柴油机微粒过滤系统的研究
- 格式:docx
- 大小:22.31 KB
- 文档页数:2
DOC与DPF结合在柴油机后处理上的应用研究通过对柴油发动机后处理器内的氧化催化器(DOC)与颗粒过滤器(DPF)的结构和工作原理的描述,分析研究了DOC与DPF相结合在柴油机的尾气处理上的优缺点,为DOC+DPF技术在柴油机尾气处理方面的应用提供了有效的支撑。
标签:柴油发动机;后处理器;DOC与DPF;尾气处理1 引言柴油机有着动力性好,又十分经济的优点,目前被大量大小型交通工具采用。
但最近几年来国家出台了越来越严格的尾气排放法规,柴油机的尾气处理成为各个车辆生产商面临的难题。
柴油机的尾气处理目前有两个控制方向:一方面是加强发动机内燃油的燃烧效率,降低尾气中的有害气体成分,目前社会上的改进方法有废气再循环(ECR)和控制燃烧位置(CSS)等技术;另一个方面就是提高尾气处理器的处理效果,尾气处理技术目前有选择性催化还原(SCR),氧化催化(DOC),颗粒捕捉器(DPF)等技术。
本文通过对DOC与DPF技术的大量研究和实验,发现DOC与DPF技术相结合,不仅可以很大程度上完成尾气中有害物质的清除,还可以解决单独使用DOC技术或DPF技术在安装和结构上的技术难题。
2 DOC与DPF的工作原理与特点分析2.1 DOC工作原理与特点分析柴油机的尾气处理中使用DOC的主要作用是催化氧化尾气中的有害物质。
DOC一般以金属或陶瓷作为催化剂的载体,涂层中主要活性成分是铂系、钯系等贵重金属与稀土金属。
当柴油机的尾气通过催化剂时,HC化合物和CO等在较低的温度下可以很快地与尾气中的氧气进行化学反应,生成无污染的H2O和CO2,达到净化尾气中HC、CO的目的。
DOC技术要取得良好的净化效果,需要解决几个技术难题。
一是柴油机的排气温度偏低,对催化剂要求较高,必须使催化剂在低温下仍然有很好的催化活性;二是柴油中的硫含量必须较低,因为硫会使催化剂中毒劣化;三是废气中的一些较大颗粒很难被催化氧化,会堵塞催化剂载体的孔道。
2.2 DPF的工作原理和特点分析DPF技术又称为柴油机颗粒过滤器(Diesel Particulate Filter)技术,是比较好的降低排气中的烟尘颗粒(PM)的方法,现在市面上的壁流式蜂窝陶瓷颗粒捕捉器对PM的过滤效率高达90%。
国四后处理技术之DOCPOC详解(绝密)导言在把化学能转化为机械能方面,柴油机的热效率显然要高于其他内燃机。
柴油的高热效率以及良好的机械耐久性能保证了在为新型车选择一种先进的动力设备时,柴油机应当是首选。
柴油机在欧洲的市场份额很快就翻了一番。
在德国,五年内所占比例从20%上升到了40%。
近年来,柴油发动机长足发展。
西方国家逐渐淘汰了冒着黑烟的卡车,而柴油发动机越来越广泛地应用于新型环保型旅行车。
可见黑烟的问题解决了,但小颗粒物成为了关注的焦点。
当研究出新的测量技术来分析这些微粒并逐渐加深它们对人类影响的了解以后,颗粒污染物就成为在车辆高度集中的城市里最大的污染源。
柴油发动机的正常排气情况是:稀燃,排气温度低。
柴油机排气情况和汽油机排气情况有很大的区别,同样,排气后处理系统不一定同时适用于汽油机和柴油机。
总的来说,对于先进的柴油机,其原始排放中HC 和CO 的含量很少,主要污染物是氮氧化物和颗粒污染物。
柴油氧化型催化器的特点是减少HC,CO ,显著降低颗粒物的排放,氮氧化物平均可以减少10%-15%。
排放法规欧洲和日本计划在2004年和2005年达到更高的排放标准。
使用先进的发动机制造技术和柴油氧化型催化器可以达到这个标准。
重型柴油车也有类似趋势,最困难的一步是达到US07标准。
技术要求柴油机的发展潜力远远高于专家在几年前所做的预测。
采用柴油机排气后处理技术,不必在排气系统里安装任何其他装置就可以达到新的排放限值。
但是,同其他燃烧技术一样,如果要使排气污染物尽可能地降低为0的话,就要破坏发动机的其他性能。
比如使用高效废气再循环系统减少氮氧化物的排放,就会降低发动机的燃油经济性。
排气后处理技术可以减少尾气污染物的排放,因此,发动机生产商有更大的自由空间开发更为经济的发动机。
现在,许多奇特新颖的柴油机排气控制技术都在研发之中。
目前用于商业上的是选择性催化还原(SCR)系统;柴油颗粒捕集器(DPF/CRT),氧化型催化器以及采用上述技术相结合的综合治理技术路线,组成不同的模块。
柴油机微粒过滤系统的研究
0推荐
查看全文下载全文
导出添加到引用通知
分享到|
下载PDF阅读器doi:
10.7666/d.y1565979
为满足日益苛刻的排放法规,仅凭机内净化措施来减少柴油机的微粒排放是极其困难的。
另外,尽管机内净化技术使微粒物的质量排放总量得以削减,但微粒的个数却没有减少,而且生成了粒径更小的排放物。
越来越多的研究表明,柴油车排放的小微粒对人体健康危害更大,而未来的法规很可能会对柴油机微粒物排放的数量进行限制。
因此越来越多的国家关注机动车的小微粒排放,而微粒过滤器是未来解决小微粒排放问题的最有效措施之一。
基于此点,本文围绕柴油机微粒过滤系统进行了如下研究: 1.柴油机微粒过滤器对柴油机微粒组分特性影响的研究。
运用自行设计、制作的柴油机微粒取样器,对未安装过滤器、安装袋滤器、安装陶瓷过滤器三种情况下的柴油机排气微粒进行采集,分析柴油机工况对微粒组分特性的影响,以及微粒中可溶有机组分(SOF-Soluable Organic Fraction)中烷烃和芳香烃等成分的排放特性等。
研究结果表明:在相同转速下微粒排放量随负荷的增加而增大。
随着负荷的增加,微粒中SOF的百分含量在逐渐减少,不可溶有机成分(IOF-Insoluble Organic Fraction)的百分含量在逐渐增加。
SOF的含量从低负荷时的15%到高负荷时的45%左右,其对微粒特性的影响不能忽略。
微粒中可溶性有机物SOF中正烷烃的总含量占到了70%~80%;支链烷烃的总含量在2%~22%之间;多环芳香烃的总含量在1%~13%之间。
柴油机在不同运行工况下,其排出SOF
碳原子数分布稍有不同。
另外,袋滤器过滤后微粒中SOF的百分含量比陶瓷过滤器过滤后的略低;袋滤器过滤后微粒SOF 中各组分百分含量均在20%以下,各组分过滤比较均匀;陶瓷过滤器过滤后个别工况个别组分的相对含量达到近40%;袋滤器对多环芳香烃的过滤效率要高于陶瓷过滤器。
综合来看,袋滤器是一种过滤效果较好的后处理装置。
2.柴油机排气微粒燃烧特性的分析研究。
对采集的柴油机排气微粒,利用热重分析技术,研究了微粒在氧气浓度分别为10%、20%、30%,升温速率分别为10℃/min、20℃/min、30℃/min、40℃/min,微粒质量分别为>5mg、3.5mg~3mg、<1.5mg的燃烧性能。
结果表明:微粒的燃烧明显分为挥发份析出(低温段)和固定碳(高温段)的燃烧两个阶段。
低温段的失重占总失重的20%左右;高温段的失重占总失重的70%左右,说明微粒燃烧过程主要是固定碳的燃烧。
氧气浓度较低的时候,燃烧需要较高的温度;反应温度较低的时候,需要较高的氧气含量。
综合起来看,在氧浓度较低时,随着氧气浓度增大,燃烧性能呈现良好的趋势。
但同时也表现出,氧气浓度为20%、30%时的情况比较接近,与氧气浓度为10%时的差距比较明显。
说明提高空气中氧气浓度对微粒燃烧性能影响不大。
另外研究还发现,当氧气浓度在20%、30%时的反应平均活化能为60kJ/mol左右。
目前采用燃油添加剂可以使微粒的活化能降低到这个数值,也就是说如果用空气或含氧量更高的气体来做燃烧反应气氛的话,可以满足过滤器被动再生时对微粒活化能的要求。
3.根据理想流体质点的声传播控制方程,建立了考虑流速、热传导和粘性时,微粒过滤器内的声传播控制方程。
以此为基础,利用达西定律求解微粒过滤器相邻单元孔壁的压降,进而建立了微粒过滤器的传播常数和传递矩阵的计算模型。
以此模型计算了发动机在特定工况下的插入损失,并和试验测量的数值进行了对比分析,验证了理论分析的正确性。
4.建立了微粒过滤器气体流动的三维数值模型。
以k-ε紊流模型理论为基础,把过滤单元作为多孔介质,模拟了袋滤器内的排气流动特性,并用FLUENT软件进行求解。
最后将数值计算值与试验值进行对比,验证了所建模型的正确性。
计算结果表明:在袋滤器内部,压力是层层递减的,而在过滤单元处突然降低,说明过滤单元是产生压力损失的主要原因。
另外,入口壁面附近也是产生压力损失比较集中的一个位置。
袋滤器结构参数会影响整个袋滤器的压力损失。
5.设计了适用于固定式柴油机以及公交车等对场地要求不严的设备,利用袋滤器技术来控制微粒排放的固定式卸灰系统,解决了再生难的问题。
作者:
刘丽萍
学科专业:热能工程
授予学位:博士
学位授予单位:山东大学
导师姓名:田茂诚
学位年度:2009
语种:chi
分类号:TK421.5
关键词:柴油机排气微粒袋滤器陶瓷过滤器微粒过滤系统在线出版日期:2010年2月1日。