与圆切线性质有关的证明及计算十九(针对陕西中考第24题)
- 格式:doc
- 大小:63.50 KB
- 文档页数:2
切线性质定理证明过程,证明圆的切线的几种方法切线长度定理:从圆外的一点引向圆的两条切线长度相等,圆心与此点的连线平分两条切线的夹角。
证明圆的切线的性质定理我们大多数情况下用反证法来证明切线的性质定理:假设圆O的切线l与OA不垂直,作OM垂直于l于M,因“垂线段短”,故OA>OM,即圆心到切线的距离小于半径,这与“切线到圆心的距离等于半径”矛盾,故直线l与圆O一定垂直。
圆的切线的性质切线的主要性质有以下几点:1、切线和圆唯有一个公共点;2、切线和圆心的距离等于圆的半径;3、切线垂直于经过切点的半径;4、经过圆心垂直于切线的直线必过切点;5、经过切点垂直于切线的直线必过圆心;6、从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项以上内容是圆的切线的性质定理及其证明方法。
掌握和熟悉这一重要内容和核心考点,对考生处理数学几何问题很有帮助。
为此,考生必须努力学习。
连接圆心和切点,按照直线与圆相切的定义,可证切线与过切点的半经垂直证明圆的切线的迅速方式?1、已知条件中直线与圆若有公共点,且存在连接公共点的半径,可直接按照“经过直径的一端,还垂直于这条直径的直线是圆的切线”来证明。
口诀是“见半径,证垂直”。
2、条件中若给出了直线和圆的公共点,但没有给出过这个点的半径,则连结公共点和圆心,然后按照“经过半径的外端且垂直于这条半径的直线是圆的切线”这个定理来证明,口诀是“连半径,证垂直”。
3、已知条件若没有给出了直线和圆的公共点,则过圆心向这条直线引垂线,然后按照“到圆心的距离等于半径的直线是圆的切线”这个定理来证明,口诀是“作垂直,证半径”。
如何证明圆的切线?切线的判定定理:通过半径外端并垂直于该半径的直线是圆的切线。
切线的性质定理:圆的切线垂直于通过切点的半径。
根据这两个定理,我们可以得到证明圆的切线在大多数情况下的思路。
1、连半径,证垂直2、作垂线,证半径圆如何正切线?相切圆有四种方法:1。
证明圆的切线专题证明一条直线是圆的切线,主要有两个思路:1是证这条直线到圆心的距离等于这个圆的半径:2,是利用切线的判判定定理,证明这条直线经过一条半径的外端,并且和这条半径垂直.1不常用,一般常用2.1. 如图,在Rt ABC ∆中,90C ︒∠=,点D 是AC 的中点,且90A CDB ︒∠+∠=,过点,A D 作O e ,使圆心O 在AB 上,O e 与AB 交于点E .(1)求证:直线BD 与O e 相切;(2)若:4:5,6AD AE BC ==,求O e 的直径.2.如图,在Rt △ABC 中,∠C=90º,O 、D 分别为AB 、BC 上的点,经过A 、D 两点的⊙O 分别交AB 、AC 于点E 、F ,且D 为»EF的中点。
(1)(4分)求证:BC 与⊙O 相切(2)(4分)当AD=23,∠CAD=30º时,求»AD 的长。
3. 如图,已知CD 是ΘO 的直径,AC ⊥CD ,垂足为C ,弦DE ∥OA ,直线AE 、CD 相交于点B .(1)求证:直线AB 是OO 的切线;(2)如果AC =1,BE =2,求tan ∠OAC 的值.4. 如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。
(1)求证:DE 是⊙O 的切线;(2)如果BC =8,AB =5,求CE 的长。
5.如图,在△ABC 中,∠C=90°,∠ACB 的平分线交AB 于点O ,以O 为圆心的⊙O 与AC 相切于点D .(1)求证:⊙O 与BC 相切;(2)当AC=3,BC=6时,求⊙O 的半径6. 如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点D ,C ,DO 平分∠A DC .(1)求证:CD 是⊙O 的切线;(2)若AD=4,BC=9,求⊙O 的半径R .7.如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.OPCB A O P CB A8.如图,AB为⊙O的直径,弦CD与AB相交于E,DE=EC,过点B的切线与AD的延长线交于F,过E 作EG⊥BC于G,延长GE交AD于H.(1)求证:AH=HD;(2)若cos∠C= 4/5,,DF=9,求⊙O的半径9.如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.10如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.11.如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .(1)求证:CF 是⊙O 的切线;(2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,求BN 的长.12、如图,PA 为⊙O 的切线,A 为切点,直线PO 交⊙O 与点E ,F 过点A 作PO 的垂线AB 垂足为D ,交⊙O 与点B ,延长BO 与⊙O 交与点C ,连接AC ,BF .(1)求证:PB 与⊙O 相切;(2)试探究线段EF ,OD ,OP 之间的数量关系,并加以证明;(3)若AC=12,tan ∠F=,求cos ∠ACB 的值.。
中考复习证明圆的切线的两种方法证明圆的切线有两种方法,其中一种是通过切线与半径的关系来证明,另一种是通过圆的切线与半径的垂直关系来证明。
首先,我们来看第一种方法。
1.通过切线与半径的关系证明:设圆的圆心为O,半径为r,切线与圆的切点为A。
由圆的性质可知,半径与切线在切点处垂直,因此OA⊥TA。
又因为同一条直线上的两个垂直角相等,所以∠OTA=90°。
设切线与半径的交点为B,连接OB。
由于切线只有一个触点,所以TA=TB=r,且AB为直径。
在△OAB中,∠OAB=90°,所以角OAB也是直角,即AB垂直于OA。
综上所述,切线与半径在切点处垂直,即切线是与半径垂直的直线。
接下来,我们来看第二种方法。
2.通过圆的切线与半径的垂直关系证明:设圆的圆心为O,半径为r,切线与圆的切点为A。
由圆的性质可知,切线与半径在切点处垂直,即OA⊥AT。
在△OAT中,角AOT是圆心角,它对应的弧AT是它所对的弧,所以∠AOT=1/2arc(AT)。
而角AOT是直角,所以∠AOT=90°。
所以1/2arc(AT)=90°,即arc(AT)=180°,即AT是整个圆的弧。
同理可知切线与半径相交于切点处的弧也是整个圆的弧。
所以切点处的弧为整个圆的弧,即切线与半径相交于切点处的弧都是整个圆的弧。
综上所述,切线与半径在切点处相交的弧都是整个圆的弧,即切线与半径在切点处垂直。
综合两种方法的证明,我们可以得出圆的切线与半径在切点处垂直,并且切线与半径相交于切点处的弧都是整个圆的弧。
这就是证明圆的切线的两种方法的过程。
注:以上只是两种常用的证明方法,实际上还有其他一些方法来证明圆的切线的性质。
中考数学专题训练(附详解)圆的切线性质与证明二、方法的剖析与提炼例1.如图,ABAC分别是。
0的切线和割线,且/C=45 ,Z BDA=60 , CD= ,6,则切线AB的长是【解析】(根据切线AB和/ C=45得弦切角/ AB[=45° ,这样在AA BD中就有两个特殊角分别是45度和60度,然后过点A作AM L BD得两个特殊三角形即等腰直角三角形和含30度的直角三角形,这样特殊三角形的三边关系,在设AB=x时,其它边AD和AC就可以用x的代数式表示出来,最后带人切割线定理得到的等式AB=AD?A(就可得到方程,最后求方程解得AB的长度。
)【解答】解:过点A作AM L BD与点M••• AB为圆0的切线•••/ ABD MC=45vZ BDA=60 •••/ BAD=75,/ DAM=30,/ BAM=45设AB=,则碍在直角△ AM中, AD=牛由切割线定理得:AB=AD?AC知刊申+解得:x i=6, X2=0 (舍去)故AB=6故答案是:6【解法】过点A作AM L BD与点M,在直角△ AMD中,AD就可以利用AB表示出来,然后依据切割线定理,即可得到一个关于AB的方程, 即可求解。
【解释】在几何中求线段的长或角度的具体度数,往往会采用方程思想,体现数学中重要的数形结合思想。
故本题就采用了其中的常用方法方程思想,那么就需设未知数,抓住题意构造等式,而本题构造等式的突破口就是想到切割线定理,然后想办法利用题目中剩余的条件,把该等式中的相关量都用未知数的代数式表示好,并代入得方程就可解决本题。
例 2.(2020 贺州)如图,AB,BC,CD分别与O O 相切于E,F,G.且AB//CD.BO=6cm, CO=8cm.GD中考数学专题训练(附详解)(1)求证:B0丄CQ(2)求BE和CG的长.【解析】(1)由题目中的AB//CD得/ABC+Z BCD=180,再结合题目条件根据切线长定理得B0平分/ ABC, CO平分/ DCB然后根据角平分线的性质易得/ OBC+Z OCB=9C P,从而得到Z BOC=90,所以BOX CO.(2)根据切线长定理得BE=BF,GC=(再结合第(1)题的结论得RT A BCQ把切点和圆心O 相连,易证RT A BOF^ RT A BCO相似,根据相似三角形对应边成比例求得BF的长,即BE的长.CG的长可由BC-BF得至鷹【解答】(1)证明::AB / CD•••Z ABC+Z BCD=180o• Z BOC=90, • BO X CO.(2)解:连接OF,贝U OF X BC,oo• BF=3. 6cm, CG=CF=6 4cm.【解法】利用平行线和角平分线的性质完成第(1)题的证明,利用直角三角形的勾股定理和相似三角形对应边成比例的性质完成求解。
九年级数学圆切线知识点在九年级数学学习中,圆切线是一个重要的知识点。
本文将介绍圆的切线的定义、性质以及相关的定理。
一、圆切线的定义和性质圆是一个平面上的闭合曲线,它的每个点到圆心的距离都相等。
圆周上的任意一条线段称为弦,连接圆周上两个点的最短线段称为弦。
如果在圆上有一条线段,且这条线段的每一个端点都在圆上,那么这条线段就是圆的切线。
根据圆的定义和性质,圆的切线有一些重要的性质:1. 切线与半径垂直:圆的切线与半径的形成的角是直角。
2. 唯一性:一个圆上的任意点只有唯一一条切线与之相切。
3. 切线长度:当切线与半径形成的角不等于90度时,切线与圆心的距离是半径的长度。
4. 相交性质:如果两个圆相交,那么它们的切线会相交于相交点。
二、圆切线的定理除了基本的定义和性质外,还有一些与圆切线相关的定理。
下面将介绍一些常见的定理:1. 切线定理:如果一条直线与一个圆相切,那么这条直线与半径的形成的角是直角。
2. 弦切定理:如果一条弦与一个切线相交,那么切线与弦间的角等于弦上对应的圆心角。
3. 切线长定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线的长度的乘积等于这两条切线分别与圆心连线长度的平方。
4. 切线角定理:如果两条切线(包括弦)与一个圆相交,那么这两条切线所对应的圆心角相等。
三、习题练习现在我们来做一些练习题,以加深对圆切线知识点的理解。
1. 在圆 O 上,切线 AB,C 是正切点。
若弧 AC 的度数是120度,求角 BAC 的度数。
解答:由弧与切线的性质可得,角 BAC 的度数等于弧 AC 的度数的一半,即 120/2 = 60 度。
2. 已知圆心角 ADC 的度数是135度,弦 AC 与切线 AB 相交于点 E,求角 BDE 的度数。
解答:根据弦切定理可知,角 BDE 等于弦 AC 对应的圆心角ADC 的度数减去切线 AB 与弦 AC 间夹角的度数,即 135 - 90 = 45 度。
通过以上的练习题,我们可以灵活运用圆切线的性质和定理来解决问题。
2023年中考数学高频考点突破——圆的切线的证明1.如图,已知△ABE内接于⊙O,AB是⊙O的直径,作∠BEF=∠FAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线.(2)若BF=10,EF=20,求⊙O的半径.2.如图,AB是⊙O的直径,点C为圆周上一点,连接AC、BC,点D是AB延长线上一点,作∠DCB=∠CAB.(1)求证:CD是⊙O的切线;(2)若∠A=30°,AB=6,则CD的长为.3.如图,点A,B在圆O上,∠BAO的平分线交圆O于点D,点C在OA的延长线上,且∠CBA=∠D.(1)求证:CB是圆O的切线;(2)若DB∥OA,BD=3,求圆O的半径.4.如图,在矩形ABCD中,G为AD的中点,△GBC的外接圆⊙O交CD于点F.(1)求证:AD与⊙O相切;(2)若DF=1,CF=3,求BC的长.5.如图,△ABD为等腰直角三角形,∠BAD=90°,点A,B在⊙O上,DA,DB的延长线分别与⊙O交于点E,F,G为EF延长线上一点,∠GBF=∠FAB.(1)求证:BG为⊙O的切线;(2)若AF=BF=,求与弦BF围成的阴影部分面积.6.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且∠DCF=∠CAD.(1)求证:CF是⊙O的切线;(2)若cos B=,AD=5,求FD的长.7.如图,以四边形ABCD的对角线BD为直径作圆,圆心为O,过点A作AE⊥CD的延长线于点E,已知DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若AE=2,CD=8,求⊙O的半径和AD的长.8.如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6,AE=,求⊙O的半径.9.如图⊙O是△ABC的外接圆,∠ABC=45°,延长BC于D,连接AD,使得AD∥OC,AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=,CE=1.求⊙O的半径和AB的长度.10.如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.(1)求证:直线BE与⊙O相切.(2)若CA=4,CD=6,求BE的长.11.如图,在△ABC中,∠BAC=90°,以点A为圆心作⊙A与BC相切于D,交AB于点F,在BC上取点E,使CE=AC,连接EA,EF.(1)求证:EF是⊙A的切线;(2)若BE=5,EF=4,求点C到EA的距离.12.如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE ⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若CF=,且sin∠CFD=,求⊙O的半径与线段BC的长.13.如图,⊙O是△ABC的外接圆,∠ABC=45°,延长BC到D,连接AD,使AD∥OC.AB交OC于E.(1)求证:AD与⊙O相切;(2)若AE=2,CE=2.求⊙O的半径.14.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC交于点E.(1)求证:BC是⊙D的切线;(2)若sin C=,设BC切⊙D于点F,求tan∠CFE的值;15.如图,在等腰△ABC中,AC=BC,∠A=30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)若BC=8,求阴影部分的面积.16.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上CE =CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求CE的长.17.如图,AB是⊙O的直径,射线BC交⊙O于点D,E是劣弧AD上一点,且BE平分∠FBA,过点E作EF⊥BC于点F,延长FE和BA的延长线交于点G.(1)证明:GF是⊙O的切线;(2)若AG=2,GE=6,求⊙O的半径.18.如图,四边形ABCD内接于⊙O,∠DAB=90°,点E在BC的延长线上,且∠CED=∠CAB.(1)求证:DE是⊙O的切线.(2)若AC∥DE,当AB=8,DC=4时,求AC的长.19.如图,AB是⊙O的直径,点F,C是⊙O上两点,连结AC,AF,OC,弦AC平分∠FAB,过点C作CD⊥AF,交AF的延长线于点D.(1)求证:CD是⊙O的切线;(2)若∠DAC=30°,AB=6,则弧AC的长为.20.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点且AP=AC.(1)求证:PA是⊙O的切线;(2)若AB=2+,BC=4,求AC及⊙O的半径.参考答案与试题解析1.【解答】(1)证明:连接OE,∵AB是⊙O的直径,∴∠AEB=90°,即∠AEO+∠OEB=90°,∵∠BEF=∠FAE,OA=OE,∴∠BAE=∠AEO,∴∠BEF=∠AEO,∴∠BEF+∠OEB=90°,∴∠OEF=90°,∴OE⊥EF,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:∵∠BEF=∠FAE,∠F=∠F,∴△BEF∽△EAF,∴,即,∴AF=40,∴AB=AF﹣BF=40﹣10=30,∴⊙O的半径为15.2.【解答】(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,即∠OCA+∠OCB=90°,∵OC=OA,∴∠CAB=∠OCA,∵∠DCB=∠CAB,∴∠DCB=∠OCA,∴∠DCB+∠OCB=90°,即OC⊥DC∵OC是半径,∴CD是⊙O的切线;(2)解:∵∠A=30°,AB=∴∠COD=2∠A=60°,,由(1)可得:OC⊥DC,在Rt△OCD中,CD=OC•tan∠OCD=3tan30°=3,故答案为:.3.【解答】(1)证明:如图,延长AO交圆O于点E,连接OB,BE,∵AE是圆O的直径,∴∠ABE=90°,即∠OBE+∠OBA=90°,又∵OB=OE,∴∠E=∠OBE,∵∠D=∠ABC,∠D=∠E,∴∠ABC=∠OBE,∴∠OBA+∠ABC=∠OBA+∠OBE=90°,即BO⊥BC,又∵OB是半径,∴BC是圆O的切线.(2)解:方法一:∵DB//OA,∴∠OAD=∠D,∵AD是∠BAO的平分线,∴∠OAD=∠BAD,∴∠BAD=∠D,∴BD=AB=3,∵∠AOB=2∠E=2∠D=2∠BAD=∠OAB,OA=OB,∴△AOB是正三角形,∴OA=AB,∴OA=3,即圆O的半径为3.方法二:连接DO,OD=OA,∴∠ODA=∠OAD,又∵∠OAD=∠BAD,∴∠ODA=∠BAD,∴OD∥AB(内错角相等,两直线平行),又DB//OA,∴四边形OABD为平行四边形,故OA=BD=3.4.【解答】(1)证明:连接GO并延长交BC于E,∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,∵G为AD的中点,∴AG=DG,∴Rt△ABD≌Rt△DCG(HL),∴BG=CG,∴GE⊥BC,∵AD∥BC,∴OG⊥AD,∵OG是⊙O的半径,∴AD与⊙O相切;(2)解:连接GF,∵∠DFG+∠CFG=∠CFG+∠CBG=180°,∵∠DFG=∠CBG,∵BG=CG,∴∠GBC=∠GCB,∵AD∥BC,∴∠DGC=∠GCB,∴∠DGC=∠DFG,∵∠D=∠D,∴△GDF∽△CDG,∴=,∴=,∴DG=2(负值舍去),∴BC=AD=2DG=4.5.【解答】(1)证明:连接BE,∵∠BAD=90°,∴∠BAE=90°,∴BE是圆O的直径,∵∠BAF+∠EAF=90°,∠EAF=∠EBF,∠FBG=∠FAB,∴∠FBG+∠EBF=90°,∴∠OBG=90°,故BG是圆O的切线;(2)解:如图,连接OA,OF,∵△ABD为等腰直角三角形,∴∠EFD=∠DAB=90°,∠D=45°,∴∠FED=45°,∴∠AOF=90°,∵AF=BF=,∴OA=OF=BF=1,∴△BOF是等边三角形,∴∠BOF=60°,∴与弦BF围成的阴影部分面积=﹣1×=﹣.6.【解答】解:(1)连接OC,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ADC+∠CAD=90°,又∵OC=OD,∴∠ADC=∠OCD,又∵∠DCF=∠CAD.∴∠DCF+∠OCD=90°,即OC⊥FC,∴FC是⊙O的切线;(2)∵∠B=∠ADC,cos B=,∴cos∠ADC=,在Rt△ACD中,∵cos∠ADC==,AD=5,∴CD=AD•cos∠ADC=5×=3,∴AC==4,∴=,∵∠FCD=∠FAC,∠F=∠F,∴△FCD∽△FAC,∴===,设FD=3x,则FC=4x,AF=3x+5,又∵FC2=FD•FA,即(4x)2=3x(3x+5),解得x=(取正值),∴FD=3x=.7.【解答】(1)证明:如图,连接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切线;(2)解:如图,取CD中点F,连接OF,∴OF⊥CD于点F.∴四边形AEFO是矩形,∵CD=8,∴DF=FC=4.在Rt△OFD中,OF=AE=2,∴OD==6,在Rt△AED中,AE=2,ED=EF﹣DF=OA﹣DF=OD﹣DF=6﹣4=2,∴AD==2,∴AD的长是2.8.【解答】(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAM,∠OAD=∠DAE,∴∠ODA=∠DAE,∴DO∥MN,∵DE⊥MN,∴DE⊥OD,∵D在⊙O上,∴DE是⊙O的切线;(2)解:∵∠AED=90°,DE=6,AE=2,∴AD==4,连接CD,∵AC是⊙O的直径,∴∠ADC=∠AED=90°,∵∠CAD=∠DAE,∴△ACD∽△ADE,∴=,∴,∴AC=8,∴⊙O的半径是4.9.【解答】(1)证明:如图,连接OA,∵∠AOC=2∠ABC=90°,OC∥AD,∴OA⊥AD,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)设半径为r,则OE=r﹣1,在Rt△AOE中,由勾股定理得,OE2+OA2=AE2,即(r﹣1)2+r2=()2,解得r=2或r=﹣1(舍去),(2)如图,延长CO交⊙O于F,由相交弦定理得,AE•EB=EC•EF,即•EB=(2﹣1)×(2+1),∴EB=,∴AB=AE+BE=.10.【解答】(1)证明:如图,连接OD,∵CD是⊙O的切线,D是切点,∴OD⊥CD,即∠ODE=ODC=90°,∵AD∥OE,∴∠ODA=∠DOE,∠DAO=∠EOB,又∵OA=OD,∴∠ODA=∠OAD,∴∠DOE=∠BOE,又∵OD=OB,OE=OE,∴△DOE≌△BOE(SAS),∴∠OBE=∠ODE=90°,即OB⊥BE,∵OB是半径,∴BE是⊙O的切线;(2)解:设半径为r,则OC=r+4,在Rt△COD中由勾股定理得,OD2+CD2=OC2,即r2+62=(r+4)2,解得r=,∵∠ODC=∠EBC=90°,∠C=∠C,∴△ODC∽△EBC,∴=,即=,解得BE=.11.【解答】(1)证明:连接AD,∵⊙A与BC相切于D,∴∠ADB=90°,∴∠DAE+∠AED=90°,∵∠BAC=90°,∴∠CAE+∠BAE=90°,∴CA=CE,∴∠CAE=∠CEA,∴∠DAE=∠BAE,∵AF=AD,AE=AE,∴△AFE≌△ADE(SAS),∴∠ADE=∠AFE=90°,∵AF是⊙A的半径,∴EF是⊙A的切线;(2)解:过点C作CG⊥AE,垂足为G,在Rt△BFE中,BE=5,EF=4,∴BF===3,∵△AFE≌△ADE,∴EF=DE=4,∴BD=BE+DE=9,在Rt△ADB中,AD2+BD2=AB2,∴AD2+81=(AF+3)2,∴AE===4,∵CA=CE,CG⊥AE,∴EG=AE=2,∵∠ADE=∠CGE=90°,∠AED=∠CEG,∴△AED∽△CEG,∴=,∴=,∴CG=6,∴点C到EA的距离为6.12.【解答】(1)证明:连接OD,∵AB=AC,∴∠B=∠ACB,∵OD=OC,∴∠ODC=∠ACB,∴∠ODC=∠B,∴OD∥AB,∵EF⊥AB,∴∠AEF=90°,∴∠ODF=90°,∴OD⊥DF,∵OD是半径,∴EF是⊙O的切线;(2)解:在Rt△ODF中,sin F=,∴,∴OD=,∴AC=,AF=10,在Rt△AEF中,由sin F==得,AE=6,在Rt△AEF中,由勾股定理得EF=8,∴BE=AB﹣AE=AC﹣AE=﹣6=,∵OD∥AB,∴,∴ED=3,∴BD=,∴BC=2BD=3.13.【解答】(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∴OA⊥OC;又∵AD∥OC,∴OA⊥AD,∵OA是半径,∴AD是⊙O的切线;(2)解:设⊙O的半径为R,则OA=R,OE=R﹣2,AE=2,在Rt△OAE中,∵AO2+OE2=AE2,∴R2+(R﹣2)2=(2)2,解得R=4,∴⊙O的半径为4.14.【解答】(1)证明:如图1,作DH⊥BC于点H,∵∠BAC=90°,∴DA⊥BA,∵BD平分∠ABC,∴DH=DA,∵DA为⊙D的半径,∴BC是⊙D的切线.(2)解:如图2,连接DF,设AB=5m,DA=DF=r,∵sin C==,∴BC=13m,∴AC==12m,∴CD=12m﹣r,∵⊙D与BC相切于点F,∴BC⊥DF,,∴BC•DF=CD•AB=S△BCD∴×13mr=×5m(12m﹣r),∴DA=r=m,∵∠BFD=∠BAD=90°,BD=BD,DF=DA,∴Rt△BDF≌Rt△BDA(HL),∴∠BDF=∠BDA,∵DE=DF,∴∠DFE=∠DEF,∴∠ADF=2∠BDF=∠DFE+∠DEF=2∠DFE,∴∠BDF=∠DFE,∴EF∥BD,∴∠CFE=∠CBD=∠ABD,∴tan∠CFE=tan∠ABD===,∴tan∠CFE的值是.15.【解答】(1)证明:如图,连接OD,CD,∵BC是⊙O的直径,点D在圆上,∴∠BDC=90°,即CD⊥AB,∵CA=CB,∴BD=AD,又∵OB=OC,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,又∵OD是半径,∴DE是⊙O的切线;(2)解:∵AC=BC,∠A=30°,∴∠A=∠B=30°,∠ACB=120°,∵OD∥AC,∴∠COD=180°﹣120°=60°,又∵OC=OD,∴△COD是等边三角形,∴OC=OD=CD=BC=4,在Rt△CDE中,CD=4,∠CDE=90°﹣60°=30°,∴CE=CD=2,DE=CD=2,∴S阴影部分=S梯形OCED﹣S扇形OCD=(2+4)×﹣=6﹣π.16.【解答】(1)证明:如图,连接OE、AE,则OE=OA,∴∠OEA=∠OAE,∵CE=CA,∠CAO=90°,∴∠CEA=∠CAE,∴∠CEO=∠CEA+∠OEA=∠CAE+∠OAE=∠CAO=90°,∵CE经过⊙O的半径OE的外端,且CE⊥OE,∴CE与⊙O相切.(2)解:∵∠FEO=90°,OE=OA=3,EF=4,∴OF===5,∴AF=OF+OA=8,∵CA2+AF2=CF2,且CA=CE,CF=4+CE,∴CE2+82=(4+CE)2,∴CE=6,∴CE的长为6.17.【解答】(1)证明:如图,连接OE,∵BE平分∠FBA,∴∠1=∠2,∵OB=OE,∴∠2=∠3,∴∠1=∠3,∴OE∥BF,∵BF⊥GF,∴OE⊥GF,∵OE是⊙O的半径,∴GF是⊙O的切线;(2)解:设OA=OE=r,在Rt△GOE中,∵AG=2,GE=6,∴OG=OA+AG=r+2,∵OG2=GE2+OE2,∴(2+r)2=62+r2,解得:r=8,故⊙O的半径为8.18.【解答】(1)证明:如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)解:∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,在Rt△BCD中,BD==4,∴CF===,∴AC=2CF=.19.【解答】(1)证明:∵AC平分∠FAB,∴∠FAC=∠CAO,∵AO=CO,∴∠ACO=∠CAO,∴∠FAC=∠ACO,∴AD∥OC,∵CD⊥AF,∴CD⊥OC,∵C在圆上,∴CD是⊙O的切线;(2)∵∠DAC=30°,AB=6,∴∠ACO=∠CAO=∠DAC=30°,OA=OC=3,∴∠AOC=120°,∴弧AC的长==2π.故答案为:2π.20.【解答】(1)证明:如图,连接OA,则OA=OC,∵∠B=60°,∴∠AOC=2∠B=120°,∴∠AOP=180°﹣∠AOC=60°,∴∠ACP=∠AOP=30°,∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,∵OA是⊙O的半径,且PA⊥OA,∴PA是⊙O的切线.(2)解:如图,作CE⊥AB于点E,则∠BEC=∠AEC=90°,∵AB=2+,BC=4,∴BE=BC•cos60°=4×=2,CE=BC•sin60°=4×=2,∴AE=AB﹣BE=2+﹣2=,∴AC===3,∵∠OAP=90°,∠P=30°,AP=AC=3,∴OP=2OA,∴(2OA)2﹣OA2=(3)2,∴OA=3,∴⊙O的半径长为3.。
切线证明法一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.求证:EF与⊙O相切.证明:连结OE,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=BC,∴∠3=∠4.⌒⌒∴BD=DE,∠1=∠2.又∵OB=OE,OF=OF,∴△BOF≌△EOF(SAS).∴∠OBF=∠OEF.∵BF与⊙O相切,∴OB⊥BF.∴∠OEF=900.∴EF与⊙O相切.说明:此题是通过证明三角形全等证明垂直的例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切.证明一:作直径AE,连结EC.∵AD是∠BAC的平分线,∴∠DAB=∠DAC.∵PA=PD,∴∠2=∠1+∠DAC.∵∠2=∠B+∠DAB,∴∠1=∠B.又∵∠B=∠E,∴∠1=∠E∵AE是⊙O的直径,∴AC⊥EC,∠E+∠EAC=900.∴∠1+∠EAC=900.即OA⊥PA.∴PA与⊙O相切.证明二:延长AD交⊙O于E,连结OA,OE.∵AD是∠BAC的平分线,⌒⌒∴BE=CE,∴OE⊥BC.∴∠E+∠BDE=900.∵OA=OE,∴∠E=∠1.∵PA=PD,∴∠PAD=∠PDA.又∵∠PDA=∠BDE,∴∠1+∠PAD=900即OA⊥PA.∴PA与⊙O相切说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.证明一:连结OD.∵AB=AC,∴∠B=∠C.∵OB=OD,∴∠1=∠B.∴∠1=∠C.∴OD∥AC.D∵DM⊥AC,∴DM⊥OD.∴DM与⊙O相切证明二:连结OD,AD.∵AB是⊙O的直径,∴AD⊥BC.又∵AB=AC,∴∠1=∠2.∵DM⊥AC,∴∠2+∠4=900∵OA=OD , ∴∠1=∠3. ∴∠3+∠4=900. 即OD ⊥DM.∴DM 是⊙O 的切线说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.例4 如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,且∠CAB=300,BD=OB ,D 在AB 的延长线上.求证:DC 是⊙O 的切线 证明:连结OC 、BC. ∵OA=OC , ∴∠A=∠1=∠300. ∴∠BOC=∠A+∠1=600. 又∵OC=OB , ∴△OBC 是等边三角形. ∴OB=BC. ∵OB=BD ,∴OB=BC=BD.CD∴OC ⊥CD.∴DC 是⊙O 的切线.说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.例5 如图,AB 是⊙O 的直径,CD ⊥AB ,且OA 2=OD ·OP . 求证:PC 是⊙O 的切线. 证明:连结OC∵OA 2=OD ·OP ,OA=OC , ∴OC 2=OD ·OP ,OCOPOD OC. 又∵∠1=∠1, ∴△OCP ∽△ODC. ∴∠OCP=∠ODC. ∵CD ⊥AB , ∴∠OCP=900. ∴PC 是⊙O 的切线.说明:此题是通过证三角形相似证明垂直的例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E ,交CD 于F.求证:CE与△CFG的外接圆相切.分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG 的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.证明:取FG中点O,连结OC.∵ABCD是正方形,∴BC⊥CD,△CFG是Rt△∵O是FG的中点,∴O是Rt△CFG的外心.∵OC=OG,∴∠3=∠G,∵AD∥BC,∴∠G=∠4.∵AD=CD,DE=DE,∠ADE=∠CDE=450,∴△ADE≌△CDE(SAS)∴∠4=∠1,∠1=∠3.∵∠2+∠3=900,∴∠1+∠2=900.即CE⊥OC.∴CE与△CFG的外接圆相切二、若直线l与⊙O没有已知的公共点,又要证明l是⊙O的切线,只需作OA⊥l,A为垂足,证明OA是⊙O的半径就行了,简称:“作垂直;证半径”例7 如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.证明一:连结DE,作DF⊥AC,F是垂足.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=900.∵AB=AC,∴∠B=∠C.又∵BD=CD,∴△BDE≌△CDF(AAS)∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线证明二:连结DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠1=∠2.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上.∴AC与⊙D相切.说明:证明一是通过证明三角形全等证明DF=DE的,证明二是利用角平分线的性质证明DF=DE的,这类习题多数与角平分线有关.例8 已知:如图,AC,BD与⊙O切于A、B,且AC∥BD,若∠COD=900.求证:CD是⊙O的切线.证明一:连结OA,OB,作OE⊥CD,E为垂足.∵AC,BD与⊙O相切,∴AC⊥OA,BD⊥OB.∵AC∥BD,∴∠1+∠2+∠3+∠4=1800.O∵∠COD=900,∴∠2+∠3=900,∠1+∠4=900.∵∠4+∠5=900.∴∠1=∠5.∴Rt △AOC ∽Rt △BDO. ∴ODOCOB AC =. ∵OA=OB ,∴ODOCOA AC =. 又∵∠CAO=∠COD=900, ∴△AOC ∽△ODC , ∴∠1=∠2.又∵OA ⊥AC ,OE ⊥CD, ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线.证明二:连结OA ,OB ,作OE ⊥CD 于E ,延长DO 交CA 延长线于F. ∵AC ,BD 与⊙O 相切, ∴AC ⊥OA ,BD ⊥OB. ∵AC ∥BD , ∴∠F=∠BDO. 又∵OA=OB ,∴△AOF ≌△BOD (AAS )∴OF=OD.∵∠COD=900,∴CF=CD,∠1=∠2.又∵OA⊥AC,OE⊥CD,∴OE=OA.∴E点在⊙O上.∴CD是⊙O的切线.证明三:连结AO并延长,作OE⊥CD于E,取CD中点F,连结OF.∵AC与⊙O相切,∴AC⊥AO.∵AC∥BD,∴AO⊥BD.∵BD与⊙O相切于B,∴AO的延长线必经过点B.∴AB是⊙O的直径.∵AC∥BD,OA=OB,CF=DF,∴OF∥AC,∴∠1=∠COF.∵∠COD=900,CF=DF,∴CF CD OF ==21. ∴∠2=∠COF. ∴∠1=∠2.∵OA ⊥AC ,OE ⊥CD , ∴OE=OA. ∴E 点在⊙O 上.∴CD 是⊙O 的切线说明:证明一是利用相似三角形证明∠1=∠2,证明二是利用等腰三角形三线合一证明∠1=∠2.证明三是利用梯形的性质证明∠1=∠2,这种方法必需先证明A 、O 、B 三点共线.此题较难,需要同学们利用所学过的知识综合求解. 以上介绍的是证明圆的切线常用的两种方法供同学们参考.切线的性质定理: 圆的切线垂直于经过切点的半径切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
与圆切线性质有关的证明及计算十九(针对陕西中考第24题)
1.(2015·绥化)如图,以线段AB 为直径作⊙O ,CD 与⊙O 相切于点E ,交AB 的延长线于点D ,连接BE ,过点O 作OC ∥BE 交切线DE 于点C ,连接AC.
(1)求证:AC 是⊙O 的切线;
(2)若BD =OB =4,求弦AE 的长.
解:(1)证明:连接OE ,∵CD 与圆O 相切,∴OE ⊥CD ,∴∠CEO =90°,∵BE ∥OC ,∴∠AOC =∠OBE ,∠COE =∠OEB ,∵OB =OE ,∴∠OBE =∠OEB ,∴∠AOC =∠COE ,在△AOC
和△EOC 中,⎩⎪⎨⎪⎧OA =OE ∠AOC =∠COE OC =OC
,∴△AOC ≌△EOC(SAS ),∴∠CAO =∠CEO =90°,则AC 与圆O 相切 (2)在Rt △DEO 中,BD =OB ,∴BE =12
OD =OB =4,∵OB =OE ,∴△BOE 为等边三角形,∴∠ABE =60°,∵AB 为圆O 的直径,∴∠AEB =90°,∴AE =BE·tan 60°=4 3
2.(2015·丽水)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作⊙O 的切线DF ,交AC 于点F.
(1)求证:DF ⊥AC ;
(2)若⊙O 的半径为4,∠CDF =22.5°,求阴影部分的面积.
解:(1)连接OD ,∵OB =OD ,∴∠ABC =∠ODB ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ODB =∠ACB ,∴OD ∥AC ,∵DF 是⊙O 的切线,∴DF ⊥OD ,∴DF ⊥AC (2)连接OE ,∵DF ⊥AC ,∠CDF =22.5°,∴∠ABC =∠ACB =67.5°,∴∠BAC =45°,∵OA =OE ,∴∠AOE =90°,∵⊙O 的半径为4,∴S 扇形AOE =4π,S △AOE =8 ,∴S 阴影=4π-8
3.(2015·赤峰)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,与BA 的延长线交于点D ,DE ⊥PO 交PO 延长线于点E ,连接PB ,∠EDB =∠EPB.
(1)求证:PB 是的切线;
(2)若PB =6,DB =8,求⊙O 的半径.
解:(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E =90°,∵OB为圆的半径,∴PB为圆O的切线(2)在Rt△PBD中,PB=6,DB=8,根据勾股
定理得:PD=62+82=10,∵PD与PB都为圆的切线,∴PC=PB=6,∴DC=PD-PC=10-6
=4,在Rt△CDO中,设OC=r,则有DO=8-r,根据勾股定理得:(8-r)2=r2+42,解得:r=3,则圆的半径为3
4.(2015·菏泽)如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC,BC于点D,E,BC的延长线与⊙O的切线AF交于点F.
(1)求证:∠ABC=2∠CAF;
(2)若AC=210,CE∶EB=1∶4,求CE的长.
解:(1)连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵AF 是⊙O的切线,∴∠FAB=90°,即∠DAB+∠CAF=90°,∴∠CAF=∠ABD,∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD,∴∠ABC=2∠CAF(2)连接AE,∴∠AEB=90°,设CE=x,∵CE∶EB=1∶4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(210)2=x2+(3x)2,∴x=2,∴CE=2。