2019-2020学年高中数学第一章三角函数1.4三角函数的周期性学案1苏教版必修.doc
- 格式:doc
- 大小:96.00 KB
- 文档页数:3
三角函数线及其应用课时第21.有向线段(1)定义:带有方向的线段.OMMP. (2)表示:用大写字母表示,如有向线段,2.三角函数线PPPMxM. ,过垂直于作轴,垂足为作图:①(1)α的终边与单位圆交于AxT. α0)作的终边或其反向延长线于点轴的垂线,交②过(1,(2)图示:MPOMAT,分别叫做角α、结论:有向线段(3)的正弦线、余弦线、正切线,统称为三、角函数线.思考:当角的终边落在坐标轴上时,正弦线、余弦线、正切线变得怎样?xy轴上当角的终边落在轴上时,正弦线、正切线分别变成了一个点;终边落在提示:时,余弦线变成了一个点,正切线不存在.π8π1.角和角有相同的( )77A.正弦线 B.余弦线.不能确定D .正切线C.π8πC [角和角的终边互为反向线,所以正切线相同.]772.如图,在单位圆中角α的正弦线、正切线完全正确的是( )OMAT′.正弦线′,正切线 A OMAT′.正弦线′,正切线 B MPAT,正切线C.正弦线MPAT′,正切线′D.正弦线MPAT,C,正切线为正确.C [α为第三象限角,故正弦线为]3.若角α的余弦线长度为0,则它的正弦线的长度为.y轴上,正弦线与单位圆的交点为(0,0的余弦线长度为时,α的终边落在1 [若角α1)或(0,-1),所以正弦线长度为1.]】作出下列各角的正弦线、余弦线、正切线.【例1ππ10π17.(3)-;(2);(1)364 [解]如图.MPOMAT为正切线.其中为正弦线,为余弦线,三角函数线的画法x轴的垂(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作线,得到垂足,从而得正弦线和余弦线.xA)的终边(α作正切线时,应从(1,0)点引为第一或第四象限角轴的垂线,交α(2)ATT.于点,即可得到正切线或α终边的反向延长线(α为第二或第三象限角)π5 1.作出-的正弦线、余弦线和正切线.8 ]如图:[解π5????MP-=,sin??8π5????OM-,cos=??8π5????AT-. =tan??8) >cos β,那么下列结论成立的是( 【例2】 (1)已知cos αβsin α>sin .若Aα、β是第一象限角,则α>tan β是第二象限角,则B.若α、βtanα>sin βC.若α、β是第三象限角,则sin>tan β.若α、β是第四象限角,则tan αDππ4π2π4π22π4 的大小.,tan和tan和(2)利用三角函数线比较sin和sin,coscos553533在规定象限内画观察正弦线或正、β的余弦线出α→思路点拨:(1) 切线判断大小满足cos α>cos β2π4π观察图形,(2)作出和的正弦线、余弦线和正切线→比较大小35 错误;A,故βsin <αsin 时,βcos >αcos 可知,(1)由图[ D)1(图(1)由图(2)可知,cos α>cos β时,tan α<tan β,故B错误;图(2)由图(3)可知,cos α>cos β时,sin α<sin β,C错误;图(3)由图(4)可知,cos α>cos β时,tan α>tan β,D正确.]图(4)2π2π2π4π4πMPOMATMPOM′,=′,tan=,=′cos==解:如图,(2)sin,cos,333554πAT′.=tan 5.MPMP′|,符号皆正,| 显然|′|>2π4π∴sin>sin;352π4πOMOM′|,符号皆负,∴cos>cos;|<| |352π4πATAT′|,符号皆负,∴tan<tan|>||.35(1)利用三角函数线比较大小的步骤:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.(2)利用三角函数线比较函数值大小的关键及注意点:①关键:在单位圆中作出所要比较的角的三角函数线.②注意点:比较大小,既要注意三角函数线的长短,又要注意方向.2π2π2πabc=tan,则( =cos, 2.已知sin=,)777abcacb<..<B<<A babcac<.D<.C<<D[由如图的三角函数线知:2π2ππATMP>,因为=<,784MPOM,>所以.2π2π2π所以cos<sin<tan,777bac.]所以<<πππ3π3.设<α<,试比较角α的正弦线、余弦线和正切线的长度.如果<α<,4224上述长度关系又如何?ππMPOMAT,,余弦线为,正切线为α<时,角α的正弦线为[解] 如图所示,当<42π3πATMPOMMPOM′,′时,角α显然在长度上,的正弦线为>′,余弦线为><;当<α24ATATMPOM′.′>′>′正切线为′,显然在长度上,]探究问题[aaa (|α≥|≤1)的不等式?,sin α≤1.利用三角函数线如何解答形如sinaaa(|,sin α≤|≤1)的不等式:提示:对形如sin α≥图①yOMaay轴的垂线交单位圆于两作),过点(0画出如图①所示的单位圆;在,轴上截取=PPOPOPOPOP′上的角的集合;图中阴影部分即为和点和和′;写出终边在′,并作射线aa的角α的范围.α的角α的范围,其余部分即为满足不等式sin ≥sin 满足不等式α≤aaa|≤1)的不等式?≤α(|.利用三角函数线如何解答形如2cos α≥,cosaaa|≤1)的不等式:≤cos α对形如提示:cos ≥,α(|图②.xaaxOM轴的垂线交单位圆于两,0)=,过点画出如图②所示的单位圆;在(轴上截取作OPOPPPOPOP′上的角的集合;图中阴影部分即为满′,作射线′;写出终边在点和和和aa cos α的角α≥足不等式cos α≤的范围.的角α的范围,其余部分即为满足不等式3】利用三角函数线确定满足下列条件的角α的取值范围.【例132. αα|≤(1)cos α>-≤;(3)|sin ;(2)tan 223的写出角α确定对应确定角α的终→思路点拨:→――方程的解边所在区域取值范围[解] (1)如图,由余弦线知角α的取值范围是3π3π???kkk?Z,<α<2π2+π-∈. α???44??(2)如图,由正切线知角α的取值范围是ππ???kkk?Zπ+∈π,α≤. α???62??111(3)由|sin α|≤,得-≤sin α≤.222如图,由正弦线知角α的取值范围是ππ???kkk?∈,π+Zπ-α≤≤.α???66??2”,求α的取值范围.的不等式改为“cos α< 1.将本例(1)2[解]如图,由余弦线知角α的取值范围是π7π???kkk?Z<2,π2+π+∈<α. α???44??132.将本例(3)的不等式改为“-≤sin θ<”,求α的取值范围. 22π117π3π2π????-=-,sin且-≤sin θ=]由三角函数线可知sin=sin,sin=[解??62633223,故θ的取值集合是< 2ππ2π7π????kkkk????k+22π2,+π+π,2π- (.∈Z)∪????6633yx-1的定义域..利用本例的方法,求函数=2sin 3x-1≥0,2sin ]要使函数有意义,只需解[1x≥.即sin 2π5π??kk??k++,2π2π∈Z). (由正弦线可知定义域为??66利用单位圆中的三角函数线解不等式的方法(1)首先作出单位圆,然后根据各问题的约束条件,利用三角函数线画出角α满足条件的终边的位置.(2)角的终边与单位圆交点的横坐标是该角的余弦值,与单位圆交点的纵坐标是该角的正弦值.写角的范围时,抓住边界值,然后再注意角的范围的写法要求.(3)在一定范围内先找出符合条件的角,再用终边相同的角的表达式写出符合条件的提醒:所有角的集合..本节课的重点是三角函数线的画法,以及利用三角函数线解简单的不等式及比较大小1 问题,难点是对三角函数线概念的理解. .本节课应重点掌握三角函数线的以下三个问题2 ;三角函数线的画法,见类型1(1) ;利用三角函数线比较大小,见类型2(2)3.利用三角函数线解简单不等式,见类型(3).三角函数线是三角函数的几何表示,它们都是有向线段,线段的方向表示三角函数值3的正负,与坐标轴同向为正,异向为负,线段的长度是三角函数的绝对值,这是本节重中之 重. .利用三角函数线解三角不等式的方法41.下列判断中错误的是( )A .α一定时,单位圆中的正弦线一定B .在单位圆中,有相同正弦线的角相等C .α和α+π有相同的正切线D .具有相同正切线的两个角的终边在同一条直线上π5πB [A正确;B 错误,如与有相同正弦线;C 正确,因为α与π+α的终边互为反66向延长线;D 正确.]πOMMP 分别是角α=的余弦线和正弦线,那么下列结论正确的是( 2.如果, )5MPOMMPOM <0<.B0<<.A .MPOMMPOM 0>>>>0 DC ..ππOM 的余弦线和正弦线满足α=[角β=的余弦线与正弦线相等,结合图象可知角D 54MP 0.]>>baba,则cos 4 ,3.若.=sin 4,的大小关系为=ππ35ba<,<< [因为424 ,如图4弧度角的正弦线和余弦线()画出ba.]<cos 4,即观察可知sin 4<的集合.α的终边范围,并由此写出角α.在单位圆中画出适合下列条件的角413. α≤-(1)sin α;≥(2)cos 223yOBABOA=(1)作直线[α的终边在如图①所交单位圆于解,两点,连接],,则角2π2???kkk?∈Zπ,≤π≤απ+2+2.α)含边界,角的取值集合为α(示的阴影区域内???33??图①图②1xCDOCOD,则角α=-(2)作直线交单位圆于,两点,连接,的终边在如图②所示的2.24???kkk?∈,Zπ≤α≤+2π2π+π.阴影区域内(α的取值集合为,角含边界)α???33??。
1.4.2 正弦函数、余弦函数的性质(一) 学习目标 1.了解周期函数、周期、最小正周期的定义.2.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的周期.3.掌握函数y =sin x ,y =cos x 的奇偶性,会判断简单三角函数的奇偶性.知识点一 函数的周期性思考1 如果函数f (x )满足f (x +3)=f (x ),那么3是f (x )的周期吗?答案 不一定.必须满足当x 取定义域内的每一个值时,都有f (x +3)=f (x ),才可以说3是f (x )的周期.思考2 所有的函数都具有周期性吗?答案 不是.只有同时符合周期函数定义中的两个条件的函数才具有周期性.思考3 周期函数都有最小正周期吗?答案 周期函数不一定存在最小正周期.例如,对于常数函数f (x )=c (c 为常数,x ∈R ),所有非零实数T 都是它的周期,而最小正周期是不存在的,所以常数函数没有最小正周期. 梳理 函数的周期性(1)对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.(2)如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数叫做f (x )的最小正周期.知识点二 正弦函数、余弦函数的周期性思考1 证明函数y =sin x 和y =cos x 都是周期函数.答案 ∵sin(x +2π)=sin x ,cos(x +2π)=cos x ,∴y =sin x 和y =cos x 都是周期函数,且2π就是它们的一个周期.思考2 证明函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))(Aω≠0)是周期函数. 答案 由诱导公式一知,对任意x ∈R ,都有A sin[(ωx +φ)+2π]=A sin(ωx +φ),所以A sin[ω⎝ ⎛⎭⎪⎫x +2πω+φ]=A sin(ωx +φ), 即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期. 同理,函数f (x )=A cos(ωx +φ)(ω≠0)也是周期函数.梳理 由sin(x +2k π)=sin x ,cos(x +2k π)=cos x (k ∈Z )知,y =sin x 与y =cos x 都是周期函数,2k π (k ∈Z 且k ≠0)都是它们的周期,且它们的最小正周期都是2π. 知识点三 正弦函数、余弦函数的奇偶性思考 对于x ∈R ,sin(-x )=-sin x ,cos(-x )=cos x ,这说明正弦函数、余弦函数具备怎样的性质?答案 奇偶性.梳理 (1)对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称.(2)对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称.类型一 三角函数的周期性例1 求下列函数的最小正周期.(1)y =sin(2x +π3)(x ∈R ); (2)y =|sin x |(x ∈R ).解 (1)方法一 令z =2x +π3,因为x ∈R ,所以z ∈R . 函数f (x )=sin z 的最小正周期是2π,即变量z 只要且至少要增加到z +2π,函数f (x )=sin z (z ∈R )的值才能重复取得.而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x +π3(x ∈R )的最小正周期是π. 方法二 f (x )=sin ⎝⎛⎭⎪⎫2x +π3的最小正周期为2π2=π. (2)因为y =|sin x |=⎩⎪⎨⎪⎧ sin x (2k π≤x ≤2k π+π),-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,所以该函数的最小正周期为π.反思与感悟 对于形如函数y =A sin(ωx +φ),Aω≠0时的最小正周期的求法常直接利用T =2π|ω|来求解,对于y =|A sin ωx |的周期情况常结合图象法来求解. 跟踪训练1 求下列函数的周期.(1)y =sin ⎝ ⎛⎭⎪⎫-12x +π3;(2)y =|cos 2x |. 解 (1)T =2π|-12|=4π. (2)T =π2. 类型二 三角函数的奇偶性例2 判断下列函数的奇偶性.(1)f (x )=sin ⎝ ⎛⎭⎪⎫-12x +π2; (2)f (x )=lg(1-sin x )-lg(1+sin x );(3)f (x )=1+sin x -cos 2x 1+sin x. 解 (1)显然x ∈R ,f (x )=cos 12x , ∵f (-x )=cos ⎝ ⎛⎭⎪⎫-12x =cos 12x =f (x ), ∴f (x )是偶函数.(2)由⎩⎪⎨⎪⎧ 1-sin x >0,1+sin x >0,得-1<sin x <1.解得定义域为{x |x ∈R 且x ≠k π+π2,k ∈Z }. ∴f (x )的定义域关于原点对称.又∵f (x )=lg(1-sin x )-lg(1+sin x ),∴f (-x )=lg[1-sin(-x )]-lg[1+sin(-x )]=lg(1+sin x )-lg(1-sin x )=-f (x ).∴f (x )为奇函数.(3)∵1+sin x ≠0,∴sin x ≠-1,∴x ∈R 且x ≠2k π-π2,k ∈Z . ∵定义域不关于原点对称,∴该函数是非奇非偶函数.反思与感悟 判断函数奇偶性应把握好两个关键点:关键点一:看函数的定义域是否关于原点对称;关键点二:看f (x )与f (-x )的关系.对于三角函数奇偶性的判断,有时可根据诱导公式先将函数式化简后再判断.跟踪训练2 判断下列函数的奇偶性.(1)f (x )=cos ⎝ ⎛⎭⎪⎫32π+2x +x 2sin x ; (2)f (x )=1-2cos x +2cos x -1.解 (1)f (x )=sin 2x +x 2sin x ,∵x ∈R ,f (-x )=sin(-2x )+(-x )2sin(-x )=-sin 2x -x 2sin x =-f (x ),∴f (x )是奇函数.(2)由⎩⎪⎨⎪⎧ 1-2cos x ≥0,2cos x -1≥0,得cos x =12. ∴f (x )=0,x =2k π±π3,k ∈Z . ∴f (x )既是奇函数又是偶函数.类型三 三角函数的奇偶性与周期性的综合应用例3 定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值. 解 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数,∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32. ∴f ⎝ ⎛⎭⎪⎫5π3=32. 反思与感悟 解决此类问题的关键是运用函数的周期性和奇偶性,把自变量x 的值转化到可求值区间内.跟踪训练3 若f (x )是以π2为周期的奇函数,且f ⎝ ⎛⎭⎪⎫π3=1,求f ⎝ ⎛⎭⎪⎫-5π6的值. 解 因为f (x )是以π2为周期的奇函数,所以f ⎝ ⎛⎭⎪⎫-5π6=f ⎝ ⎛⎭⎪⎫-5π6+π2=f ⎝ ⎛⎭⎪⎫-π3=-f ⎝ ⎛⎭⎪⎫π3=-1.类型四 函数周期性的综合应用例4 已知函数f (x )=cos π3x ,求f (1)+f (2)+f (3)+…+f (2 020)的值. 解 ∵f (1)=cos π3=12,f (2)=cos 2π3=-12,f (3)=cos π=-1,f (4)=cos 4π3=-12,f (5)=cos 5π3=12,f (6)=cos 2π=1, ∴f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=0.同理,可得每连续六项的和均为0.∴f (1)+f (2)+f (3)+…+f (2 020)=f (2 017)+f (2 018)+f (2 019)+f (2 020)=cos 2 017π3+cos 2 018π3+cos 2 019π3+cos 2 020π3=cos π3+cos 2π3+cos π+cos 4π3=12+(-12)+(-1)+(-12)=-32. 反思与感悟 当函数值的出现具有一定的周期性时,可以首先研究它在一个周期内的函数值的变化情况,再给予推广求值.跟踪训练4 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 015)= .解析 ∵f (x )=sin π3x 的周期T =2ππ3=6, ∴f (1)+f (2)+f (3)+…+f (2 015)=335[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015)=335⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π +f (335×6+1)+f (335×6+2)+f (335×6+3)+f (335×6+4)+f (335×6+5)=335×0+f (1)+f (2)+f (3)+f (4)+f (5)=sin π3+sin 23π+sin π+sin 43π+sin 53π=0.1.函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为( ) A.π2B.πC.2πD.4π 答案 D2.下列函数中最小正周期为π的偶函数是( )A.y =sin x 2B.y =cos x2 C.y =cos xD.y =cos 2x 答案 D3.设函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( ) A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数解析 ∵sin ⎝ ⎛⎭⎪⎫2x -π2=-sin ⎝ ⎛⎭⎪⎫π2-2x =-cos 2x , ∴f (x )=-cos 2x .又f (-x )=-cos(-2x )=-cos 2x =f (x ),∴f (x )是最小正周期为π的偶函数.4.函数y =sin(ωx +π4)的最小正周期为2,则ω的值为 . 答案 ±π解析 ∵T =2π|ω|=2,∴|ω|=π,∴ω=±π. 5.若函数f (x )的定义域为R ,最小正周期为3π2,且满足 f (x )=⎩⎪⎨⎪⎧ cos x ,-π2≤x <0,sin x ,0≤x <π,则f ⎝⎛⎭⎪⎫-15π4= . 答案 22 解析 f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-15π4+3π2×3 =f ⎝ ⎛⎭⎪⎫3π4=sin 3π4=22.1.求函数的最小正周期的常用方法:(1)定义法,即观察出周期,再用定义来验证;也可由函数所具有的某些性质推出使f (x +T )=f (x )成立的T .(2)图象法,即作出y =f (x )的图象,观察图象可求出T ,如y =|sin x |.(3)结论法,一般地,函数y =A sin(ωx +φ)(其中A 、ω、φ为常数,A ≠0,ω>0,x ∈R )的周期T =2πω. 2.判断函数的奇偶性,必须坚持“定义域优先”的原则,准确求函数定义域和将式子合理变形是解决此类问题的关键.如果定义域关于原点对称,再看f (-x )与f (x )的关系,从而判断奇偶性.课时作业一、选择题1.下列函数中,周期为π2的是( ) A.y =sin x 2B.y =sin 2xC.y =cos x 4D.y =cos(-4x ) 答案 D解析 T =2π|-4|=π2. 2.函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A.5 B.10 C.15 D.20答案 B3.已知a ∈R ,函数f (x )=sin x -|a |(x ∈R )为奇函数,则a 等于( )A.0B.1C.-1D.±1答案 A解析 因为f (x )为奇函数,所以f (-x )=sin(-x )-|a |=-f (x )=-sin x +|a |,所以|a |=0,从而a =0,故选A.4.下列函数中是奇函数,且最小正周期是π的函数是( )A.y =cos|2x |B.y =|sin x |C.y =sin ⎝ ⎛⎭⎪⎫π2+2x D.y =cos ⎝ ⎛⎭⎪⎫3π2-2x 答案 D 解析 y =cos|2x |是偶函数,y =|sin x |是偶函数,y =sin ⎝ ⎛⎭⎪⎫π2+2x =cos 2x 是偶函数,y =cos ⎝ ⎛⎭⎪⎫3π2-2x =-sin 2x 是奇函数,根据公式求得其最小正周期T =π. 5.函数y =cos ⎝ ⎛⎭⎪⎫k 4x +π3(k >0)的最小正周期不大于2,则正整数k 的最小值应是( ) A.10 B.11 C.12 D.13答案 D解析 ∵T =2πk 4≤2,即k ≥4π, ∴正整数k 的最小值是13.6.函数y =|sin x |(1-sin x )1-sin x的奇偶性为( ) A.奇函数B.既是奇函数也是偶函数C.偶函数D.非奇非偶函数答案 D解析 由题意知,当1-sin x ≠0,即sin x ≠1时,y =|sin x |(1-sin x )1-sin x=|sin x |, 所以函数的定义域为{x |x ≠2k π+π2,k ∈Z }, 由于定义域不关于原点对称,所以该函数是非奇非偶函数.7.函数f (x )=3sin(23x +15π2)是( ) A.周期为3π的偶函数B.周期为2π的偶函数C.周期为3π的奇函数D.周期为4π3的偶函数 答案 A二、填空题8.若0<α<π2,g (x )=sin(2x +π4+α)是偶函数,则α的值为 . 答案 π4解析 要使g (x )=sin(2x +π4+α)为偶函数, 则需π4+α=k π+π2,k ∈Z ,∴α=k π+π4,k ∈Z . ∵0<α<π2,∴α=π4. 9.函数f (x )=2sin ⎝⎛⎭⎪⎫5π2+2x +1的图象关于 对称.(填“原点”或“y 轴”) 答案 y 轴解析 f (x )=2sin ⎝ ⎛⎭⎪⎫5π2+2x +1=2cos 2x +1, ∵f (-x )=f (x ),∴f (x )是偶函数.∵偶函数的图象关于y 轴对称,∴f (x )的图象关于y 轴对称.10.关于x 的函数f (x )=sin (x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数;③存在φ,使f (x )是奇函数;④对任意的φ,f (x )都不是偶函数.其中错误的是 .(填序号)答案 ①④解析 当φ=0时,f (x )=sin x 是奇函数.当φ=π2时,f (x )=cos x 是偶函数. 三、解答题11.判断下列函数的奇偶性.(1)f (x )=cos(π2+2x )cos(π+x ); (2)f (x )=1+sin x +1-sin x ;(3)f (x )=e sin x +e -sin x e sin x -e-sin x . 解 (1)∵x ∈R ,f (x )=cos(π2+2x )cos(π+x ) =-sin 2x ·(-cos x )=sin 2x cos x .∴f (-x )=sin(-2x )cos(-x )=-sin 2x cos x=-f (x ),∴y =f (x )是奇函数.(2)∵对任意x ∈R ,-1≤sin x ≤1,∴1+sin x ≥0,1-sin x ≥0,∴f (x )=1+sin x +1-sin x 的定义域是R .又∵f (-x )=1+sin (-x )+1-sin (-x ), =1-sin x +1+sin x =f (x ),∴y =f (x )是偶函数.(3)∵e sin x -e -sin x ≠0,∴sin x ≠0,∴x ∈R 且x ≠k π,k ∈Z .∴定义域关于原点对称.又∵f (-x )=e sin (-x )+e -sin (-x)e sin (-x )-e-sin (-x ) =e -sin x +e sin x e -sin x -esin x =-f (x ),∴y =f (x )是奇函数. 12.已知f (x )是以π为周期的偶函数,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,f (x )的解析式. 解 当x ∈⎣⎢⎡⎦⎥⎤52π,3π时,3π-x ∈⎣⎢⎡⎦⎥⎤0,π2, ∵当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x )=1-sin x .又∵f (x )是以π为周期的偶函数,∴f (3π-x )=f (-x )=f (x ), ∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎢⎡⎦⎥⎤52π,3π. 13.已知函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 证明 ∵f (x +4)=f (x +2+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.四、探究与拓展14.若函数f (x )=2cos ⎝⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为 .答案 6解析 ∵T =2πω,1<2πω<4,则π2<ω<2π. ∴ω的最大值是6.15.欲使函数y =A sin ωx (A >0,ω>0)在闭区间[0,1]上至少出现50个最小值,求ω的最小值.解 函数y =A sin ωx 的最小正周期为2πω,因为在每一个周期内,函数y =A sin ωx (A >0,ω>0)都只有一个最小值,要使函数y =A sin ωx 在闭区间[0,1]上至少出现50个最小值,则y 在区间[0,1]内至少含4934个周期,即⎩⎪⎨⎪⎧ T =2πω,4934T ≤1,解得ω≥199π2,所以ω的最小值为199π2.。
江苏省泰兴中学高一数学教学案(44) 必修4_01 三角函数的周期性班级 姓名目标要求1.了解周期函数的概念,会判断一些简单的、常见函数的周期性; 2.会求一些简单的三角函数的周期. 重点难点重点: 三角函数的周期性; 难点: 周期函数的概念 教学进程: 一、问题情境问题:一、(1)终边相同的角的转变有“周而复始”的转变规律吗?(2)物理中的圆周运动的规律如何呢? 二、用三角函数线研究正弦、余弦函数值:每当角增加(或减少)π2,所得角的终边与原来角的终边相同,故两角的正弦、余弦函数值也别离相同,即有:_________________________;__________________________. 这种性质咱们就称之为周期性.二、数学建构一、周期函数的概念:一般地,对于函数)(x f ,若是存在一个非零的常数T ,使得概念域内的每一个值x ,都知足_______________________,那么函数就叫做______________, 非零常数T 叫做这个函数的_____________________. 说明:(1)T 必需是常数,且不为零;(2)对周期函数来讲()()f x T f x +=必需对概念域内的任意x 都成立. 二、最小正周期的概念:3、(1)一个周期函数的周期有_________个.(2)试举出没有最小正周期的周期函数:___________________________________. 练习:(1)3x π=时,2sin()sin 3x x π+=是不是成立?________76x π=呢? _________ (2) 若是(1)中的等式不成立,可否说23π不是正弦函数sin y x =的一个周期?若是(1)中的等式成立,可否说23π是正弦函数sin y x =的一个周期?为何?三、典例剖析例1 若钟摆的高度()h mm 与时间()t s 之间的函数关系如图所示,(1)求该函数的周期; (2)求10t s =时钟摆的高度.例2 求下列函数的周期. (1)x x f 2cos )(=(2)1()2cos()24f x x π=-(3)|sin |)(x x f =(4)若函数)5sin(2)(π+=kx x f 的最小正周期为π32,求正数k 的值.1例3 若函数)(x f 的概念域为R ,且对一切实数x ,都有)()(x f x f =-,且)2()2(x f x f -=+,试证明)(x f 为周期函数,并求出它的一个周期.例4 已知函数)(x f 是概念域为R 的奇函数,它的图像关于直线1=x 对称(1)求:)0(f (2)证明函数)(x f 为周期函数(3)若函数10,sin )(≤<=x x x f 求:]3,1[-∈x 上函数)(x f 的解析式.四、课堂练习一、 判断下列命题的真假: (1) f (x )=sin x+x 是周期函数; (2) g (x )=3是周期函数;(3) h (x )=sin(2x+3)不是周期函数;(4) u (x )=sin(-x )不是周期函数. 二、设()f x 是概念域为R ,最小正周期为32π的函数,若cos (0)()2sin (0)x x f x x x ππ⎧-≤≤⎪=⎨⎪≤≤⎩,则15()4f π-的值等于 .(假)3、 若函数f (x )是周期为4的奇函数,且f (1)=3,求f (2015)的值.五、课堂小结1. 函数的周期性是函数的全局性质,因此必然要强调f (x+T )=f (x )对概念域中的任意x 都要成立;函数的周期性反映了函数图象的周而复始的转变趋势.2. 掌握正弦函数、余弦函数、正切函数的周期.3. 一般地,函数sin()y A x ωϕ=+及cos()y A x ωϕ=+(其中,,A ωϕ为常数,且0,0A ω≠>)的周期T = ,当0ω<时,T = .江苏省泰兴中学高一数学作业(44)班级 姓名 得分一、指出下列函数的最小正周期:(1)3sin4x y = (2)cos4y x = (3)13sin()24y x π=+ 二、函数2cos()3y x πω=-的最小正周期是4π,则正数ω=3、函数)(x f 是概念在R 上的周期为3的奇函数,且2)1(=f ,则=)5(f ________.4、若函数()sin ()6f x x x Z π=∈,则(1)(2)(3)(2009)f f f f ++++=五、函数()2cos()543kx f x π=+-的最小正周期不大于2,则正整数k 的最小值_____六、已知函数()sin()12f x x ππ=--,则该函数的周期为_______,奇偶性为________7、()f x 是概念在R 上的奇函数,概念最小正周期为T ,则()2T f -的值为______ 八、若弹簧振子对平衡位置的位移x(cm)与时间t(s)之间的关系如图所示: (1)求该函数的周期;(2)求t=时弹簧振子对平衡位置的位移.九、函数3sin()3y kx π=+的最小正周期T 知足T (1,3)∈,求正整数k .10、概念在R 上的偶函数()f x 知足(1)()f x f x +=-,且在[3,2]--上是减函数.若84841201x x ≤<≤,试比较1()f x 与2()f x 的大小.1一、设有函数()sin()3f x a kx π=-和函数()cos(2)(0,0,0)6g x b kx a b k π=->>>,若它们的最小正周期之和为32π,且()(),()()12244f g f ππππ==-,求这两个函数的解析式.1二、证明:若函数R x x f y ∈=),(知足()()()( ++-=a x f a x f x f 常数)+∈R a ,则)(x f 是周期函数,且a 6是它的一个周期.。
苏教版必修四第一章三角函数1.6 三角函数的周期性(习题+解析)②从f (x +T )=f (x )来看,应强调是自变量x 本身加的常数才是周期,如f (2x +T )=f (2x )中,T 不是周期,而应写成(2)2()(2)2T f x T f x f x ⎡⎤+=+=⎢⎥⎣⎦,则2T 是f (x )的周期。
③对于一个周期函数()f x ,如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做()f x 的最小正周期。
今后提到的三角函数的周期,如未特别指明,一般都是它的最小正周期。
④并不是所有的周期函数都存在最小正周期。
例如常数函数()(f x C C =为常数),其周期T 是任意实数,没有最小正数。
⑤周期函数的周期不是唯一的,如果T 是函数f (x )的周期,那么kT (k ∈Z ,k ≠0)也一定是函数的周期。
【核心归纳】如何利用定义判断函数是不是周期函数?(1)首先看定义域若x 是定义域D 内的一个值,则且,(Z k kT x ∈+)0≠k 也一定属于定义域D ,因此周期函数的定义域D 一定是无限集,而且定义域D 一定无上界且无下界。
(2)其次看恒等式是否成立对于定义域D 内任意一个x ,是否有()()f x f x T =+恒成立。
如果成立,则是周期函数。
否则,不是周期函数。
二、sin()(0,0)y A x A ωϕω=+≠>的周期一般地,函数y =A sin (ωx +φ)和y =A cos (ωx +φ)(其中A ,ω,φ为常数,且A ≠0,ω>0)的周期T =ωπ2。
【规律总结】求三角函数的周期,通常有三种方法。
(1)定义法;(2)公式法,对y =A sin (ωx +φ)或y =A cos (ωx +φ)(A ,ω,φ是常数,且A ≠0,ω≠0),T =||2ωπ; (3)图象法。
三种方法各有所长,要根据函数式的结构特征,选择适当方法求解,为了避免出现错误,求周期之前要尽可能将函数化为同名同角的三角函数,且函数的次数为1。
高中数学三角函数教案三角函数内容在高中数学课程中占有重要的地位,它是描述现实世界周期现象的重要模型,又是高中教材中基本初等函数的其中之一。
下面店铺为你整理了高中数学三角函数教案,希望对你有帮助。
高中数学三角函数教案:任意角的三角函数一、教学目标1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验.3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.4.培养学生求真务实、实事求是的科学态度.二、重点、难点、关键重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.难点:把三角函数理解为以实数为自变量的函数.关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).三、教学理念和方法教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.四、教学过程[执教线索:回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业](一)复习引入、回想再认开门见山,面对全体学生提问:在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?探索任意角的三角函数(板书课题),请同学们回想,再明确一下:(情景1)什么叫函数?或者说函数是怎样定义的?让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y= f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域高中数学三角函数教案:三角函数的诱导公式1教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
高中高一数学教案:三角函数的周期性一、教学目标通过本节课的学习,学生将能够:1.了解三角函数的概念以及周期性的定义和判断方法;2.掌握正弦函数、余弦函数、正切函数等三角函数的周期性特征及其图像;3.实现对于具体函数的周期的计算。
二、教学内容本节课的教学内容主要包括:1.三角函数的概念;2.三角函数的周期性特征;3.三角函数的具体例子及其周期的计算。
三、教学重点和难点教学重点:1.正弦函数、余弦函数、正切函数等三角函数的周期性特征;2.对于具体函数的周期的计算方法。
教学难点:如何深入理解三角函数的周期性特征,如何应用三角函数的周期性进行具体函数的周期计算。
四、教学过程1. 引入新知识1.1 教师可以先设计一道有关周期性的问题,在引导学生认识周期性的基础上,向学生提出三角函数的周期性概念。
例如:某个人在上楼梯时,每走三层就会重复一次,这是什么现象?1.2 引导学生认识正弦函数和余弦函数的图像,并说明正弦函数和余弦函数的周期都为 $2\\pi$。
并可以通过以下图片简单地说明:正弦函数的图像:$$ y = f(x) = \\sin x $$余弦函数的图像:$$ y = f(x) = \\cos x $$2. 深入讲解2.1 正切函数的图像引导学生认识正切函数的图像,以及其周期性特征,由于正切函数没有周期性,因此需要通过讲解正切函数的图像和特性来说明:正切函数的图像:$$ y = f(x) = \\tan x $$2.2 三角函数的具体例子及其周期的计算引导学生通过给定的具体函数来求其周期,例如:$$ y = f(x) = 2\\sin \\frac{3}{4} x $$可以通过以下步骤计算:•当 $3x/4=\\pi$ 时,$y = 2 \\sin \\pi = 0$;•当 $3x/4=2\\pi$ 时,$y = 2 \\sin 2\\pi = 0$;•当 $3x/4=3\\pi$ 时,$y = 2 \\sin 3\\pi = 0$;•当 $3x/4=4\\pi$ 时,$y = 2 \\sin 4\\pi = 0$;•…从上面的计算结果可以看出,$\\sin(3x/4)$ 以 $2\\pi/3$ 为周期,因此可以通过以下公式得出周期:$$ T = \\frac{2\\pi}{3} $$五、教学评价本节课主要考察学生对于三角函数周期性的理解以及其应用能力。
高中数学第1章《三角函数》三角函数的周期性教学案苏教版必修4教学目标:了解周期函数的概念,会判断一些简单的、常见的函数的周期性,会求一些简单三角函数的周期。
教学重点:周期函数的定义,正弦、余弦、正切函数的周期性教学难点:周期函数的概念教学过程:一、问题情境:日出日落,寒来暑往……自然界中有许多按一定规律周而复始的现象,这种按一定规律不断重复出现的现象称为周期现象。
三角函数是刻画圆周运动的数学模型,那么这种周而复始的基本特征又体现在哪里呢?问题:单位圆中的三角函数线如何变化?二、学生活动:探究:1、sin(x+2π)=________, cos(x+2π)=_________.2、记f(x)=sinx,则有f(x+2π)=______________,如何用数学语言刻画?三、知识建构:1、正、余弦函数的周期性:2、周期函数:思考:(1)正、余弦函数的周期有多少个?(2)周期函数的图像具有什么特征?3、最小正周期:思考:正切函数是否为周期函数?若是,周期为多少?四、知识运用:例1、若钟摆的高度h( mm )与时间t( s )之间的函数关系如图所示:(1)求该函数的周期;(2)求t=10 s 时钟摆的高度。
小结:例2、求下列函数的周期:(1)f( x )=cos2x (2)g( x )=2sin(1x 26π-)结论:一般地,函数y=Asin(x ωϕ+)及y=Acos(x ωϕ+)(其中A ,ω,ϕ为常数,且A ≠0,ω>0)的周期T=__________.练习:书P25 1-4五、回顾反思:知识: 思想方法:六、作业布置:书P44 习题1.3 1。
第九课时 §1.3.1 三角函数的周期性【教学目标】一、知识与技能:1.理解周期函数、最小正周期的定义;2.会求正、余弦函数的最小正周期。
二、过程与方法通过对周期的定义的理解,对熟悉正余弦函数的有关图象与性质有着重要作用三、情感态度价值观:通过周期定义的理解,使学生认识到事物之间的相互联系关系。
教学重点难点:函数的周期性、最小正周期的定义【教学过程】一、创设情景,提出问题1.问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?……(2)物理中的单摆振动、圆周运动,质点运动的规律如何呢?2.观察正(余)弦函数的图象总结规律:正弦函数()sin f x x =性质如下:––π2π 2π- 2π 5ππ- 2π- 5π- O xy 1 1-文字语言:正弦函数值按照一定的规律不断重复地取得;符号语言:当x 增加2k π(k Z ∈)时,总有(2)sin(2)sin ()f x k x k x f x ππ+=+==. 也即:(1)当自变量x 增加2k π时,正弦函数的值又重复出现;(2)对于定义域内的任意x ,sin(2)sin x k x π+=恒成立。
余弦函数也具有同样的性质,这种性质我们就称之为周期性。
二、新课讲解:1.周期函数的定义:对于函数()f x ,如果存在一个非零常数....T ,使得当x 取定义域内的每一个值....时,都有()()f x T f x +=,那么函数()f x 就叫做周期函数,非零常数T 叫做这个函数的周期。
说明:(1)T 必须是常数,且不为零;(2)对周期函数来说()()f x T f x +=必须对定义域内的任意x 都成立。
【思考】(1)对于函数sin y x =,x R ∈有2sin()sin 636πππ+=,能否说23π是它的周期? (2) 正弦函数sin y x =,x R ∈是不是周期函数,如果是,周期是多少?(2k π,k Z ∈且0k ≠)(3)若函数()f x 的周期为T ,则kT ,*k Z ∈也是()f x 的周期吗?为什么?(是,其原因为:()()(2)()f x f x T f x T f x kT =+=+==+)2.最小正周期的定义: 对于一个周期函数()f x ,如果在它所有的周期中存在一个最小的正数,那么这个最小的正数就叫做()f x 的最小正周期。
2019-2020学年高中数学第一章三角函数1.4三角函数的周期性学案1苏
教版必修
使用时间
【学习目标】
1.从实例感知周期现象,理解周期函数的概念;
2.理解最小正周期的概念,能熟练求出简单三角函数的周期;
3.能根据周期函数的定义进行简单的拓展运用。
【数学建构】
1、周期的概念:
一般地,对于函数f (x ),如果_____________________,使得定义域内的__________,都满足f (x+T )=f(x ),那么函数f (x )就叫做周期函数,_____________叫做这个函数的周期。
练习:
(1))()3(x f x f =+,则函数)(x f y =的周期是___________;
(2)若函数)(x f y =的周期为2,请写出一个等式_______________。
2、最小正周期的概念:
对于一个周期函数f (x ),如果在它的所有的周期中____________________,那么这个_____________就叫做f (x )的最小正周期。
3、三角函数的周期:
函数x y sin =的最小正周期为________; 函数x y cos =的最小正周期为________; 函数x y tan =的最小正周期为________;
4、一般地,函数)sin(ϕω+=x A y 及)(cos ϕω+=x A y (其中A 、ω、ϕ为常数,且0≠A 0>ω)的周期是_______________。
【典型例题】
例1、若钟摆的高度h (mm )与时间t (s )之间的函数关系如图所示。
(1)求该函数的周期;
(2)求t =10s 时钟摆的高度。
例2、求函数f (x )=cos2x 的周期。
【巩固练习】
(1)函数x y 31
sin =的最小正周期是___________;
(2)函数x y 2cos 2=的最小正周期是___________;
(3)函数)43sin(2x y π
π
-=的最小正周期是___________;
(4)若函数)5sin(π
+=ax y 的最小正周期是32π
,求正数a 的值。
【课堂检测】
1、写出下列函数的周期:
(1)x y 3sin =; (2)3cos x
y =; (3))34cos(π
+=x y ;
(4))42sin(3π
-=x
y ; (5))(31
cos 2x y -=π
2、已知)()1(x f x f -=+,求证:)(x f 是周期函数,并求出它的最小正周期。
【小结与反思】
本节课你学会了哪些?(在你已经懂的知识点后面打“√”)
1、周期和最小正周期的概念------------------------------------------------------( )
2、会求单三角函数的周期---------------------------------------------------------()。