率计算公式求解:P(A)=;(Ⅱ)设事件B:在四次试验中,至少有两次卡片上的数字都为正数,则P(B)=1﹣P(),根据独立重复试验中某事件发生k次的概率计算公式即可求得;(Ⅲ)由题意可知ξ,η的可能取值为﹣1,0,1,2,从而随机变量X的可能取值为﹣2,﹣1,0,1,2,4.根据古典概型该类计算公式求得X取各值时的概率即可写出分布列,利用期望公式即可求得期望值;解答:解:(Ⅰ)设事件A:在一次试验中,卡片上的数字为正数,则.答:在一次试验中,卡片上的数字为正数的概率是.(Ⅱ)设事件B:在四次试验中,至少有两次卡片上的数字都为正数.由(Ⅰ)可知在一次试验中,卡片上的数字为正数的概率是.所以.答:在四次试验中,至少有两次卡片上的数字都为正数的概率为.(Ⅲ)由题意可知,ξ,η的可能取值为﹣1,0,1,2,所以随机变量X的可能取值为﹣2,﹣1,0,1,2,4.;;;;;.所以随机变量X的分布列为X ﹣2 ﹣1 0 1 2 4P所以.点评:本题考查离散型随机变量的分布列及期望,考查古典概型概率计算公式,考查学生对问题的阅读理解能力.17.(14分)(2013•朝阳区一模)如图,在四棱锥P﹣ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四边形ABCD满足BC∥AD,AB⊥AD,AB=BC=1.点E,F分别为侧棱PB,PC上的点,且.(Ⅰ)求证:EF∥平面PAD;(Ⅱ)当时,求异面直线BF与CD所成角的余弦值;(Ⅲ)是否存在实数λ,使得平面AFD⊥平面PCD?若存在,试求出λ的值;若不存在,请说明理由.考点:直线与平面平行的判定;异面直线及其所成的角;平面与平面垂直的判定.专题:计算题;空间位置关系与距离;空间角.分析:(Ⅰ)由==λ可知,EF∥BC,依题意,可求得EF∥AD,再利用线面平行的判断定理即可证得结论;(Ⅱ)可证得PA,AB,AD两两垂直,以之为轴建立空间直角坐标系,可求得与的坐标,利用向量的数量积即可求得异面直线BF与CD所成角的余弦值;(Ⅲ)设F(x0,y0,z0),则=(x0,y0,z0﹣2),=(1,1,﹣2),由=λ,可求得F(λ,λ,2﹣2λ),再设出平面AFD的一个法向量为n1=(x1,y1,z1),平面PCD的一个法向量为n2=(x2,y2,z2),可求得这两个法向量的坐标,利用n1•n2=0,即可求得λ的值.解答:证明:(Ⅰ)由已知,==λ,所以EF∥BC.因为BC∥AD,所以EF∥AD.而EF⊄平面PAD,AD⊂平面PAD,所以EF∥平面PAD.…(4分)(Ⅱ)因为平面ABCD⊥平面PAC,平面ABCD∩平面PAC=AC,且PA⊥AC,所以PA⊥平面ABCD.所以PA⊥AB,PA⊥AD.又因为AB⊥AD,所以PA,AB,AD两两垂直.…(5分)如图所示,建立空间直角坐标系,因为AB=BC=1,PA=AD=2,所以A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).当λ=时,F为PC中点,所以F(,,1),所以=(﹣,,1),=(﹣1,1,0).设异面直线BF与CD所成的角为θ,所以cosθ=|cos<,>|==,所以异面直线BF与CD所成角的余弦值为.…(9分)(Ⅲ)设F(x0,y0,z0),则=(x0,y0,z0﹣2),=(1,1,﹣2).由已知=λ,所以(x0,y0,z0﹣2)=λ(1,1,﹣2),所以,∴=(λ,λ,2﹣2λ).设平面AFD的一个法向量为n1=(x1,y1,z1),因为=(0,2,0),所以即,令z1=λ,得n1=(2λ﹣2,0,λ).设平面PCD的一个法向量为n2=(x2,y2,z2),因为=(0,2,﹣2),=(﹣1,1,0),所以即令x2=1,则n2=(1,1,1).若平面AFD⊥平面PCD,则n1•n2=0,所以(2λ﹣2)+λ=0,解得.所以当λ=时,平面AFD⊥平面PCD.…(14分)点评:本题考查直线与平面的平行,考查异面直线所成的角,考查面面垂直,突出考查空间直角坐标系在证明与计算中的应用.属于中档题.18.(13分)(2013•朝阳区一模)已知函数f(x)=x2﹣(a+2)x+alnx+2a+2,其中a≤2.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2]上有且只有一个零点,求实数a的取值范围.考点:利用导数研究函数的单调性;函数的零点.专题:导数的综合应用.分析:(I)先求函数的定义域再求函数的导数,当导数大于0时函数单调递增,当导数小于0时单调递减.(II)此题考查的是函数的零点存在问题.在解答的过程当中要先结合函数f(x)在区间(0,2]内有且只有一个零点的条件,结合(I)中确定函数的增减区间,求出函数的极小值和极大值,再转化出不等关系,利用此不等关系即可获得问题的解答.解答:解:(I)函数定义域为x>0,且f′(x)=2x﹣(a+2)+=…(2分)①当a≤0,即时,令f'(x)<0,得0<x<1,函数f(x)的单调递减区间为(0,1),令f'(x)>0,得x>1,函数f(x)的单调递增区间为(1,+∞).②当,即0<a<2时,令f'(x)>0,得或x>1,函数f(x)的单调递增区间为,(1,+∞).令f'(x)<0,得,函数f(x)的单调递减区间为.③当,即a=2时,f'(x)≥0恒成立,函数f(x)的单调递增区间为(0,+∞).…(7分)(Ⅱ)①当a≤0时,由(Ⅰ)可知,函数f(x)的单调递减区间为(0,1),f(x)在(1,2]单调递增.所以f(x)在(0,2]上的最小值为f(1)=a+1,由于,要使f(x)在(0,2]上有且只有一个零点,需满足f(1)=0或解得a=﹣1或a<﹣.②当0<a≤2时,由(Ⅰ)可知,(ⅰ)当a=2时,函数f(x)在(0,2]上单调递增;且,所以f(x)在(0,2]上有且只有一个零点.(ⅱ)当0<a<2时,函数f(x)在上单调递减,在(1,2]上单调递增;又因为f(1)=a+1>0,所以当时,总有f(x)>0.因为e<1<a+2,所以f(e)=e[e﹣(a+2)]+(alne+2a+2)<0.所以在区间(0,)内必有零点.又因为f(x)在(0,)内单调递增,从而当0<a≤2时,f(x)在(0,2]上有且只有一个零点.综上所述,0<a≤2或a<﹣或a=﹣1时,f(x)在(0,2]上有且只有一个零点.…(13分)点评:此题考查的是利用导数研究函数的单调性,函数的零点存在问题.在解答的过程当中充分体现了等价转化的思想,以及零点定理的相关知识.值得同学们体会反思.19.(14分)(2013•朝阳区一模)已知中心在原点,焦点在x轴上的椭圆C过点,离心率为,点A为其右顶点.过点B(1,0)作直线l与椭圆C相交于E,F两点,直线AE,AF与直线x=3分别交于点M,N.(Ⅰ)求椭圆C的方程;(Ⅱ)求的取值范围.考平面向量数量积的运算;椭圆的标准方程.点:圆锥曲线的定义、性质与方程.专题:分析:(Ⅰ)设椭圆的方程为,依题意可得a、b、c的方程组,解之可得方程;(Ⅱ)由(Ⅰ)可知点A的坐标为(2,0).(1)当直线l的斜率不存在时,不妨设点E在x轴上方,可得;(2)当直线l的斜率存在时,写直线的方程,联立方程组,消y并整理得(4k2+1)x2﹣8k2x+4k2﹣4=0.进而由根与系数的关系表示出向量的数量积为,由k 的范围可得其范围,综合可得.解答:解:(Ⅰ)由题意,设椭圆的方程为,依题意得解之可得a2=4,b2=1.所以椭圆C的方程为.…(4分)(Ⅱ)由(Ⅰ)可知点A的坐标为(2,0).(1)当直线l的斜率不存在时,不妨设点E在x轴上方,易得,,所以.…(6分)(2)当直线l的斜率存在时,由题意可设直线l的方程为y=k(x﹣1),显然k=0时,不符合题意.由消y并整理得(4k2+1)x2﹣8k2x+4k2﹣4=0.设E(x1,y1),F(x2,y2),则.直线AE,AF的方程分别为:,令x=3,则.所以,.…(10分) 所以======.…(12分)因为k 2>0,所以16k 2+4>4,所以,即.综上所述,的取值范围是.…(14分)点评: 本题考查平面向量数量积的运算,涉及椭圆的标准方程,以及直线与椭圆的位置关系的应用,属中档题.20.(13分)(2013•朝阳区一模)设τ=(x 1,x 2,…,x 10)是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义,其中x 11=x 1.(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S (τ)的值;(Ⅱ)求S (τ)的最大值;(Ⅲ)求使S (τ)达到最大值的所有排列τ的个数.考点: 排列及排列数公式;数列的求和.专题: 等差数列与等比数列;概率与统计.分析:(Ⅰ)依题意,τ=(x 1,x 2,…,x 10)=(10,9,8,7,6,5,4,3,2,1),代入S (τ)=|2x k﹣3x k+1|计算即可求得S(τ)的值;(Ⅱ)可求得数10,9,8,7,6,5,4,3,2,1的2倍与3倍,从而可求得其中较大的十个数之和与较小的十个数之和的差,从而可得S(τ)的最大值;(Ⅲ)利用数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,从而使S(τ)取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面,利用排列组合知识即可求得答案.解答:解:(Ⅰ)∵τ=(10,9,8,7,6,5,4,3,2,1),x11=x1,依题意,S(τ)=|2x k﹣3x k+1|,∴S(T)=|2x k﹣3x k+1|=7+6+5+4+3+2+1+0+1+28=57,.…(3分)(Ⅱ)数10,9,8,7,6,5,4,3,2,1的2倍与3倍分别如下:20,18,16,14,12,10,8,6,4,2,30,27,24,21,18,15,12,9,6,3其中较大的十个数之和与较小的十个数之和的差为203﹣72=131,所以S(τ)≤131.对于排列τ0=(1,5,6,7,2,8,3,9,4,10),此时S(τ0)=131,所以S(τ)的最大值为131.…(8分)(Ⅲ)由于数1,2,3,4所产生的8个数都是较小的数,而数7,8,9,10所产生的8个数都是较大的数,所以使S(τ)取最大值的排列中,必须保证数1,2,3,4互不相邻,数7,8,9,10也互不相邻;而数5和6既不能排在7,8,9,10之一的后面,又不能排在1,2,3,4之一的前面.设x1=1,并参照下面的符号排列1△○□△○□△○□△○其中2,3,4任意填入3个□中,有6种不同的填法;7,8,9,10任意填入4个圆圈○中,共有24种不同的填法;5填入4个△之一中,有4种不同的填法;6填入4个△中,且当与5在同一个△时,既可以在5之前又可在5之后,共有5种不同的填法,所以当x1=1时,使S (τ)达到最大值的所有排列τ的个数为6×24×4×5=2880,由轮换性知,使S(τ)达到最大值的所有排列τ的个数为28800.…(13分)点评:本题考查排列及排列数公式,考查抽象思维与综合分析能力,考查运算能力,属于难题.。
12. 如图1所示,圆上均匀分布着11个点12311,,,,A A A A .从A 1起每隔k 个点顺次连接,当再次与点A 1连接时,我们把所形成的图形称为“k +1阶正十一角星”,其中18k ≤≤(k 为正整数).例如,图2是“2阶正十一角星”,那么1211A A A ∠+∠++∠=°;当1211A A A ∠+∠++∠=900°时,k = .图1 图2(2013年北京市东城区一模数学12题)12. 在平面直角坐标系中,正方形ABCD 的位置如右图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于 点A 2,作正方形A 2B 2C 2C 1,…按这样的规律进行下去,第2013个正方形的面积为 .12.在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;……依此规律进行,点A6的坐标为;若点A n的坐标为(2013,2012),则n= .( 2013年北京市朝阳区一模数学12题)12. 在平面直角坐标系xOy中,动点P从原点O出发,每次向上平移1个单位长度或向右平移2个单位长度,在上一次平移的基础上进行下一次平移.例如第1次平移后可能到达的点是(0,1)、(2,0),第2次平移后可能到达的点是(0,2)、(2,1)、(4,0),第3次平移后可能到达的点是(0,3)、(2,2)、(4,1)、(6,0),依此类推…….我们记第1次平移后可能到达的所有点的横、纵坐标之和为l1,l1=3;第2次平移后可能到达的所有点的横、纵坐标之和为l2,l2=9;第3次平移后可能到达的所有点的横、纵坐标之和为l3,l3=18;按照这样的规律,l4= ;l n= (用含n的式子表示,n是正整数).12.我们把函数图象与x 轴交点的横坐标称为这个函数的零点.如函数12+=x y 的图象与x 轴交点的坐标为(21-,0),所以该函数的零点是-(1)函数542-+=x x y 的零点是 ; (2)如图,将边长为1的正方形ABCD 放置在平面直角坐标系xOy 中,且顶点A 在x 轴上.若正方形ABCD 沿x 轴正方向滚动,即先以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续.顶点D 的轨迹是一函数的图象,则该函数在其两个相邻零点间的图象与x 轴所围区域的面积为 .( 2013年北京市石景山区一模数学12题)12.将全体正整数排成一个三角形数阵:1 2 3 4 5 6 7 8 9 10. . . . . . .按照以上排列的规律,第5行从左到右的第3个数为_______;第n 行(n ≥3)从左到右的第3个数为 .(用含n 的代数式表示)12.如图,在△ABC 中,AB =AC =2,点P 在BC 上.若点P 为BC 的中点,则2m AP BP PC =+⋅的值为 ;若BC 边上有100个不同的点P 1,P 2,…,P 100,且m i =AP i 2+BP i ⋅P i C (i =1,2,…,100),则m =m 1+m 2+…+m 100 的值为 .( 2013年北京市顺义区一模数学12题)12.如图,边长为1的菱形ABCD 中,60DAB ∠=°,则菱形ABCD 的面积是 ,连结对角线AC ,以AC 为边作第二个菱形11ACC D ,使160D AC ∠=°;连结1AC ,再以1AC 为边作第三个菱形122AC C D ,使2160D AC ∠=°;……,按此规律所作的第n 个菱形的面积为___________.PCB AC 1D 1D 2C 2DA B图BA第12题图D 15D 2 D 3 D 4D 0C12.定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为31n +;②当n 为偶数时,结果为k n 2(其中k 是使得k n2为奇数的正整数),并且运算重复进行.例如,取6n =,则:12363105F F F −−−→−−−→−−−→① ②②第次第次第次……,若1n =,则第2次“F 运算”的结果是 ;若13n =,则第2013次“F 运算”的结果是 .( 2013年北京市大兴区一模数学12题)12.如图,正方形ABCD 边长为2cm ,动点P 从A 点出发,沿正方形的边按逆时针方向运动,当它的运动路程为2013cm 时,线段PA 的长为______cm ;当点P 第n 次(n 为正整数)到达点D 时,点P 的运动路程为______cm(用含n 的代数式表示).( 2013年北京市怀柔区一模数学12题)12. 如图,△ABC 是一个边长为2的等边三角形,AD 0⊥BC,垂足为点D 0.过点D 0作D 0D 1⊥AB,垂足为点D 1;再过点D 1作D 1D 2⊥AD 0,垂足为点D 2;又过点D 2作D 2D 3⊥AB,垂足为点D 3;……;这样一直作下去,得到一组线段:D 0D 1,D 1D 2,D 2D 3,……,则线段D 1D 2的长为 ,线段D n-1D n 的长为 (n 为正整数).12.观察下列等式:第1个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=311213111a ; 第2个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=5131215312a ; 第3个等式:⎪⎭⎫ ⎝⎛-⨯=⨯=7151217513a ; 第4个等式:⎪⎭⎫⎝⎛-⨯=⨯=9171219714a ; ………………………………请解答下列问题:(1)按以上规律列出第5个等式:a 5 = = ; (2)求a 1 + a 2 + a 3 + a 4 + … + a 100的值为( 2013年北京市平谷区一模数学12题)12.如图1、图2、图3,在ABC △中,分别以AB AC 、为边,向ABC △外作正三角形,正四边形,正五边形,BE CD 、相交于点O .如图4,AB AD 、是以AB 为边向ABC △外所作正n 边形的一组邻边;AC AE 、是以AC 为边向ABC △外所作正n (n 为正整数)边形的一组邻边.BE CD 、的延长相交于点O .图1中BOC ∠= ;图4中BOC ∠= (用含n 的式子表示).12.如图,在平面直角坐标系xOy 中,点0M 的坐标为(1,0),将线段0OM 绕原点O 沿逆时针方向旋转45︒,再将其延 长到1M ,使得001OM M M ⊥,得到线段1OM ;又将线段 1OM 绕原点O 沿逆时针方向旋转45︒,再将其延长到2M ,使得112OM M M ⊥,得到线段2OM ,如此下去,得到线 段3OM ,4OM ,,则点1M 的坐标是 ,点M 5的坐标是 ;若把点)(n n n y x M ,(n 是自然数)的横坐标n x ,纵坐 标n y 都取绝对值后得到的新坐标(),n n x y 称之为点n M 的绝对坐标, 则点83n M +的绝对坐标是 (用含n 的代数式表示).( 2013年北京市房山区一模数学12题)12.如图,在平面直角坐标系中,以原点O4,…,同心圆与直线y x =和y x =-分别交于1A ,2A ,3A ,4A ,…,则点31A 的坐标是 .12.观察下面一列数的规律并填空:0,3,8,15,24,…,则它的第2013个数是 .第n个数是_________ .。
2013年北京市各区中考一模试题汇编之--------图形操作题2013年海淀一模22.问题:如图1,a 、b 、c 、d 是同一平面内的一组等距平行线(相邻平行线间的距离为1).画出一个正方形A B C D ,使它的顶点A 、B 、C 、D 分别在直线a 、b 、d 、c 上,并计算它的边长.图1 图2小明的思考过程:他利用图1中的等距平行线构造了33⨯的正方形网格,得到了辅助正方形E F G H ,如图2所示, 再分别找到它的四条边的三等分点A 、B 、C 、D ,就可以画出一个满足题目要求的正方形.请回答:图2中正方形A B C D 的边长为 . 请参考小明的方法,解决下列问题:(1)请在图3的菱形网格(最小的菱形有一个内角为60︒,边长为1)中,画出一个等边△A B C ,使它的顶点A 、B 、C 落在格点上,且分别在直线a 、b 、c 上;(3)如图4,1l 、2l 、3l 是同一平面内的三条平行线,1l 、2l 之间的距离是215,2l 、3l 之间的距离是2110,等边△A B C 的三个顶点分别在1l 、2l 、3l 上,直接写出△A B C 的边长.图3 图42013年西城一模22.先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图,点A、B、C、D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1) 如图1,在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C的坐标为(3,0).①在图1中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在x轴的正半轴上有一点D,且∠ACB =∠ADB,则点D的坐标为;(2) 如图2,在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.点P为x轴正半轴上的一个动点,当∠APB达到最大时,直接写出此时点P的坐标.2013年东城一模22. 如图,在菱形纸片ABCD中,AB=4cm,∠ABC=120°,按下列步骤进行裁剪和拼图:第一步:如图1,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图2,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图3,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,再与三角形纸片EGH拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)(1)请你在图3中画出拼接成的四边形;(2)直接写出拼成的四边形纸片周长的最小值为________cm,最大值为________cm.2013年朝阳一模22.(本小题7分)在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,求AB的长.22.问题解决:已知:如图,D 为AB 上一动点,分别过点A 、B 作AB CA ⊥于点A ,AB EB ⊥于点B ,联结CD 、DE .(1)请问:点D 满足什么条件时,DE CD +的值最小?(2)若8=AB ,4=AC ,2=BE ,设x AD =.用含x 的代数式表示DE CD +的长(直接写出结果). 拓展应用:参考上述问题解决的方法,请构造图形, 并求出代数式()22144x x ++-+的最小值.2013年门头沟一模22.操作与探究:在平面直角坐标系xOy 中,点P 从原点O 出发,且点P 只能每次向上平移2个单位长度或向右平移1个单位长度. (1)实验操作:在平面直角坐标系xOy 中,点P 从原点O 出发, 平移1次后可能到达的点的坐标是(0,2),(1,0);点P 从原点O 出发,平移2次后可能到达的点的坐标是(0,4),(1,2),(2,0);点P 从原点O 出发,平移3次后可能到达的点的坐标是 ; (2)观察发现:任一次平移,点P 可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数22+-=x y的图象上;平移2次后在函数42+-=x y的图象上,….若点P 平移5次后可能到达的点恰好在直线3yx=上,则点P 的坐标是 ;(3)探究运用:点P 从原点O 出发经过n 次平移后,到达直线x y =上的点Q ,且平移的路径长不小于30,不超过32,求点Q 的坐标.AB CDExO1y122.如图1,在四边形A B C D中,A B C D、分别是B C A D、的中点,连结E F=,E F并延长,分别与B A C D∠=∠(不需证明).、的延长线交于点M N、,则B M E C N E小明的思路是:在图1中,连结B D,取B D的中点H,连结H E H F、,根据三角形中位线定理和平行线性质,可证得B M E C N E∠=∠.问题:如图2,在A B C、、分别是B C A D △中,A C A B>,D点在A C上,A B C D=,E F的中点,连结E F并延长,与B A的延长线交于点G,若60E F C∠=°,连结G D,判断△的形状并证明.A G D2013年房山一模22.已知,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行操作:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE 重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片. (注:裁剪和拼图过程均无缝且不重叠)(1)通过操作,最后拼成的四边形为(2)拼成的这个四边形的周长的最小值为_______________________________cm,最大值为___________________________cm.22. 如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形A B C D 的边长为2,E 是A D 的中点,沿C E 将菱形A B C D 剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图;(2)若所拼成的直角三角形、等腰梯形、矩形的面积分别记为S 1、S 2、S 3,周长分别记为l 1、l 2、3l ,判断所拼成的三种图形的面积、周长的大小关系(用“=”、“>”、“<”、“≤):面积关系是 ; 周长关系是 .2013年延庆一模22. 操作与探究:(本题满分5分)阅读下面材料:将正方形ABCD (如图1)作如下划分:第1次划分:分别联结正方形ABCD 对边的中点(如图2),得线段HF 和EG ,它们交于点M ,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH 按上述方法再作划分,得图3,则图3中共有_______个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD 划分成有2013个正方形的图形?需说明理由.图3图2图1MFGHEMFGHEABABABDCCDCD第22题图(矩形)(等腰梯形)(直角三角形)E DCBA ②①第22题图图①图②图③CB EC BE G HM NC BE G HM N A D22.如图,长方形纸片ABCD 中,AB =8cm ,AD =6cm ,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD 上任意取一点E ,沿EB ,EC 剪下一个三角形纸片EBC (余下部分不再使用);第二步:如图②,沿三角形EBC 的中位线GH 将纸片剪成两部分,并在线段GH 上任意取一点M ,线段BC 上任意取一点N ,沿MN 将梯形纸片GBCH 剪成两部分;第三步:如图③,将MN 左侧纸片绕G 点按顺时针方向旋转180︒,使线段GB 与GE 重合,将MN 右侧纸片绕H 点按逆时针方向旋转180︒,使线段HC 与HE 重合,拼成一个与三角形纸片EBC 面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠). (1)所拼成的四边形是什么特殊四边形?(2)拼成的这个四边形纸片的周长的最小值是多少?22.操作与探究:如图,在平面直角坐标系xOy 中,已知点0M 的坐标为(1,0).将线段0OM绕原点O 沿逆时针方向旋转45,再将其延长到1M ,使得01OMMM ⊥,得到线段1OM ;又将线段1OM绕原点O 沿逆时针方向旋转45,再将其延长到2M ,使得112OMMM ⊥,得到线段2OM,如此下去,得到线段3OM ,4OM,…,n OM .(1)写出点M 5的坐标; (2)求56O M M △的周长;(3)我们规定:把点)(n n n y x M ,(=n 0,1,2,3…)的横坐标n x ,纵坐标n y 都取绝对值后得到的新坐标()n ny x,称之为点nM的“绝对坐标”.根据图中点n M的分布规律,请写出点n M 的“绝对坐标”.2013年燕山一模22.阅读下列材料:问题:如图⑴,已知正方形ABCD 中,E 、F 分别是BC 、CD 边上的点,且 ∠EAF =45°. 判断线段BE 、EF 、FD 之间的数量关系,并说明理由.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△DAF 绕点A 顺时针旋转90°,得到△BAH ,然后通过证明三角形全M 5M 4M 3M 2M 1O M 0-55-55 y x等可得出结论.请你参考小明同学的思路,解决下列问题:⑴ 图⑴中线段BE 、EF 、FD 之间的数量关系是;⑵ 如图⑵,已知正方形ABCD 边长为5,E 、F 分别是BC 、CD 边上的点,且∠EAF =45°,AG ⊥EF 于点G ,则AG 的长为 ,△EFC 的周长为 ; ⑶ 如图⑶,已知△AEF 中,∠EAF =45°,AG ⊥EF 于点G ,且EG =2,GF =3,则△AEF 的面积为 . 是 .2013年大兴一模22.分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD 1E 1和正方形BCD 2E 2,连结D 1D 2.(1)如图1,过点C 作直线HG 垂直于直线AB 于点H ,交D 1D 2于点G .试探究线段GD 1与线段GD 2的数量关系,并加以证明.(2)如图2,CF 为AB 边中线,试探究线段CF 与线段D 1D 2的数量关系,并加以证明.2013年昌平一模图⑴ 图⑵ 图⑶FA EBCDGG E AFAEBC FDH 图2D 2D 1E 2E 1FCBA22. (1)人教版八年级数学下册92页第14题是这样叙述的:如图1,□ABCD 中,过对角线BD 上一点P 作EF ∥BC ,HG ∥AB ,图中哪两个平行四边形的面积相等?为什么? 根据习题背景,写出面积相等的一对平行四边形的名称为 和 ; (2)如图2,点P 为□ABCD 内一点,过点P 分别作AD 、AB 的平行线分别交□ABCD的四边于点E 、F 、G 、H . 已知S □BHPE = 3,S □PFDG = 5,则P A C S ∆= ; (3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD 的面积为11,则菱形EFGH 的周长为 .图2图3图1⑤④③②①H PA BGEH DF C ABGEP DF C HGFE DCBA2013年怀柔一模22. 理解与应用:我们把对称中心重合、四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等..... 一条直线l 与方形环的边线有四个交点M 、'M 、'N 、N .小明在探究线段'MM 与N N ' 的数量关系时,从点'M 、'N 向对边作垂线段E M '、F N ',利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)直线l 与方形环的对边相交时(22题图1),直线l 分别交AD 、D A ''、C B ''、BC 于M 、'M 、'N 、N ,小明发现'MM 与N N '相等,请你帮他说明理由;(2)直线l 与方形环的邻边相交时(22题图2),l 分别交AD 、D A ''、C D ''、DC 于M 、'M 、'N 、N ,l 与DC 的夹角为α,请直接写出NN MM ''的值(用含α的三角函数表示).MACD'N B'C E'B 'M 'A 'D NFl (α222题图'N A CDE BM N'A 'D F'M 'C 'B l122题图。
2013圆一模汇总燕山如图,△ABC 中,AC =B C 错误!未找到引用源。
错误!未找到引用源。
.以B C 为直径作⊙O 交错误!未找到引用源。
于点错误!未找到引用源。
,交错误!未找到引用源。
于点G .作直线错误!未找到引用源。
交AC 错误!未找到引用源。
于点错误!未找到引用源。
,交错误!未找到引用源。
的延长线于点错误!未找到引用源。
.⑴求证:直线EF 是错误!未找到引用源。
的切线; ⑵若BC =6,AB =43,求DE 的长. 延庆如图,AB 是⊙O 的直径,AC 和BD 是它的两条切线,CO 平分∠ACD .(1)求证:CD 是⊙O 的切线; (2)若AC=2,BD=3,求AB 的长. 通州已知:如图,AB 是⊙O 的直径,AC 是弦.过点A 作∠BAC 的角平分线,交⊙O 于点D ,过点D 作AC 的垂线,交AC 的延长线于点E .(1)求证:直线ED 是⊙O 的切线;OFEBADCGEA BC DOEO FO 的值.(2)连接EO,交AD于点F,若5AC=3AB,求昌平如图,四边形ABCD 是⊙O 的内接正方形,延长AB 到E ,使BE =AB ,连接CE . (1)求证:直线CE 是⊙O 的切线;(2)连接OE 交BC 于点F ,若OF =2 , 求EF 的长.EDC BAO F通州已知:如图,AB 是⊙O 的直径,AC 是弦.过点A 作∠BAC 的角平分线,交⊙O 于点D ,过点D 作AC 的垂线,交AC 的延长线于点E .(1)求证:直线ED 是⊙O 的切线; (2)连接EO ,交AD 于点F ,若5AC =3AB ,求EO FO的值.顺义如图,已知ABC △,以AC 为直径的O 交AB 于点D ,点E 为 AD 的中点,连结CE 交AB 于点F ,且BF BC =.(1)判断直线BC 与⊙O 的位置关系,并证明你的结论; (2)若O 的半为2,3cos 5B =,求CE 的长.EA BC DOF OEDC BACBE AOD 石景山如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =1,ED =2. (1)求证:∠ABC =∠ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接FA ,试判断直线FA 与⊙O 的 位置关系,并说明理由. 平谷如图,AB 是O ⊙的直径,点C 在O ⊙上,CAB ∠的平分线交O ⊙于点D ,过点D 作AC 的垂线交AC 的延长线于点E ,连接BC 交AD 于点F .(1)求证:ED 是O ⊙的切线; (2)若108AB AD ==,,求CF 的长. 密云如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N . (1)求证:=OM AN(2)若O 的半径=3R ,=9PA,求OM 的长.已知:如图,AB 是⊙O 的直径,AC 是⊙O 的弦,M 为AB 上一点,过点M 作DM ⊥AB ,交弦AC 于点E ,交⊙O 于点F ,且DC =DE .(1)求证:DC 是⊙O 的切线;(2)如果DM =15,CE =10,5cos 13AEM ∠=,求⊙O 半径的长.怀柔如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC , ∠COB=2∠PCB.(1)求证:PC 是⊙O 的切线;(2)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN ·MC 的值. 丰台已知:如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,E 是BC 的中点,连结DE . (1)求证:DE 与⊙O 相切; (2)连结OE ,若cos ∠BAD =35,BE =143,求OE 的长.OE MF DC BACEOB AD已知:如图,过正方形ABCD 的顶点B 作直线BE 平行于对角线AC ,AE=AC (E ,C 均在AB 的同侧). 求证:∠CAE=2∠BAE . 东城如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙O 的切线 交OE 的延长线于点F ,连结CF 并延长交BA 的延长线于点P . (1)求证:PC 是⊙O 的切线.(2)若AB =4,AP ∶PC =1∶2,求CF 的长. 朝阳如图,⊙O 是△ABC 是的外接圆,BC 为⊙O 直径,作∠CAD =∠B ,且点D 在BC 的延长线上. (1)求证:直线AD 是⊙O 的切线; (2)若sin ∠CAD =24,⊙O 的半径为8,求CD 长.DABC OPO C BAI海淀已知:如图,在△ABC 中,AB AC =.以AB 为直径的⊙O 交BC 于点D ,过点D 作DE ⊥AC 于点E . (1)求证:DE 与⊙O 相切;(2)延长DE 交BA 的延长线于点F .若6AB =,sin B =5,5求线段AF 的长.西城如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作FE ⊥AB 于点E ,交AC 的延长线于点F .(1) 求证:EF 与⊙O 相切;(2) 若AE=6,sin ∠CFD=35,求EB 的长.。
2013年北京市各城区中考一模代数综合题23题汇总1、(2013年一模门头沟)23.已知关于x 的一元二次方程21(2)2602x m x m +-+-=.(1)求证:无论m 取任何实数,方程都有两个实数根; (2) 当<3m 时,关于x 的二次函数21(2)262y x m x m =+-+-的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且2AB =3OC ,求m 的值;2、(2013年一模丰台)23.二次函数2y x bx c =++的图象如图所示,其顶点坐标为M (1,-4). (1)求二次函数的解析式;(2)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合新图象回答:当直线y x n =+与这个新图象有两个公共点时,求n 的取值范围.(3)在(2)的条件下,过点C 作直线l ∥x 轴,将二次函数图象在y 轴左侧的部分沿直线l 翻折,二次函数图象的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答:当直线13y x b =+与图象G 只有一个公共点时,b 的取值范围.3、(2013年一模平谷)23. 已知关于m 的一元二次方程221x mx +-=0. (1)判定方程根的情况;(2)设m 为整数,方程的两个根都大于1-且小于32,当方程的两个根均为有理数时,求m 的值.4、(2013年顺义一模)23.已知关于x 的方程2(32)220mx m x m -+++= (1)求证:无论m 取任何实数时,方程恒有实数根.(2)若关于x 的二次函数2(32)22y mx m x m =-+++的图象与x 轴两个交点的横坐标均为正整数,且m 为整数,求抛物线的解析式.5、(2013年石景山一模)23. 如图,直线33y x =-+交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线1C 交x 轴于另一点M (-3,0). (1)求抛物线1C 的解析式;(2)直接写出抛物线1C 关于y 轴的对称图形2C 的解析式; (3)如果点'A 是点A 关于原点的对称点,点D 是图形2C 的顶点,那么在x 轴上是否存在点P ,使得△PAD 与△'A BO是相似三角形?若存在,求出符合条件的P 点坐标;若不存在,请说明理由.6、(2013年海淀一模)23.在平面直角坐标系xOy 中,抛物线22y mx mx n =-+与x 轴交于A 、B 两点,点A 的坐标为(2,0)-.(1)求B 点坐标; (2)直线y =12x +4m +n 经过点B . ①求直线和抛物线的解析式;②点P 在抛物线上,过点P 作y 轴的垂线l ,垂足为(0,)D d .将抛物线在直线l 上方的部分沿直线l 翻折,图象的其余部分保持不变,得到一个新图象G .请结合图象回答:当图象G 与直线y =12x +4m +n 只有两个公共点时,d 的取值范围是 .7、(2013年西城一模)23.已知关于x 的一元二次方程22(4)0x a x a +++=.(1) 求证:无论a 为任何实数,此方程总有两个不相等的实数根; (2) 抛物线21:2(4)C y x a x a =+++与x 轴的一个交点的横坐标为2a,其中0a ≠,将抛物线1C 向右平移14个单位,再向上平移18个单位,得到抛物线2C .求抛物线2C 的解析式; (3) 点A (m ,n )和B (n ,m )都在(2)中抛物线C 2上,且A 、B 两点不重合,求代数式33222m mn n -+的值.8、(2013年通州一模)23. 已知二次函数()2214y x k x k =-++的图象与x 轴分别交于点()1,0A x 、()2,0B x ,且32-<1x <12-. (1)求k 的取值范围;(2)设二次函数()2214y x k x k =-++的图象与y 轴交于点M ,若OM OB =,求二次函数的表达式;(3)在(2)的条件下,若点N 是x 轴上的一点,以N 、A 、M 为顶点作平行四边形,该平行四边形的第四个顶点F 在二次函数()2214y x k x k =-++的图象上,请直接写出满足上述条件的平行四边形的面积.9、(2013年东城一模)23. 已知关于x 的一元二次方程x 2+(m +3)x +m +1=0. (1)求证:无论m 取何值,原方程总有两个不相等的实数根; (2)当m 为何整数时,原方程的根也是整数.10、(2013年朝阳一模) 23.二次函数2134y x x n =++-的图象与x 轴只有一个交点;另一个二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交于两点,这两个交点的横坐标都是整数,且m 是小于5的整数. 求(1)n 的值;(2)二次函数2222(1)46y nx m x m m =--+-+的图象与x 轴交点的坐标.11、(2013年密云一模)2312、(2013年延庆一模)24. (本题满分7分)如图,已知平面直角坐标系xOy ,抛物线y=-x 2+bx +c 过点A(4,0)、B(1,3) .(1)求该抛物线的解析式,并写出该抛物线的对称轴和顶点坐标; (2)记该抛物线的对称轴为直线l ,设抛物线上的点P(m,n)在第四象限,点P 关于直线l 的对称点为E ,点E 关于y 轴的对称点为F ,若四边形OAPF 的面积为20,求m 、n 的值.13、(2013年房山一模)23.已知,抛物线2y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式.(2)若直线y kx b =+(k ≠0)与抛物线交于点A (32,m )和B (4,n ),求直线的解析式. (3)设平行于y 轴的直线x=t 和x=t+2分别交线段AB 于E 、F ,交二次函数于H 、G. ①求t 的取值范围②是否存在适当的t 值,使得EFGH 是平行四边形?若存在,求出t 值;若不存在,请说明理由.14、(2013年昌平一模)23. 已知抛物线22y x kx k =-+-+.(1)求证:无论k 为任何实数,该抛物线与x 轴都有两个交点; (2)在抛物线上有一点P (m ,n ),n <0,OP =103,且线段OP与x 轴正半轴所夹锐角的正弦值为45,求该抛物线的解析式;(3)将(2)中的抛物线x 轴上方的部分沿x 轴翻折,与原图象的另一部分组成一个新的图形M ,当直线y x b =-+与图形M 有四个交点时,求b 的取值范围.15、(2013年怀柔一模)23. 已知关于x 的方程03)13(2=+++x k kx . (1)求证:无论k 取任何实数时,方程总有实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,求k 值;(3)在(2)的条件下,设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.16、(2013年大兴一模)23.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.。