2020湖北中考数学 第1节 圆的基本性质
- 格式:pptx
- 大小:3.32 MB
- 文档页数:34
一、圆的概念圆的章节知识点总结集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合;轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线; 二、点与圆的位置关系1、点在圆内⇔ d < r ⇔ 点C 在圆内;2、点在圆上⇔ d = r ⇔ 点 B 在圆上; A3、点在圆外⇔ d > r ⇔ 点 A 在圆外; 三、直线与圆的位置关系1、直线与圆相离⇔ d > r ⇔ 无交点;2、直线与圆相切⇔ d = r ⇔ 有一个交点;3、直线与圆相交⇔ d < r ⇔ 有两个交点;四、圆与圆的位置关系外离(图 1) ⇔ 无交点 ⇔ d > R + r ;外切(图 2) ⇔ 有一个交点⇔ d = R + r ; 相交(图 3) ⇔ 有两个交点⇔ R - r < d < R + r ; 内切(图 4) ⇔ 有一个交点⇔ d = R - r ; 内含(图 5) ⇔ 无交点 ⇔ d < R - r ;图1图4 图5OA BCOA D COAO五、垂径定理弦:连接圆上任意两点之间的线段叫做弦.垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧.推论 1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;推论 2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧;推论 3:平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共 4 个定理,简称 2 推3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其它 3 个结论. 即:AB 是直径;② AB ⊥CD ;③CE =DE ;④ 弧BC =弧BD (B C=B D);⑤ A C=A D;中任意 2 个条件推出其他 3 个结论.推论4:圆的两条平行弦所夹的弧相等.即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD C D 六、圆心角定理圆心角的定义:顶点在圆心且两边与圆相交的角叫做圆心角.圆心角定理:圆心角的度数等于它所对弧的度数. (同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等——也称一推三定理)即上述四个结论中,只要知道其中的 1 个结论也即:①∠AOB =∠DOE ;②AB =DE ;③OC =OF ;④BA =ED E推论 1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;F推论 2:在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等;O推论3:在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧也相等;DACB七、圆周角定理圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角.圆周角定理:同弧或等弧所对的圆周角相等且都等于它所对的圆心的角的一半.符号语言:①∵在O 中,∠C、∠D 都是弧AB 所对的圆周角∴∠C =∠D②∵ ∠AOB 和∠ACB 是弧AB 所对的圆心角和圆周角∴ ∠AOB = 2∠ACB图形语言:C CB B B AB AO推论 1:同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆或直径所对的圆周角是直角;(90︒的圆周角所对的弧是半圆,所对的弦是直径)符号语言:∵在O 中,AB 是直径∴∠C=90︒;或∵∠C=90︒∴AB 是直径OCDBAE推论 3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形符号语言:在△ ABC 中,∵ OA = OB = OC ∴△ ABC 是直角三角形或∠C =90︒八、圆内接四边形圆内接四边形:如果多边形的所有顶点都在一个圆上,那么这个多边形叫做圆的内接多边形,这个圆叫做多边形的外接圆.圆的内接四边形的性质定理:圆的内接四边形的对角互补,圆的内接四边形的外角等于它的内角的对角. 符号语言:∵在 O 中,四边形 ABCD 是内接四边形 ∴ ∠C + ∠BAD = 180︒,∠B + ∠D = 180︒,∠DAE = ∠C 图形语言:圆的内接四边形的判定定理 1:如果一个四边形的对角互补,那么这个四边形四个顶点共圆.符号语言:∵在四边形 ABCD 中, ∠C + ∠BAD = 180︒,∠B + ∠D = 180︒ ∴ A 、B 、C 、D 四点共圆 圆的内接四边形的判定定理 2:如果四边形的一个外角等于它内角的对角,那么这个四边形的四个顶点共圆. 符号语言:∵在四边形 ABCD 中, ∠DAE = ∠C ∴ A 、B 、C 、D 四点共圆九、 切线的性质与判定定理1、切线的定义:当直线和圆有且只有一个公共点时,我们把这条直线叫做圆的切线.(1) 判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.符号语言:∵ MN ⊥ OA 且 MN 过半径OA 外端∴ MN 是 O 的切线图形语言:PMA N(2) 性质定理:圆的切线垂直于经过切点的半径.推论 1:经过圆心且垂直于切线的直线必经经过切点. 推论 2:经过切点且垂直于切线的直线必经经过圆心.2、切线长的定义:经过圆外一点作圆的切线,该点和切点之间的线段的长叫做该点到圆的切线长. 切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等且该点和圆心的连线平分两条切线的夹角. 符号语言:∵ PA 、PB 是的两条切线 ∴ PA =PB 且 PO 平分∠APB 图形语言:以上三个定理及推论也称二推一定理:即:(1)经过圆心(2)经过切点(3)垂直于切线.以上三个条件中, 知道其中两个条件推出最后一个条件.(∵ MN 是切线∴ MN ⊥ OA )注:此推论实际上是几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理. BOO PCACO EDDOC B3、(选记)弦切角:顶点在圆上,且一边和圆相交而另一边和圆相切的角叫做弦切角.(弦与切线的夹角叫做弦切角)弦切角定理:弦切角等于它所夹弧所对的圆周角.符号语言:∵ ∠BAC 是圆的一个弦切角∴ ∠BAC =∠APC4、(选记)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等.符号语言:∵在⊙ O 中,弦AB 、CD 相交于点P ,∴ PA⋅PB =PC ⋅PD图形语言:DB BA推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.符号语言:∵在⊙ O 中,直径AB ⊥CD ,∴ CE2 =AE ⋅BE5、(选记)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等.符号语言:∵在⊙ O 中,PB 、PE 是割线∴ PC ⋅PB =PD ⋅PE6、(选记)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.符号语言:∵在⊙ O 中,PA 是切线,PB 是割线∴ PA2 =PC ⋅PB图形语言:AEP切线长定理从圆外一点引圆的两条切线,它们的切线长相等且该点和圆心的连线平分两条切线的夹角.弦切角定理弦切角等于它所夹弧所对的圆周角.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的乘积相等.割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 十、圆内正多边形的计算(1)正三角形:在O 中,△ABC 是正三角形,有关计算在Rt △BOD 中进行,OD : BD : OB =1: 3 : 2 (2)正四边形:同理,四边形的有关计算在Rt △OAE 中进行,OE : AE : OA =1:1:(3)正六边形:同理,六边形的有关计算在Rt △OAB 中进行,AB : OB : OA =1: 3 : 2COB D A B COA E DOBA2⎨表侧底十一、圆的有关概念1、三角形的外接圆、外心. →用到:线段的垂直平分线及性质2、三角形的内切圆、内心. →用到:角的平分线及性质3、圆的对称性。
初中数学知识点最全总结(精选)初中数学知识点最全总结(精选)小伙伴们处在中考复习阶段,我们好好梳理知识点是非常重要的一个环节。
数学知识点是很重要的,下面小编给大家整理了关于初中数学知识点最全总结的内容,欢迎阅读,内容仅供参考!初中数学知识点最全总结1圆的基本性质1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆。
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的一半。
6.同圆或等圆的半径相等。
7.过三个点一定可以作一个圆。
8.长度相等的两条弧是等弧。
9.在同圆或等圆中,相等的圆心角所对的弧相等。
10.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
2平行线的两条判定定理(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
3投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
24、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
【2020中考数学专项复习】:圆的有关概念、性质与圆有关的位置关系【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系1.点和圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.(4)三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.(5)三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心到三边的距离都相等.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).(3) 三角形的外心与内心的区别:(1)离相等,即外心不一定在三角形内部(1)(2)OABAC心在三角形内部3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“R-r”时,要特别注意,R>r.考点三、与圆有关的规律探究1.和圆有关的最长线段和最短线段了解和圆有关的最长线段与最短线段,对有关圆的性质的了解极为重要,下面对有关问题进行简单论述. (1)圆中最长的弦是直径.如图①,AB是⊙O的直径,CD为非直径的弦,则AB>CD,即直径AB是最长的弦.过圆内一点最短的弦,是与过该点的直径垂直的弦,如图②,P是⊙O内任意一点,过点P作⊙O的直径AB,过P作弦CD⊥AB于P,则CD是过点P的最短的弦.(2)圆外一点与圆上一点的连线中,最长的线段与最短的线段都在过圆心的直线上.如图所示,P 在⊙O 外,连接PO 交⊙O 于A ,延长PO 交⊙O 于B ,则在点P 与⊙O 上各点连接的线段中,PB 最长,PA 最短.(3)圆内一点与圆上一点的连线中,最长的线段与最短的线段也都在过圆心的直线上.如图所示,P 为⊙O 内一点,直径过点P ,交⊙O 于A 、B 两点,则PB 最长、PA 最短. 2.与三角形内心有关的角(1)如图所示,I 是△ABC 的内心,则∠BIC=90°+A ∠21.(2)如图所示,E 是△ABC 的两外角平分线的交点,A BEC ∠21-°90=∠.(3)如图所示,E 是△ABC 内角与外角的平分线的交点,∠E=A ∠21.(4) 如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 分别为切点,则∠DOE =180°-∠A .(5)如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 为切点,A DFE ∠21-°90=∠.(5) 如图所示,⊙O 是△ABC 的内切圆,D 、E 、F 为切点,P 为DE 上一点,则A DPE ∠21+=°90=∠.【典型例题】类型一、圆的性质及垂径定理的应用1.已知:如图所示,⊙O 中,半径OA =4,弦BC 经过半径OA 的中点P ,∠OPC =60°,求弦BC 的长.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.2.如图所示,在⊙O 中,弦AB 与CD 相交于点M ,AD BC =,连接AC . (1)求证:△MAC 是等腰三角形;(2)若AC 为⊙O 直径,求证:AC 2=2AM ·AB . 【总结升华】本题考查的是圆周角定理,涉及到全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的判定与性质及三角形内角和定理,涉及面较广,难度适中. 举一反三:【变式】如图所示,在⊙O 中,AB =2CD ,则( )A .2AB CD > B .2AB CD <C .2AB CD = D .AB 与2CD 的大小关系无法确定3.已知:如图所示,△ABC内接于⊙O,BD⊥半径AO于D.(1)求证:∠C=∠ABD;(2)若BD=4.8,sinC=45,求⊙O的半径.【总结升华】解决圆周角的问题中常用的方法有两种:一是把圆周角转化为同弧所对圆心角的一半的角;二是将圆周角的顶点移动到使其一边经过圆心.类型二、圆的切线判定与性质的应用4.已知:如图所示,AB是⊙O的直径,∠BAC=30°,M是OA上一点,过M作AB的垂线交AC于点N,交BC的延长线于点E,直线CF交EN于点F,且∠ECF=∠E.(1)求证:CF是⊙O的切线;(2)设⊙O的半径为1,且AC=CE,求MO的长.【总结升华】有关切线的判定,主要有两种类型,若题目已经给出了直线与圆有公共点,可采用“连半径证垂直”的方法(此题就如此);若要判定的直线与已知圆的公共点没有给出,可采用“过圆心作垂线,证垂线段等于半径”的方法,简称“作垂直证半径”.举一反三:【变式】如图所示,△ABC中,AB=C,BC=a,CA=b,面积为S.⊙O是△ABC的内切圆,求内切圆半径r.类型三、切线的性质与等腰三角形、勾股定理综合运用5.如图所示,⊙O是Rt△ABC的外接圆,AB为直径,∠ABC=30°,CD是⊙O的切线,ED⊥AB于F.(1)判断△DCE的形状;(2)设⊙O的半径为1,且21-3=OF,求证△DCE≌△OCB.【总结升华】本题考查了切线的性质、等边三角形的判定和性质、等腰三角形的判定、勾股定理、全等三角形的判定和性质.解题的关键是证明△AOC是正三角形.举一反三:【变式】如图所示,PQ=3,以PQ为直径的圆与一个以5为半径的圆相切于点P,正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与CD切于点Q,则AB=________.6.如图所示,⊙O的直径AB=4,点P是AB延长线上的一点,PC切⊙O于点C,连接AC.PM平分∠APC交AC于M.(1)若∠CPA=30°,求CP的长及∠CMP的度数;(2)若点P在AB的延长线上运动,你认为∠CMP的大小是否发生变化?若变化,说明理由;若不变化,请求出∠CMP的度数;(3)若点P在直径BA的延长线上,PC切⊙O于点C,则∠CMP的大小是否变化?【总结升华】解第(2)小题时,引用“设∠CPA=α”这一方法,用代数方法计算得出结论,降低了解题的难度.举一反三:【变式】如图所示,AB是⊙O的直径,C是EA的中点,CD⊥AB于D,CD与AE相交于F.(1)求证:AC2=AF·AE;(2)求证:AF=CF.中考总复习:圆的有关概念、性质与圆有关的位置关系—巩固练习(提高)【巩固练习】 一、选择题1. 已知两圆的直径分别是2厘米与4厘米,圆心距是3厘米,则这两个圆的位置关系是 ( )A.相交B.外切C.外离D.内含2.如图,AB 为⊙ O 的直径,CD 为弦,AB⊥CD ,如果∠BOC=70°,那么∠A 的度数为 ( )A. 70°B.35°C. 30°D. 20°3.已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于 ( )A.30°B.60°C.45°D.50°第2题 第3题 第4题 第5题4.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的动点,则线段OM 长的最小值为( )A. 5B. 4C. 3D. 25.如图所示,四边形ABCD 中,DC∥AB,BC=1,AB=AC=AD=2.则BD 的长为 ( )A.B.C.D.6. 如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C.D.二、填空题7.已知⊙O的半径为1,圆心O到直线l的距离为2,过l上任一点A作⊙O的切线,切点为B,则线段AB长度的最小值为 .8.如图,AD,AC分别是⊙O的直径和弦.且∠CAD=30°.OB⊥AD,交AC于点B.若OB=5,则BC的长等于 .9.如图所示,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为________.第8题第9题第10 题10.如图所示,在边长为3 cm的正方形中,与相外切,且分别与边相切,分别与边相切,则圆心距= cm.11.如图所示,是的两条切线,是切点,是上两点,如果∠E=46°,∠DCF=32°那么∠A的度数是 .12.在圆的内接等腰三角形ABC(三角形ABC三个顶点均在圆周上)中,圆心到底边BC的距离为3cm,圆的半径为7cm,则腰AB的长为 .AB34354345ABCD1O2O1O,DA DC 2O,BA BC12O O,EB EC O,B C,A D O三、解答题13.如图所示,AC 为⊙O 的直径且PA⊥AC,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,32==DO DC DP DB . (1)求证:直线PB 是⊙O 的切线;(2)求cos∠BCA 的值.14.如图所示,点A 、B 在直线MN 上,AB =11厘米,⊙A 、⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r =1+t(t ≥0).(1)试写出点A 、B 之间的距离d(厘米)与时间t(秒)之间的函数关系式;(2)问点A 出发后多少秒两圆相切?15. 如图所示,半径为2.5的⊙O 中,直径AB 的不同侧有定点C 和动点P .已知BC:CA =4:3,点P 在AB 上运动,过点C 作CP 的垂线,与PB 的延长线交于点Q .(1)当点P 运动到与点C 关于AB 对称时,求CQ 的长;(2)当点P 运动到AB 的中点时,求CQ 的长;(3)当点P 运动到什么位置时,CQ 取到最大值,并求此时CQ 的长.16. 如图1至图4中,两平行线AB 、CD 间的距离均为6,点M 为AB 上一定点.思考如图1,圆心为0的半圆形纸片在AB ,CD 之间(包括AB ,CD ),其直径MN 在AB 上,MN=8,点P 为半圆上一点,设∠MOP=α.当α= 度时,点P 到CD 的距离最小,最小值为 .探究一在图1的基础上,以点M 为旋转中心,在AB ,CD 之间顺时针旋转该半圆形纸片,直到不能再转动为止,如图2,得到最大旋转角∠BMO= 度,此时点N 到CD 的距离是 .探究二将如图1中的扇形纸片NOP 按下面对α的要求剪掉,使扇形纸片MOP 绕点M 在AB ,CD 之间顺时针旋转.(1)如图3,当α=60°时,求在旋转过程中,点P 到CD 的最小距离,并请指出旋转角∠BMO 的最大值;(2)如图4,在扇形纸片MOP 旋转过程中,要保证点P 能落在直线CD 上,请确定α的取值范围. (参考数椐:sin49°=,cos41°=,tan37°=.)343434。
2024中考数学一轮复习核心知识点精讲—圆的基本性质1.理解圆心角及其所对的弧、弦之间的关系;2.理解并运用圆周角定理及其推论;3.探索并证明垂径定理会应用垂径定理解决与圆有关的问题;4.理解并运用圆内接四边形的性质.考点1:圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。
这个固定的端点O叫做圆心,线段OA叫做半径。
圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。
圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。
圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。
考点2:圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。
直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。
备注:1)直径是同一圆中最长的弦。
2)直径长度等于半径长度的2倍。
,读作圆弧弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。
以A、B为端点的弧记作ABAB或弧AB。
等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。
半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
优弧的概念:在一个圆中大于半圆的弧叫做优弧。
劣弧的概念:小于半圆的弧叫做劣弧。
考点3:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分考点4:垂径定理的应用考点5:圆心角的概念圆心角概念:顶点在圆心的角叫做圆心角。
弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
九年级数学圆一章知识点数学作为一门科学,既具有理论性又具有实践性。
在九年级数学的学习中,圆一章是一个重要的章节,涵盖了圆的基本概念、性质及相关定理等内容。
通过学习这一章节,我们可以深入了解圆的形状、特征以及在实际问题中的应用。
接下来,让我们一起来探索九年级数学圆一章的知识点。
一、圆的基本概念首先,我们需要明确圆的基本概念。
圆是平面上一点到另一点的距离固定且相等的所有点的集合。
其中,距离相等的两个点称为圆心和圆上的一点。
圆心到圆上任意一点的距离称为半径,用字母r表示。
圆内部的点组成的部分称为圆内,而圆外的点称为圆外。
二、圆的性质圆具有很多独特的性质,其中一些是我们必须了解的。
首先,圆的直径是圆上任意两点之间的最长线段,且直径的长度等于半径的两倍。
其次,圆的周长是圆上所有点到圆心的距离之和,用C表示。
而圆的面积是圆上任意一点到圆心的距离与圆的伸缩比例之积,用S表示。
具体计算周长和面积的公式是:C=2πr,S=πr²,其中π取3.14。
三、圆的相关定理圆的相关定理是九年级数学圆一章的重点内容之一。
首先是相交弧的性质。
当两条弧相交时,它们所对的圆心角相等,而当一条线段穿过圆并且与两边形成的两个弧相交时,圆心的圆心角等于相交弧的两个弧所对的角的和。
其次是弧与切线的关系。
当一条切线与圆相切时,切点到圆心的线段与切点所对的弧是相等的。
此外,圆的切线与半径的关系也是九年级数学圆一章的重要内容。
切线与半径的夹角是直角,而且切线的长度等于半径的长度。
四、圆的应用圆作为几何学中的一个重要概念,在生活中有着广泛的应用。
例如,圆在建筑设计中起着重要的作用。
环形建筑物的设计离不开圆的几何原理,而圆形的建筑物在视觉上也具有独特的美感。
此外,圆的应用还涉及到机械工程、电子技术、天文学等领域。
在工程中,圆的运动轨迹被用于设计各种转动部件,而电子技术中的电路也需要考虑圆的相关性质。
同时,天文学中的行星运动也与圆的概念有着密切的关系。
九年级数学圆这一章知识点数学是一门实用的学科,其中的几何学更是贯穿在我们日常生活中。
而在几何学中,圆是一个重要的图形,它有着广泛的应用。
本文将为大家介绍九年级数学圆这一章的知识点,帮助大家更好地理解和掌握。
一、圆的定义和性质圆是由平面上到一定点的距离都相等的点的轨迹,常用字母O表示圆心,字母r表示半径。
圆的性质包括:1. 圆心角:指的是以圆心为顶点的角,在圆上的弧所对的圆心角是不变的。
2. 弧和弦:弧是圆上的一段曲线,弦是圆上连接两点的线段。
3. 弦长公式:弦长等于半径长度乘以圆心角的正弦值的两倍。
4. 切线和割线:切线是与圆只有一个交点的直线,割线是与圆有两个交点的直线。
二、圆的相关定理1. 圆的半径垂直于弦:如果半径垂直于弦,那么这条弦的中点一定在圆的直径上。
2. 在同一个圆或等圆中,弧相等的弦相等。
3. 在圆内,直径是最长的弦。
4. 圆内接四边形的内角和为360度。
5. 在圆上,相交弦的垂线互相垂直,垂直于弦的直径通过弦的中点。
三、圆的周长和面积圆的周长是指圆的边界上的长度,即所有弧长的总和。
圆的周长等于直径乘以π(pi)。
圆的面积是指圆内部的区域面积,它等于半径的平方乘以π。
四、圆锥圆锥是由一个圆与一个共面点外的一条线段组成的几何体。
圆锥的性质包括:1. 顶点到圆的距离等于顶点到圆心的距离减去顶点到底面的距离。
2. 顶点到底面的垂线是在底面上的圆的直径上的垂线。
五、圆柱圆柱是由两个平行且相等的圆与它们的公共平行面上所有的线段组成的几何体。
圆柱的性质包括:1. 侧面积等于底面周长乘以高。
2. 体积等于底面积乘以高。
六、圆锥与圆柱的应用在现实生活中,圆锥和圆柱的应用非常广泛。
例如,喷水池常常采用圆锥形状,汽车的油箱常常是圆柱形状。
通过对圆锥和圆柱的研究,可以更好地理解和应用这些几何图形。
总结:九年级数学圆这一章的知识点主要包括圆的定义和性质、圆的相关定理、圆的周长和面积、圆锥和圆柱等内容。
通过学习这些知识,我们可以更好地理解和应用圆这一重要几何图形。
2020中考数学知识点:圆的基础性质公式定理圆是轴对称图形,同时圆也是中心对称图形,其对称中心是圆心。
圆的基础性质⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。
圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理①一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)④两相切圆的连心线过切点(连心线:两个圆心相连的直线)⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比长方形、正方形、三角形的面积大。
圆的知识要领不仅常考公式,又是也会直接出一些关于定理的试题。
2019-2020学年数学中考模拟试卷一、选择题1.若关于的x 方程230x x a ++=有一个根为1-,则a 的值为( )A .-4B .-2C .2D .-42.新中国成立70年以来,中国铁路营业里程由52000公里增长到131000公里,将数据131000用科学记数法表示为( )A .13.1×105B .13.1×104C .1.31×106D .1.31×1053.平方根和立方根都是本身的数是( )A .0B .1C .±1D .0和±14.如图,小明为了测量大楼AB 的高度,他从点C 出发,沿着斜坡面CD 走52米到点D 处,测得大楼顶部点A 的仰角为37°,大楼底部点B 的俯角为45°,已知斜坡CD 的坡度为i =1:2.4.大楼AB 的高度约为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A .32米B .35米C .36米D .40米5.若x=2是关于x 的一元一次方程ax -2=b 的解,则3b -6a+2的值是( ).A .-8B .-4C .8D .46.如图,半径为3的⊙O 经过等边△ABO 的顶点A 、B ,点P 为半径OB 上的动点,连接AP ,过点P 作PC ⊥AP 交⊙O 于点C ,当∠ACP=30°时,AP 的长为( )A .3B .3或332C .1.5D .3或1.5 7.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能是( )A .B .C .D .8.下列运算正确的是( )A .ab•ab=2abB .(3a )3=9a 3C .4a ﹣3a =3(a≥0)D .a a b b=(a≥0,b≥0) 9.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )A .26×105B .2.6×102C .2.6×106D .260×10410.若一个直角三角形的两条直角边长分别为5和12,则其第三边长( )A .13B .13C .5D .1511.如图,在平面直角坐标系中,Rt △ABC 的三个顶点的坐标分别为A (1,1),B (4,3),C (4,1),如果将Rt △ABC 绕点C 按顺时针方向旋转90°得到Rt △A′B′C′,那么点A 的对应点A'的坐标是( )A .(3,3)B .(3,4)C .(4,3)D .(4,4)12.我们用[a]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;已知,x y 满足方程组[][][][]329,30,x y x y ⎧+=⎪⎨-=⎪⎩则[]2x y +可能的值有 ( ) A .2个B .3个C .4个D .5 个二、填空题13.若关于x 的一元二次方程(k ﹣1)x 2+4x+1=0有实数根,则k 的取值范围是_____.14.某市园林部门为了扩大城市的绿化面积,进行了大量的树木移栽,下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵数: 移栽棵数100 1 000 10 000 20 000 成活棵数 89 910 9 008 18 004 依此估计这种幼树成活的概率是____ (结果用小数表示,精确到0.1)15.如图,在□ABCD 中,AE ⊥BD 于点E ,∠EAC =30°,AC =12,则AE 的长为_____.16.如图,点P 在平行四边形ABCD 的边BC 上,将△ABP 沿直线AP 翻折,点B 恰好落在边AD 的垂直平分线上,如果AB =5,AD =8,tanB =,那么BP 的长为_____.17.和平中学自行车停车棚顶部的剖面如图所示,已知AB =16m ,半径OA =10m ,高度CD 为____m .18.计算:03(1)8-+-=_____.三、解答题19.如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交AD 、BE 、BC 于点P 、O 、Q ,连接BP 、EQ .(1)求证:△BOQ ≌△EOP ;(2)求证:四边形BPEQ 是菱形;(3)若AB =6,F 为AB 的中点,OF+OB =9,求PQ 的长.20.某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元.在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元.(1)商家一次购买这种产品多少件时,销售单价恰好为2800元?(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y (元)与x (件)之间的函数关系式,并写出自变量x 的取值范围(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)21.如图,在四边形ABCD 中,BD 为一条对角线,AD ∥BC ,AD =2BC ,∠ABD =90°,E 为AD 的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=2,求AC的长.22.如图,在□ABCD中,E、F分别是AD、BC的中点,∠AEF的角平分线交AB于点M,∠EFC的角平分线交CD于点N,连接MF、NE.(1)求证:四边形EMFN是平行四边形.(2)小明在完成(1)的证明后继续进行了探索,他猜想:当AB=AD时,四边形EMFN是矩形.请在下列框图中补全他的证明思路.23.端午节是我国的传统节日,益民食品厂为了解市民对去年销量较好的花生粽子、水果粽子、豆沙粽子、红枣粽子(分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,对某居民区的市民进行了抽样调查,并根据调查结果绘制了如下两幅不完整的统计图.(1)本次参加抽样调查的居民有多少人?(2)将两幅统计图补充完整;(3)小明喜欢吃花生粽子和红枣粽子,妈妈为他准备了四种粽子各一个,请用“列表法”或“画树形图”的方法,求出小明同时选中花生粽子和红枣粽子的概率.24.已知抛物线y=ax2+bx经过点A(﹣4,﹣4)和点B(m,0),且m≠0.(1)若该抛物线的对称轴经过点A,如图,请根据观察图象说明此时y的最小值及m的值;(2)若m=4,求抛物线的解析式(也称关系式),并判断抛物线的开口方向.25.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y与x之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C D A B B B D D C A D C二、填空题13.k≤5且k≠1.14.915.16.或717.18.-1三、解答题19.(1)见解析;(2)见解析;(3)PQ =152. 【解析】【分析】(1)先根据线段垂直平分线的性质证明PB=PE ,由ASA 证明△BOQ ≌△EOP ;(2)由(1)得出PE=QB ,证出四边形ABGE 是平行四边形,再根据菱形的判定即可得出结论;(3)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x ,则BE=18-x ,在Rt △ABE 中,根据勾股定理可得62+x 2=(18-x )2,BE=10,得到OB=12BE=5,设PE=y ,则AP=8-y ,BP=PE=y ,在Rt △ABP 中,根据勾股定理可得62+(8-y )2=y 2,解得y=254,在Rt △BOP 中,根据勾股定理可得PO=222515544⎛⎫-= ⎪⎝⎭,由PQ=2PO 即可求解.【详解】(1)证明:∵PQ 垂直平分BE ,∴PB =PE ,OB =OE ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠PEO =∠QBO ,在△BOQ 与△EOP 中,PEO B0OB 0EPOE QOB Q ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BOQ ≌△EOP (ASA ),(2)∵△BOQ ≌△EOP∴PE =QB ,又∵AD ∥BC ,∴四边形BPEQ 是平行四边形,又∵QB =QE ,∴四边形BPEQ 是菱形;(3)解:∵O ,F 分别为PQ ,AB 的中点,∴AE+BE =2OF+2OB =18,设AE=x,则BE=18﹣x,在Rt△ABE中,62+x2=(18﹣x)2,解得x=8,BE=18﹣x=10,∴OB=12BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,62+(8﹣y)2=y2,解得y=254,在Rt△BOP中,PO=222515544⎛⎫-=⎪⎝⎭,∴PQ=2PO=15. 2.【点睛】本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识;本题综合性强,有一定难度.20.(1)商家一次购买这种产品90件时,销售单价恰好为2800元;(2)当0≤x≤10时,y=700x,当10<x≤90时,y=﹣5x2+750x,当x>90时,y=300x;(3)公司应将最低销售单价调整为2875元.【解析】【分析】(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)×件数,及销售单价均不低于2800元,按0≤x≤10,10<x≤50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价.【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元.由题意得:3200﹣5(x﹣10)=2800,解得:x=90.答:商家一次购买这种产品90件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0≤x≤10时,y=(3200﹣2500)x=700x,当10<x≤90时,y=[3200﹣5(x﹣10)﹣2500]•x=﹣5x2+750x,当x>90时,y=(2800﹣2500)•x=300x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y=700x,y=300x均是y随x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75时,y随x增大而增大.由上述分析得x的取值范围为:10<x≤75时,即一次购买75件时,恰好是最低价,最低价为3200﹣5•(75﹣10)=2875元,答:公司应将最低销售单价调整为2875元.本题考查了一次、二次函数的性质在实际生活中的应用.最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.21.(1)见解析.(2)23【解析】【分析】(1)先证明四边形BCDE是平行四边形,再证明BE=DE,根据一组邻边相等的平行四边形为菱形即可判定四边形BCDE是菱形;(2)连接AC,根据平行线的性质及角平分线的定义证得∠BAC=∠DAC=∠BCA,即可得AB=BC=2,根据锐角三角函数的定义求得∠ADB=30°,所以∠DAC=30°,∠ADC=60°,在Rt △ACD中,即可求得AC=23.【详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=2,∵AD=2BC=4,∴sin∠ADB=12,∴∠ADB=30°,∵四边形BCDE是菱形.∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=4,∴AC=23.本题考查了菱形的判定及解直角三角形的知识,熟练运用菱形的判定方法及解直角三角形是解决问题的关键.22.(1)见解析;(2)∠EFM=∠BMF,AM=BM(或:M是AB中点).【解析】【分析】(1)根据平行四边形的性质可得∠A=∠C,∠AEF=∠CFE,AD=BC,根据角平分线的定义和中点的定义可得∠AEM=∠CFN,AE=CF,利用ASA即可证明△AME≌△CNF,可得EM=FN,∠FEM=∠FEN,根据内错角相等可得EM//FN,即可证明四边形EMFN是平行四边形;(2)由AE=BF,AE//BF可得四边形ABFE是平行四边形,可得EF//AB,可得∠MEF=∠AME,∠EFM=∠BMF,由角平分线可得∠AEM=∠MEF,即可证明∠AEM=∠AME,可得AE=AM,由AB=AD可得M为AB中点,即可证明BM=BF,进而可得∠BMF=∠BFM,即可证明∠BFM=∠EFM,可得∠EFM+∠EFN=90°,可得四边形EMFN是矩形.【详解】(1)在□ABCD中,∠A=∠C,AD∥BC,AD=BC∵E、F分别是AD、BC的中点,∴AE=12AD,CF=12BC,又∵AD=BC,∴AE=CF,∵AD∥BC,∴∠AEF=∠CFE,∵EM平分∠AEF,FN平分∠EFC,∴∠AEM=∠FEM=12∠AEF,∠CFN=∠FEN=12∠CFE,∵∠AEF=∠CFE,∠AEM=12∠AEF,∠CFN=12∠CFE,∴∠AEM=∠CFN,在△AME和△CNF中A CAE CFAEM CFN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AME≌△CNF(ASA),∵∠FEM=∠FEN,∴EM∥FN,∵△AME≌△CNF,∴EM=FN,∵EM∥FN,EM=FN,∴四边形EMFN是平行四边形.(2)∵AE=BF,AE//BF,∴四边形ABFE是平行四边形,∴AB//EF,∴∠MEF=∠AME,∠EFM=∠BMF,∵∠AEM=∠MEF,∴∠AEM=∠AME,∴AE=AM,∵E为AD中点,AB=AD,∴M为AB中点,即AM=BM,∵AE=BF,∴BM=BF,∴∠BMF=∠BFM,∴∠BFM=∠EFM,∵∠EFN=∠CFN,∴∠EFM+∠EFN=90°,即∠MFN=90°,∴四边形EMFN是矩形.故答案为:∠EFM=∠BMF,AM=BM(或:M是AB中点).【点睛】本题考查平行四边形的判定及矩形的判定,一组对边平行且相等的四边形是平行四边形;有一个角是直角的平行四边形是矩形.23.(1)本次参加抽样调查的居民有600人;(2)见解析;(3)16.【解析】【分析】(1)用喜欢B类的人数除以它所占的百分比得到调查的总人数;(2)先计算出喜欢C类的人数,再计算出喜欢A类的人数的百分比和喜欢C类的人数的百分比,然后补全条形统计图和扇形统计图;(3)画树状图展示所有12种等可能的结果数,找出小明同时选中花生粽子和红枣粽子的结果数,然后根据概率公式求解.【详解】(1)60÷10%=600,所以本次参加抽样调查的居民有600人;(2)喜欢C类的人数为600﹣180﹣60﹣240=120(人),喜欢A类的人数的百分比为180600×100%=30%;喜欢C类的人数的百分比为120600×100%=20%;两幅统计图补充为:(3)画树状图为:共有12种等可能的结果数,其中小明同时选中花生粽子和红枣粽子的结果数为2, 所以小明同时选中花生粽子和红枣粽子的概率=212=16. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.24.(1)y 的最小值为﹣4,m =﹣8;(2)21182y x x =-+ ,开口向下. 【解析】【分析】(1)根据二次函数的性质得此时y 的最小值,利用对称性得到B (﹣8,0),从而确定m 的值;(2)设交点式y =ax (x ﹣4),再把A (﹣4,﹣4)代入求得a =18-,从而得到抛物线解析式,利用二次函数的性质确定抛物线开口方向.【详解】解:(1)∵该抛物线的对称轴经过点A ,∴点A (﹣4,﹣4)为抛物线的顶点,对称轴为直线x =﹣4,∴此时y 的最小值为﹣4;∵点B 和原点为抛物线的对称点,∴B (﹣8,0),∴m =﹣8;(2)当m =4时,即B (4,0),设抛物线解析式为y =ax (x ﹣4),把A (﹣4,﹣4)代入得﹣4=a×(﹣4)×(﹣4﹣4),解得a =18-,∴抛物线解析式为y =18-x (x ﹣4),即y =18-x 2+12x ,∵a<0,∴抛物线开口向下.【点睛】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.25.(1)20(018)4432(1830)x xyx x<≤≤⎧=⎨-+≤⎩;(2)试销售期间,日销售最大利润是1080元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【解析】【分析】(1)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.【详解】(1)20(018),4432(1830).x xyx x≤≤⎧=⎨-+≤⎩<(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.∴16≤x≤28. 28-16+1=13(天),∴日销售利润不低于960元的天数共有13天.由20x=-4x+432解得,x=18,当x=18时,y=20x=360,∴点D的坐标为(18,360),∴日最大销售量为360件,360×(9-6)=1080(元),∴试销售期间,日销售最大利润是1080元.(3)设第x天和第(x+1)天的销售利润之和为1980元.∵1980÷(9﹣6)=660<340×2,∴x<17,或x+1>23,当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【点睛】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.2019-2020学年数学中考模拟试卷一、选择题1.如图,四边形ABCD,AEFG都是正方形,点E,G分别在AB,AD上,连接FC,过点E作EH∥FC交BC于点H.若AB=4,AE=1,则BH的长为()A.1B.2C.3D.32.如图,AB,AC均为⊙O的切线,切点分别为B,C,点D是优弧BC上一点,则下列关系式中,一定成立的是()A.∠A+∠D=180°B.∠A+2∠D=180°C.∠B+∠C=270°D.∠B+2∠C=270°3.如图,⊙O1与⊙O2相交于A、B两点,经过点A的直线CD分别与⊙O1、⊙O2交于C、D,经过点B的直线EF分别与⊙O1、⊙O2交于E、F,且EF∥O1O2.下列结论:①CE∥DF;②∠D=∠F;③EF=2O1O2.必定成立的有()A.0个B.1个C.2个D.3个4.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张5.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C的度数是()A.48°B.42°C.34°D.24° 6.已知抛物线2(0)y ax bx c a b =++>> 与x 轴最多有一个交点.现有以下四个结论:①24b ac ≥ ;②该抛物线的对称轴在y 轴的左侧;③关于x 的方程210ax bx c +++=有实数根;④0a b c -+≥ .其中正确结论的个数为( )A .1个B .2个C .3个D .4个7.如图,△ABC 为等边三角形,如果沿图中虚线剪去∠B ,那么∠1+∠2等于( )A .120°B .135°C .240°D .315°8.计算正确的是( )A.()020190-=B.623x x x ÷=C.()423812a b a b -=-D.45326a a a ⋅= 9.如图,DE ∥BC ,CD 平分∠ACB ,∠AED =50°,则∠EDC 的度数是( )A .50°B .40°C .30°D .25°10.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O ,则下列判断不正确的是( )A .△ABC ≌△DCB B .△AOD ≌△COBC .△ABO ≌△DCOD .△ADB ≌△DAC11.△OAB 在第一象限中,OA =AB ,OA ⊥AB ,O 是坐标原点,且函数y =1x正好过A ,B 两点,BE ⊥x 轴于E 点,则OE 2﹣BE 2的值为( )A .3B .2C .3D .412.如图,平面直角坐标系xOy 中,四边形OABC 的边OA 在x 轴正半轴上,BC ∥x 轴,∠OAB =90°,点C (3,2),连接OC .以OC 为对称轴将OA 翻折到OA′,反比例函数y =k x的图象恰好经过点A′、B ,则k 的值是( )A .9B .133C .16915D .33二、填空题 13.在Rt △ABC 中,∠ABC =90°,∠C =30°,AC =8,BD 为边AC 上的中线,点E 在边BC 上,且BE :BC =3:8,点P 在Rt △ABC 的边上运动,当PD :AB =1:2时,EP 的长为_____.14.02019的相反数是____.15.若x=4,则|x ﹣5|=________.16.一元二次方程2360x x -=的解是________.17.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为_______.18.一个圆锥的底面积是40cm 2,高12cm ,体积是__________cm 3.三、解答题19.先化简代数式:222111a a a a a +⎛⎫-÷ ⎪---⎝⎭,再代入一个你喜欢的数求值. 20.(1)计算:09(21)|3|+---;(2)化简:﹣2(a ﹣3)+(a+1)221.第36届全国信息学冬令营在广州落下帷幕,长郡师生闪耀各大赛场,金牌数、奖牌数均稳居湖南省第一.学校拟预算7700元全部用于购买甲、乙、丙三种图书共20套奖励获奖师生,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元,设购买甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若学校购买的甲、乙两种图书共14套,求甲、乙图书各多少套?(3)若学校购买的甲、乙两种图书均不少于1套,则有哪几种购买方案?22.如图,把可以自由转动的圆形转盘A,B分别分成3等份的扇形区域,并在每一个小区域内标上数字.小明和小颖两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针两区域的数字均为奇数,则小明胜;若指针两区域的数字均为偶数,则小颖胜;若有指针落在分割线上,则无效,需重新转动转盘.这个游戏规则对双方公平吗?请说明理由.23.某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件,设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?24.如图是集体跳绳的示意图,绳子在最高处和最低处时可以近似看作两条对称的抛物线,分别记为C1和C2,绳子在最低点处时触地部分线段CD=2米,两位甩绳同学的距离AB=8米,甩绳的手最低点离地面高度AE=BN=1516米,最高点离地AF=BM=2316米,以地面AB、抛物线对称轴GH所在直线为x轴和y轴建立平面直角坐标系.(1)求抛物线C1和C2的解析式;(2)若小明离甩绳同学点A距离1米起跳,至少要跳多少米以上才能使脚不被绳子绊住?(3)若集体跳绳每相邻两人(看成两个点)之间最小距离为0.8米,腾空后的人的最高点头顶与最低点脚底之距为1.5米,请通过计算说明,同时进行跳绳的人数最多可以容纳几人?(温馨提醒:所有同学起跳处均在直线CD上,不考虑错时跳起问题,即身体部分均在C1和C2之间才算通过),(参考数据:2=1.414,3≈1.732)25.父亲节即将到来之际,某商店准备购进A 、B 两种男装进行销售,其中每套B 种男装的进价比每套A 种男装的进价多40元用6000元购进A 种男装的数量是用2400元购进B 种男装数量的3倍.(1)求每套A 种男装和每套B 种男装的进价各是多少元:(2)若该商店本次购进B 种男装的数量比购进A 种男装的数量的2倍还多3套,该商店每套A 种男装的销售价格为280元,每套B 种男装的销售价格为350元,若将本次购进的A 、B 两种男装全部售出后获得的利润不少于6930元,那么该商店至少需要购进A 种男装多少套?【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B C D B A C D D BD C 二、填空题13.32或392或31214.-115.116.0x =或2x =17.25518.160三、解答题19.13【解析】【分析】先根据分式的运算法则进行化简,再代入使分式有意义的值计算.【详解】解:原式2211(1)(1)a a a a a a ⎡⎤+-=-⋅⎢⎥-+-⎣⎦2(1)21(1)(1)a a a a a a +---=⋅+-11a =+. 使原分式有意义的a 值可取2, 当2a =时,原式11213==+. 【点睛】考核知识点:分式的化简求值.掌握分式的运算法则是关键.20.(1)1;(2)a 2+7.【解析】【分析】(1)直接利用零指数幂的性质以及绝对值的性质分别化简得出答案;(2)直接利用完全平方公式化简得出答案.【详解】解:(1)原式=3+1﹣3=1;(2)原式=﹣2a+6+a 2+2a+1=a 2+7.【点睛】此题主要考查了实数运算以及整式运算,正确掌握运算法则是解题关键.21.(1)y =﹣53x+18;(2)购买甲种图书6套,乙种图书8套;(3)共有三种购买方案:①购买甲种图书3套,乙种图书13套,丙种图书4套;②购买甲种图书6套,乙种图书8套,丙种图书6套;③购买甲种图书9套,乙种图书3套,丙种图书8套.【解析】【分析】(1)根据题意设购买甲种图书x 套,乙种图书y 套即可列出方程(2)根据题意x+y=14,在于(1)组成方程组,即可解答(3)根据题意x≥1,51813x -+≥,求出解集,再根据x 为整数,即可解答【详解】(1)设购买甲种图书x 套,乙种图书y 套,则购买丙种图书(20﹣x ﹣y)套,依题意,得:500x+400y+250(20﹣x ﹣y)=7700,∴y =﹣53x+18. (2)依题意,得:145-183x y y x +=⎧⎪⎨=+⎪⎩, 解得:6{8x y ==, ∴购买甲种图书6套,乙种图书8套.(3)依题意,得:151813xx≥⎧⎪⎨-+≥⎪⎩,解得:1≤x≤1015.∵x,﹣53x+18,20﹣x﹣(﹣53x+18)为整数,∴x=3,6,9.∴共有三种购买方案:①购买甲种图书3套,乙种图书13套,丙种图书4套;②购买甲种图书6套,乙种图书8套,丙种图书6套;③购买甲种图书9套,乙种图书3套,丙种图书8套.【点睛】此题考查二元一次方程组的解和一元一次不等式的应用,解题关键在于根据题意列出方程组22.这个游戏规则对双方公平,见解析.【解析】【分析】利用树状图列举出所有情况,分别求得两人获胜的概率,比较大小即可得知这个游戏规对双方是否公平.【详解】这个游戏规则对双方公平,理由如下:如图所示:共9种情况,其中均为偶数的有2种结果,均为奇数的情况数有2种,所以小明获胜的概率为29、小颖获胜的概率为29,∵29=29,∴这个游戏规则对双方公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(1)y=﹣x2+200x﹣6400(50≤x≤60且x为整数),y=﹣2x2+300x﹣8800(60<x≤80且x为整数);(2)每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.【解析】【分析】(1)由于售价为60时,每个月卖100件,售价上涨或下调影响销量,因此分为50≤x≤60和60<x≤80两部分求解;(2)由(1)中求得的函数解析式来根据自变量x的范围求利润的最大值.【详解】解:(1)当50≤x≤60时,y=(x﹣40)(100+60﹣x)=﹣x2+200x﹣6400;当60<x≤80时,y=(x﹣40)(100﹣2x+120)=﹣2x2+300x﹣8800;∴y=﹣x2+200x﹣6400(50≤x≤60且x为整数)y =﹣2x 2+300x ﹣8800(60<x≤80且x 为整数);(2)当50≤x≤60时,y =﹣(x ﹣100)2+3600;∵a =﹣1<0,且x 的取值在对称轴的左侧,∴y 随x 的增大而增大,∴当x =60时,y 有最大值2000;当60<x≤80时,y =﹣2(x ﹣75)2+2450;∵a =﹣2<0,∴当x =75时,y 有最大值2450.综上所述,每件商品的售价定为75元时,每个月可获得最大利润,最大的月利润是2450元.【点睛】本题考查的是函数方程和实际结合的问题,同学们需掌握最值的求法.24.(1) 221213911,y x 16161616y x =+=-;(2) 至少要12跳米以上才能使脚不被绳子绊住;(3) 8人. 【解析】【分析】(1)先写出点C 、D 、E 、F 的坐标,然后设解析式代入求解即可;(2)小明离甩绳同学点A 距离1米起跳,可得此点的横坐标,代入C 2解析式,即可求得;(3)用y 1减去y 2,让其等于1.5,解出相应点的横坐标,求出这两个点的横坐标之间的距离,然后用间隔0.8乘以人数减1,即可解出.【详解】解:(1)由已知得:C (﹣1,0),D (1,0),E (﹣4,1516),F (﹣4,2316), 设C 2解析式为:2y = a ( x + 1 ) ( x - 1 ),把154,16⎛⎫- ⎪⎝⎭代入得15a =1516, ∴116a =, ∴22111616y x =-. 由对称性,设C 1解析式21116y x c =-+,把F (﹣4,2316)代入得c =3916, ∴211391616y x =-+ 故答案为:抛物线C 1和C 2的解析式分别为:211391616y x =-+,22111616y x =-. (2)把x =﹣3代入22111616y x =-得2111916162y =⨯-=,∴至少要跳12米以上才能使脚不被绳子绊住. (3)由y 1﹣y 2=1.5得:2213911 1.516161616x x -+-+= ∴1222,22x x ==-,∴x 1﹣x 2=42≈4×1.414=5.656,设同时进行跳绳的人数最多可以容纳x 人则0.8(x ﹣1)≤5.656,∴x≤8.07∴同时进行跳绳的人数最多可以容纳8人.【点睛】本题是二次函数的实际应用题,需要分析题意,构建函数模型,从而求解,难点在于如何分析题意列式.25.(1)每套种A 男装进价为200元,每套B 种男装进价为()23a +元;(2)该商店至少需要购进A 种男装22套.【解析】【分析】(1)关键语是"其中每套B 种男装的进价比每套A 种男装的进价多40元用6000元购进A 种男装的数量是用2400元购进B 种男装数量的3倍.”可根据此列出方程(2)本题中“购进B 种男装的数量比购进A 种男装的数量的2倍还多3套,该商店每套A 种男装的销售价格为280元,每套B 种男装的销售价格为350元,若将本次购进的A 、B 两种男装全部售出后获得的利润不少于6930元"看得出关于利润的不等式方程,组成方程组后得出未知数的取值范围,然后根据取值的不同情况,列出不同的方案【详解】(1)解:设每套A 种男装进价为x 元,则每套B 种男装的()40x +元.根据题意 得60002400340x x =⨯+ 解得200x =检验:经检验200x =是原方验程的解.4020040240x ∴+=+=元答:每套种A 男装进价为200元,每套B 种男装进价为()23a +元.(2)解:设该商店需要购进种男装 套,则需要购进种男装 套根据题意得()()()280200350240236930a a -+-+≥解得:22a ≥答:该商店至少需要购进A 种男装22套.【点睛】。