Vanguard设备使用卫星链路传输雷达数据的参数调优
- 格式:pdf
- 大小:1.48 MB
- 文档页数:3
青岛鼎信通讯有限公司目录1 .概述 (1)2 主要功能及特点 (1)2.1 上电自动读取从节点表号 (1)2.2 支持自动登录和事件上报 (1)2.3 异常事件快速上报功能 (1)2.4 支持DL/T645-1997/2007和数据透明传输 (1)2.5 支持主站模式 (1)2.6 支持节点侦听,节点中继功能 (1)3 单相模块参数 (1)3.1 串口速率:1200bps,2400bps,4800bps,9600bps (1)3.2 载波通信速率:50bps,100bps,600bps,1200bps (1)3.3 工作频率:50hz±5% (1)3.4 工作电压: (1)3.5 工作电压范围: (1)3.6 单相通道板使用网络负载测试记录 (1)3.7 工作温度:-40℃~75℃ (1)3.8 相对湿度:≤75% (1)3.9 功耗:通信状态下小于1.4W (1)3.10 通讯范围:整个配变台区 (1)4 单相通道模块的检测 (1)4.1 检测设备 (1)4.2 通道模块的测试环境 (2)5 外接接口定义 (2)5.1 单相通道板弱电接口的定义 (2)6 通道板的电气原理图及方框图 (2)6.1 国网单相载波通道模块工作原理框图 (2)7 单相模块的使用及注意事项 (5)7.1 单相模块不支持热插拔功能,使用过程中不允许带电插拔通道模块。
(5)7.2 单相模块所用芯片属于ESD敏感器件。
在单三相模块生产、测试、检验过程要求ESD防护。
模块测试,检验所用电源的+12V,+5V电源回路要求并接钳位于15.8V,6.8V的TVS双向二极管。
(5)8 不良现象及处理方法 (5)9 单相模块实测波形 (5)9.1 MC3361⑾脚无载波信号的振荡波形 (5)9.2 MC3361⑾脚有载波信号的振荡波形 (6)9.3 载波接受时间MC3361⑾脚,VD1实测波形 (6)9.4 载波接受时间MC3361⑾,⑼,⑶,⑻脚实测波形 (6)9.5 VT1,VT2集电极实测载波成功发送波形 (7)9.6 VT1,VT2集电极载波信号无发送波形 (7)9.7 零点信号实测波形 (8)1 .概述国网单三相模块是鼎信公司应用TCC081C在以电力线为通信介质下,实现载波通信功能的一款产品。
Sample GuideTable of ContentsChapter 1. Introduction (1)Chapter 2. Dependencies (2)Chapter 3. Prerequisites (3)Chapter 4. Running the Sample (4)Chapter 5. Samples (5)5.1. Apsh Libs Get (5)5.2. Apsh Modules Get (5)5.3. Apsh Pslist (6)5.4. Apsh Threads Get (7)5.5. Apsh Vads Get (7)5.6. Apsh Envars Get (8)5.7. Apsh Privileges Get (9)Chapter 1.IntroductionDOCA App Shield is a library for monitoring the host and authenticating the integrity of core processes.For more information about DOCA App Shield library, refer to NVIDIA DOCA App Shield Programming Guide.Chapter 2.DependenciesThe library requires a minimum DPU firmware version of 24.32.1010.Chapter 3.PrerequisitesMake sure to follow the stages of the library prerequisites detailed in NVIDIA DOCA App Shield Programming Guide to make sure the library could be used by the samples. Afterwards, make sure to copy the generated JSON files into the DPU to the following path:‣/tmp/symbols.json‣/tmp/mem_regions.jsonFor more information regarding the runtime arguments, including how to get the VUID, please refer to section "Arg Parser DOCA Flags" of the NVIDIA DOCA App Shield Agent Application Guide.Chapter 4.Running the Sample1.Refer to the following documents:‣NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related software.‣NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the installation, compilation, or execution of DOCA applications.2.To build a given sample:cd /opt/mellanox/doca/samples/doca_apsh/<sample_name>meson buildninja -C buildNote: The binary doca_<sample_name> will be created under ./build/.3.Sample (e.g., apsh_libs_get) usage:Usage: doca_apsh_libs_get [DOCA Flags] [Program Flags]DOCA Flags:-h, --help Print a help synopsis-v, --version Print program version information-l, --log-level Set the log level for the program<CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>Program Flags:-p, --pid Process ID of process to be analyzed-f, --vuid VUID of the System device-d, --dma DMA device name-s, --osty <windows|linux> System OS typeFor additional information per sample, use the -h option:./build/doca_<sample_name> -hChapter 5.Samples5.1. Apsh Libs GetThis sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of loadable libraries of a specific process.The sample logic includes:1.Opening DOCA device with DMA ability.2.Creating DOCA Apsh context.3.Setting and starting the Apsh context.4.Opening DOCA remote PCI device via given vendor unique identifier (VUID).5.Creating DOCA Apsh system handler.6.Setting fields and starting Apsh system handler.7.Getting the list of system process using Apsh API and searching for a specific process withthe given PID.8.Geting the list of process-loadable libraries using doca_apsh_libs_get Apsh API call.9.Querying the libraries for 3 selected fields using doca_apsh_lib_info_get Apsh API call.10.Printing libraries' attributes to the terminal.11.Cleaning up.References:‣/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_sample.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_main.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/meson.build‣/opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/ samples/doca_apsh/apsh_common.h5.2. Apsh Modules GetThis sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of installed modules on a monitored system.The sample logic includes:1.Opening DOCA device with DMA ability.2.Creating DOCA Apsh context.3.Setting and starting the Apsh context.4.Opening DOCA remote PCI device via given VUID.5.Creating DOCA Apsh system handler.6.Setting fields and start Apsh system handler.7.Getting the the list of system-installed modules using doca_apsh_modules_get Apsh APIcall.8.Querying the names of modules using doca_apsh_module_info_get Apsh API call.9.Printing the attributes of up to 5 moduless attributes to the terminal.10.Cleaning up.References:‣/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_sample.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_main.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/meson.build‣/opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/ samples/doca_apsh/apsh_common.h5.3. Apsh PslistThis sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of running processes on a monitored system.The sample logic includes:1.Opening DOCA device with DMA ability.2.Creating DOCA Apsh context.3.Setting and starting the Apsh context.4.Opening DOCA remote PCI device via given VUID.5.Creating DOCA Apsh system handler.6.Setting fields and starting Apsh system handler.7.Getting the list of processes running on the system using doca_apsh_processes_getApsh API call.8.Querying the processes for 4 chosen attributes using doca_apsh_proc_info_get ApshAPI call.9.Printing the attributes of up to 5 processes to the terminal.10.Cleaning up.References:‣/opt/mellanox/doca/samples/doca_apsh/apsh_pslist/apsh_pslist_sample.c‣/opt/mellanox/doca/samples/doca_apsh/apsh_pslist/apsh_pslist_main.c‣/opt/mellanox/doca/samples/doca_apsh/apsh_pslist/meson.build‣/opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/ samples/doca_apsh/apsh_common.h5.4. Apsh Threads GetThis sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of threads of a specific process.The sample logic includes:1.Opening DOCA device with DMA ability.2.Creating DOCA Apsh context.3.Setting and starting the Apsh context.4.Opening DOCA remote PCI device via given VUID.5.Creating DOCA Apsh system handler.6.Setting fields and starting Apsh system handler.7.Getting the list of system processes using Apsh API and searching for a specific processwith the given PID.8.Getting the list of process threads using doca_apsh_threads_get Apsh API call.9.Querying the threads for up to 3 selected fields using doca_apsh_thread_info_get ApshAPI call.10.Printing thread attributes to the terminal.11.Cleaning up.References:‣/opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/apsh_threads_get_sample.c‣/opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/apsh_threads_get_main.c‣/opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/meson.build‣/opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/ samples/doca_apsh/apsh_common.h5.5. Apsh Vads GetThis sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of virtual address descriptors (VADs) of a specific process.The sample logic includes:1.Opening DOCA device with DMA ability.2.Creating DOCA Apsh context.3.Setting and start the Apsh context.4.Opening DOCA remote PCI device via given VUID.5.Creating DOCA Apsh system handler.6.Setting fields and starting Apsh system handler.7.Getting the list of system processes using Apsh API and searching for a specific processwith the given PID.8.Getting the list of process VADs using doca_apsh_vads_get Apsh API call.9.Querying the VADs for 3 selected fields using doca_apsh_vad_info_get Apsh API call.10.Printing the attributes of up to 5 VADs to the terminal.11.Cleaning up.References:‣/opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/apsh_vads_get_sample.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/apsh_vads_get_main.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/meson.build‣/opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/ samples/doca_apsh/apsh_common.h5.6. Apsh Envars GetThis sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of environment variables of a specific process.Note: This sample works only on target systems with Windows OS.The sample logic includes:1.Opening DOCA device with DMA ability.2.Creating DOCA Apsh context.3.Setting and starting the Apsh context.4.Opening DOCA remote PCIe device via given VUID.5.Creating DOCA Apsh system handler.6.Setting fields and starting Apsh system handler.7.Getting the list of system processes using Apsh API and searching for a specific processwith the given PID.8.Getting the list of process envars using doca_apsh_envars_get Apsh API call.9.Querying the envars for 2 selected fields using doca_apsh_envar_info_get Apsh APIcall.10.Printing the envars attributes to the terminal.11.Cleaning up.References:SamplesNVIDIA DOCA App Shield MLNX-15-060521 _v1.5.1 | 9‣/opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/apsh_envars_get_sample.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/apsh_envars_get_main.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/meson.build‣/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/samples/doca_apsh/apsh_common.h5.7. Apsh Privileges GetThis sample illustrates how to properly initialize DOCA App Shield and use its API to get thelist of privileges of a specific process.Note: This sample works only on target systems with Windows OS.The sample logic includes:1.Opening DOCA device with DMA ability. 2.Creating DOCA Apsh context. 3.Setting and starting the Apsh context. 4.Opening DOCA remote PCIe device via given VUID. 5.Creating DOCA Apsh system handler. 6.Setting fields and starting Apsh system handler. 7.Getting the list of system processes using Apsh API and searching for a specific process with the given PID.8.Getting the list of process privileges using the doca_apsh_privileges_get Apsh API call.9.Querying the privileges for 5 selected fields using the doca_apsh_privilege_info_getApsh API call.10.Printing the privileges attributes to the terminal.11.Cleaning up.References:‣/opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/apsh_privileges_get_sample.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/apsh_privileges_get_main.c ‣/opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/meson.build‣/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/samples/doca_apsh/apsh_common.hNoticeThis document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice. Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk. NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.TrademarksNVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.Copyright© 2022 NVIDIA Corporation & affiliates. All rights reserved.NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051。
Reference ApplicationTable of ContentsChapter 1. Introduction (1)Chapter 2. System Design (2)Chapter 3. Application Architecture (5)Chapter 4. Configuration Flow (6)Chapter 5. Running Application on BlueField (8)Chapter 6. Running Application on Host (10)Chapter 7. References (11)Chapter 1.IntroductionDomain name system (DNS) translates domain names to IP addresses so browsers can load internet resources. Each device connected to the internet has a unique IP address which other machines use to find the device.The DNS process includes several steps:1.Once a user tries to log into a website using a browser, the user's device creates a DNSquery and sends it to a DNS resolver.2.The DNS resolver queries the DNS domain to get an IP address by searching its cache orsending the request to another DNS server.3.Once a match is found, the DNS resolver returns the correct IP matching the DNS domain.4.The user can log into the required website using the correct IP.DNS filter is used to offload DNS requests from the host to the BlueField DPU Arm which allows reducing CPU overhead as Arm allows further DNS processing to be done (e.g., whitelisting, logging, filtering, etc).Chapter 2.System DesignThe DNS filter application is designed to run as a "bump-on-the-wire" on the BlueField-2 DPU instance. The DPU intercepts the traffic coming (ingress traffic) from the wire and either passes it to the Arm or forwards it to the egress port using hairpin. The decision is made by traffic classification.System DesignSystem DesignChapter 3.Application Architecture The DNS filter runs on top of DOCA FLOW to classify DNS requests.1.Ingress packet types are identified using pipes which encapsulate flow rule matchingpatterns and actions.2.Matched flows are identified, and FORWARDING actions can be executed.‣DNS traffic is forwarded to the Arm for further processing‣Non-DNS traffic is forwarded to the egress port using hairpinChapter 4.Configuration Flow1.DPDK initialization.dpdk_init(&argc, &argv, &nb_queues, &nb_ports);2.Stateful flow table (SFT) and port initialization.dpdk_ports_init(nb_queues,nb_ports);‣Mempool allocation‣Rx/Tx and hairpin queue initialization‣DPDK port initialization3.Hairpin binding.enable_hairpin_queues(portid, &peer_ports , 1);‣Binds hairpin queues for the given port ID4.DOCA flow initialization.doca_flow_init(&dns_flow_cfg, &error);5.DOCA flow ports initialization.dns_filter_port_init(&port_cfg, portid);‣Initializes DOCA flow port with the given port configuration for the given port ID.Note: DOCA flow port initialization is done for both ports of the BlueField and after theDPDK ports have been initialized.6.Non-DNS hairpin traffic.build_hairpin_pipes(ports[portid], portid, nb_queues);‣Builds two hairpin pipes, that forward packets to Arm. For a given port, each pipe has one entry for the relevant matching patterns. The first hairpin pipe is for matching UDP non-DNS traffic and the second one is for matching TCP traffic. Note that these pipes are built for both ports of the BlueField.7.Build DNS pipe.build_dns_pipes(ports[portid], portid, nb_queues);‣Builds DNS pipe for a given port. The built pipe has one entry for matching DNS traffic and forwarding it to Arm.8.Processing packets.main_loop(nb_queues, nb_ports);Configuration Flow‣All received packets on Arm, are DNS packets, while non-DNS packets are forwarded to the egress port using hairpin allowing DNS packets to be filtered.Chapter 5.Running Application onBlueField1.Please refer to the DOCA Installation Guide for details on how to install BlueField relatedsoftware.2.To build the applicationa).The DNS filter example is installed as part of the doca-dpi-lib package, the binary islocated under /opt/mellanox/doca/examples/dns_filter/bin/doca_dns_filter.To re-build the DNS filter sample, run:cd /opt/mellanox/doca/examples/dns_filter/srcmeson /tmp/buildninja -C /tmp/builddoca_dns_filter will be created under tmp/build.b).The build process depends on the PKG_CONFIG_PATH environment variable to locatethe DPDK libraries. If the variable was accidently corrupted, and the build fails, run the following command:‣For Ubuntu:export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/opt/mellanox/dpdk/lib/aarch64-linux-gnu/pkgconfig‣For CentOS:export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/opt/mellanox/dpdk/lib64/pkgconfigc).The DNS filter example is a DPDK application. Therefore, the user is required toprovide DPDK flags and allocate huge pages. Run:echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages3.To run the application:./doca_dns_filter [dpdk flags] -- -l [log_level]Note: SFs must be enabled according to Scalable Function Setup Guide.For example:/opt/mellanox/doca/examples/dns_filter/bin/doca_dns_filter -aauxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 -- -l 3Note: The flag -a auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 isa must for proper usage of the application. Modifying this flag will result unexpectedbehavior as only two ports are supported. The SF number is arbitrary and configurable.For additional information on available flags for DPDK, use -h before the -- separator. ForRunning Application on BlueField information on available flags for the application, use -h after the -- separator. The -l or –-log_level flag sets the log level for the app (ERR=0, DEBUG=3).Chapter 6.Running Application onHostPlease refer to Running Reference Applications Over Host Guide.Chapter 7.References‣/opt/mellanox/doca/examples/dns_filter/src/dns_filter.cNoticeThis document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice. Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk. NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.TrademarksNVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in other countries. Other company and product names may be trademarks of the respective companies with which they are associated.Copyright© 2021 NVIDIA Corporation & affiliates. All rights reserved.NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051。
Quick CardT-BERD®/MTS-5800 Network TesterTCP Throughput Testing to an iPerf v3 ServerThis document provides instructions on how to configure and execute TCP Wirespeed Throughput test from a T-BERD/MTS 5800 instrument to an iPerf v3 server.Equipment Requirements:•T-BERD/MTS-5800 equipped with thefollowing:o BERT software release V28.1 or greatero Ethernet and Layer4 test options:▪C510M1GE and C5LSLAYER4 for10/100 Megabit or 1 Gigabit Ethernet▪C510GELAN and C510GLAYER4 for10 Gigabit Etherneto SFP or SFP+ optical transceiver to match theline under test•Patch Cables to match the opticaltransceiver and line under test (CAT5E,Single mode or Multimode Fiber)•Fiber optic inspection microscope (VIAVIP5000i or FiberChek Probe)•Fiber Optic Cleaning suppliesFigure 1: Equipment RequirementsThe following information is required to complete the test:•Physical Interface (10/100/1000BASE-T, 1000BASE-SX, 1000BASE-LX, 10GBASE-LR, etc.)•Auto Negotiation settings of the port under test.Fiber Inspection Guidelines:•All fiber end-faces must be clean and pass an inspection test prior to connection. •Use the VIAVI P5000i, FiberChek Probe, or Sidewinder microscope to inspect bothsides of every connection being used(SFP/QSFP Port, bulkhead connectors,patch cables, etc.)Figure 2: Inspect Before You ConnectConnect to Fiber Under Test (FUT):1.For copper 10/100/1000BASE-T interfacetesting with the T-BERD/MTS 5800v2,connect the Port 1 10/100/1000 RJ-45 jack to the port under test using CAT 5E orbetter cable.2.For copper 10/100/1000BASE-T interfacetesting with the T-BERD/MTS 5800-100G,insert a copper SFP into the Port 1SFP+/SFP28 slot and connect to the portunder test using CAT 5E or better cable. 3.For optical interfaces:•Insert desired SFP or SFP+ into the Port1 slot on the top of T-BERD.•Inspect and, if necessary, clean all SFPs, fibers, and bulkheads, as described onpage 1.•Connect the SFP, QSFP, or CFP4 tothe port under test using a SingleMode or Multimode jumper cablecompatible with the interfaceunder test.Launch and Configure Test:1.Press the Power button to turn on thetest set and view the startup screen.ing the Select Test menu, Quick Launchmenu, or Job Manager, launch anEthernet, Layer 4 TCP Wirespeed, IPv4,Terminate test on port 1 for the desirephysical interface. For example:Ethernet►10/100/1000►Layer 4 TCPWIrespeed►IPv4►P1 Terminate.3.If the test is not in the default settings, tapthe Tools icon , and select. Press to continue and wait for test to reconfigure.4.Press the Setup Soft Key, to displaythe Interface settings tab. If you aretesting a 10/100/1000 Electrical or 1GigEOptical tests with auto negotiationdisabled, select the Physical Layer tab, and configure settings to match the Ethernetport under test.Figure 3: T-BERD 5800v2Figure 4: T-BERD 5800-100GFigure 5: Select TestFigure 6: Layer 4 TCP Wirespeed Test Figure 7: Auto Negotiation Settings5.Navigate to All Streams settings.6.Configure appropriate Source IP, SubnetMask and Default Gateway parameters forthe TBERD 5800 test port, leave all otherparameters at defaults.Figure 8: All Stream settings7.Navigate to TCP Host settings.8.If the circuit under test uses VLAN tagging,select Ethernet tab, set the Encapsulationparameter to VLAN, and configure theappropriate VLAN ID and Priority values.Figure 9: TCP Host, Ethernet Settings9.Select TCP Host Settings tab.10.Set the iPerf Version parameter to 3.11.Set the Direction parameter to Upstreamto test in the TBERD 5800 to iPerf serverdirection or to Downstream to test in theiPerf server to TBERD 5800 direction.12.Set the Connect to Server parameter tothe IP address of the iPerf server.13.Set the Connect to Port parameter to TCPport the iPerf server is listening on.14.Set the Window Size parameter to4194304 bytes.15.If required adjust the Max Seg Sizeparameter to match the circuit under testconfiguration, otherwise leave at default.16.If required configure the TOS or DSCPvalues to match the circuit under testconfiguration, otherwise leave at defaults.17.Set the Transmit Mode parameter to Timeand set the Time parameter to desired test duration in seconds.18.Set the Number of Connections parameterto desired value.19.The T-BERD 5800 is configured for the test. Figure 10: TCP Host SettingsContact Us +1 844 GO VIAVI(+1 844 468 4284)To reach the VIAVI office nearest you,visit /contacts.© 2020 VIAVI Solutions Inc.Product specifications and descriptions in thisdocument are subject to change without notice.1.Press the Results Soft Key, , to view theResults screen.2.If using optical test port, select the Lasertab in the Action panel at the bottom ofthe screen, and press . The buttonwill turn yellow and be relabeled .3.Ensure the TBERD 5800 test portestablished a link to circuit under test asindicated by green Signal Present (optical test port only), Sync Acquired and LinkActive LEDs.4.Set the real-time test results view to TCPHost -> Detailed L4 Stats.5.To start the TCP Throughput test tap onthe Start TCP Client button on the Actions tab at the bottom of the screen andobserve the real-time test results.6.Once the test is finished tap on theReports button in the bottom left screencorner and select Create Report option to generate and save the test report.Figure 11: Check LEDsFigure 12: Start TCP Client Figure 13: Create Report。
资料编码产品名称Quidway自研以太网交换机使用对象华为工程师、合作工程师产品版本编写部门软件服务部-解决方案部资料版本V100R002Quidway防火墙 Eudemon1000E 开局指导书拟制:孙崧铭日期:2009-09-20审核:日期:审核:日期:批准:日期:华为技术有限公司版权所有侵权必究修订记录日期修订版本描述作者2009-10-25 V1.0 完成孙崧铭目录第1章Quidway Eudemon 1000E产品概述 (1)1.1 系统介绍 (1)1.2 组网介绍 (2)1.3 系统结构介绍 (2)第2章Quidway Eudemon 1000E的特点 (3)2.1 产品系列 (3)2.2 产品优点 (4)2.3 安全域概念介绍 (5)2.3.1 防火墙的域 (5)2.3.2 域间概念 (6)2.3.3 本地域 (6)2.4 防火墙工作模式 (7)2.4.1 防火墙工作模式概述 (7)2.4.2 路由模式 (7)2.4.3 透明模式 (8)2.4.4 混合模式 (9)2.5 访问控制策略和报文过滤 (9)2.5.1 访问控制策略的异同 (9)2.5.2 ACL加速查找 (9)2.5.3 报文过滤规则的应用 (10)2.5.4 防火墙缺省动作 (11)2.6 双机热备 (11)2.6.1 VRRP的应用 (12)2.6.2 传统VRRP在E1000E备份实现的不足 (13)2.6.3 VGMP备份组 (15)2.6.4 HRP备份 (15)2.6.5 VRRP、VGMP和HRP之间的协议层次关系 (15)2.7 NAT介绍 (16)2.7.1 NAT的应用 (16)2.7.2 NAT与VRRP绑定 (17)第3章Quidway Eudemon 1000E数据准备 (18)3.1 初始连接配置 (18)3.1.1 通过Console接口搭建 (18)3.1.2 通过Telnet方式搭建 (21)3.1.3 通过WEB方式接入设备 (23)3.2 设备启动 (24)3.2.1 设备上电 (24)3.2.2 设备启动过程 (25)3.3 版本配套 (28)3.3.1 查看当前的软件版本 (28)3.4 软件版本升级 (28)3.5 配置规划 (30)3.5.1 网络拓扑图 (30)3.5.2 系统名 (31)3.5.3 当地时区 (31)3.5.4 远程维护登录帐号/口令和Super密码 (31)3.5.5 区域、接口和IP地址规划 (32)3.5.6 路由规划 (32)3.5.7 访问策略规划 (32)3.5.8 双机热备规划 (33)3.5.9 链路可达性规划 (33)3.5.10会话快速备份规划 (34)3.5.11 NAT规划 (34)3.5.12 NAT与VRRP绑定 (34)第4章Quidway Eudemon 1000E 配置 (35)4.1 时间日期和时区配置 (35)4.2 系统名配置 (35)4.3 远程维护登录帐号/口令和Super密码配置 (36)4.3.1 远程维护登录帐号/口令配置 (36)4.3.2 Super密码配置 (36)4.4 区域、接口和IP地址配置 (37)4.4.1 数据配置步骤 (37)4.4.2 测试验证 (38)4.5 路由配置 (38)4.5.1 缺省路由配置 (38)4.5.2 静态路由配置 (38)4.5.3 动态路由OSPF配置 (39)4.5.4 测试验证 (39)4.6 访问策略控制配置 (39)4.6.1 需求说明 (39)4.6.2 数据配置 (40)4.6.3 测试验证 (41)4.7 双机热备配置 (41)4.7.1 VRRP/VGMP配置 (41)4.7.2 HRP配置 (41)4.7.3 测试验证 (42)4.8 链路可达性配置 (42)4.8.1 配置方法 (42)4.8.2 测试验证 (42)4.9 会话快速备份配置 (43)4.10 NAT配置 (43)4.10.1 配置地址池与VRRP绑定 (43)4.10.2 配置内部服务器与VRRP绑定 (44)4.10.3 验证测试 (44)第5章Quidway Eudemon 1000E基本维护 (44)5.1 查看软件版本信息 (44)5.2 系统配置文件维护 (44)5.3 查看单板、电源、风扇运行状况 (45)5.4 查看CPU占用率 (45)5.5 查看内存占用率 (45)5.6 查看接口流量 (45)5.7 查看接口、链路状态 (46)5.8 查看日志缓冲区信息 (46)5.9 查看路由表信息 (46)5.10 查看ARP映射表 (46)5.11 查看会话表信息 (46)5.12 收集系统诊断信息 (46)关键词:Quidway,防火墙,Eudemon1000E,开局指导书摘要:本文结合业务与软件产品线工程师开局需要对华为Quidway局域网交换机数据准备给出指导,并对其常见配置进行描述。
S20081iR服务器用户手册V1.0湖南云箭智能科技有限公司目录致尊敬的用户 (1)声明 (2)注意事项 (3)开箱检查 (4)随机配件 (4)产品基本说明 (4)1.设备前视图 (5)2.设备后视图 (5)3.设备系统电源 (6)机架安装 (6)注意事项 (6)滑轨的安装方法 (6)产品资料索取 (8)安装操作系统 (9)1.注意事项 (9)2.设置BIOS启动顺序 (9)3.关于Windows Server 2012系统的安装 (9)4.关于Linux操作系统的安装 (14)产品有害物质含量状态说明 (25)致尊敬的用户衷心感谢您选用本公司的产品!本手册将向您介绍产品在使用中对使用环境的要求、安装指导、硬件操作、网络配置等基础使用知识,有助于您更详细的了解和使用此产品。
请将产品的包装物进行收集并交废品收购站回收利用,造福人类。
湖南云箭智能科技有限公司拥有本手册的版权。
本手册中的内容如有变动恕不另行通知。
如果您对本手册有疑问或建议请联系本公司。
服务热线:400-998-0966服务邮箱:***********************湖南云箭智能科技有限公司2020 年12月声明在正式使用本产品之前,请先阅读以下声明:只有您阅读了以下声明并且同意以下条款后,方可正式开始使用本产品。
如果您对以下条款有任何疑问,请您和您的供货商联系或直接与我们联系。
如您未向我们就以下条款提出疑问并开始使用本产品,则是默认您已经同意了以下的条款。
1.我们提醒用户特别注意:在任何时候,除了我们提示您可以修改的参数以外,您不要修改本产品任何其它参数。
2.在您使用的本产品出现任何硬件故障时,或您希望对硬件进行任何升级时,请您将本产品的产品序列号提供给我们的技术服务中心,请您不要自行拆卸机箱或在机箱内加装不兼容的硬件设备,以免损坏本产品。
3.本产品的内存、处理器、风扇、硬盘托架、硬盘、网卡都是特殊规格的,请您不要将它们和其它型号的设备混用。
GPON设备ONU用户端设备要求目录1概述............................................................................................................................................. - 1 -2GPON系统参考模型..................................................................................................................... - 1 -3设备类型和接口......................................................................................................................... - 2 -3.1设备类型 (2)3.2设备接口 (3)3.2.1PON接口 ........................................................................................................................ - 3 -3.2.2用户侧接口................................................................................................................ - 3 -3.2.3管理接口(可选) .................................................................................................... - 4 -4设备功能要求............................................................................................................................. - 4 -4.1设备基本功能要求 (4)4.1.1动态带宽分配功能(DBA) .................................................................................... - 4 -4.1.2ONU的初始化自动配置................................................................................................ - 5 -4.1.3数据加密功能............................................................................................................ - 5 -4.1.4FEC(前向纠错)要求................................................................................................. - 5 -4.1.5ONU掉电通知功能........................................................................................................ - 5 -4.1.6光链路测量和诊断功能 ............................................................................................ - 6 -4.1.7PPPoE仿真拨号功能 .................................................................................................... - 6 -4.1.8设备管理方式............................................................................................................ - 6 -4.1.9POE/POE+功能............................................................................................................. - 6 -4.1.10时间同步.................................................................................................................... - 6 -4.2以太网功能要求 (7)4.2.1以太网基本功能要求 ................................................................................................ - 7 -4.2.2VLAN功能 ...................................................................................................................... - 8 -4.2.3策略控制功能............................................................................................................ - 9 -4.2.4流量镜像.................................................................................................................... - 9 -4.3组播功能 (9)4.3.1组播协议.................................................................................................................. - 10 -4.3.2组播功能.................................................................................................................. - 10 -4.3.3组播性能................................................................................................................... - 11 -4.4多业务Q O S机制 (11)4.4.1多业务QoS总体要求 ................................................................................................ - 11 -4.4.2业务等级协定(SLA) ............................................................................................ - 11 -4.4.3业务流分类功能 ....................................................................................................... - 11 -4.4.4优先级标记.............................................................................................................. - 12 -4.4.5优先级队列机制 ...................................................................................................... - 12 -4.4.6流限速...................................................................................................................... - 13 -4.4.7缓存管理.................................................................................................................. - 13 -4.5安全性要求 (13)4.5.1用户认证及用户接入线路(端口)标识 .............................................................. - 13 -4.5.3防DoS攻击 ............................................................................................................... - 15 -4.5.4UNI端口环路检测 ....................................................................................................... - 15 -4.5.5以太网OAM功能 .............................................................................错误!未定义书签。
VANGUARD “A”OPERATOR’S MANUALFM-952 Rev. E 7/07PORTERParker Hannifin Corporation Porter Instrument Division 245 Township Line Rd. P.O. Box 907Hatfield, PA 19440-0907 USA(215) 723-4000 / fax (215) 723-5106Please read this manual carefully before operating the Vanguard Manifold System.Remove product from package and inspect for damage. If there is any damage, do not use (Contact your dealer.). Complete Warranty Card and return to Porter.To assure safe operation and conformation to local fire codes, all Porter Instrument Company Manifold Systems are designed to be used with sedation delivery systems mounted inside walls and they meet or exceed the guidelines established by the National Fire Protection Association for Nonflammable Medical Gas Systems, NFPA 99. Copies of NFPA 99 or portions thereof may be obtained by writing to: National Fire Protection AssociationBatterymarch ParkQuincy, MA 02269-9904Or call: 1-800-344-3555These warnings and precautions are to help you to understand how to safely operate or troubleshoot the Porter Vanguard A Manifold System. A WARNING alerts you to a possible hazard to people. A CAUTION alerts you to the possibility of equipment damage.Dental workers are exposed to N2O during administration of N2O / O2 conscious sedation analgesia. NIOSH has recommended that exposures should be minimized. Contact NIOSH (1-800-35-NIOSH) to receive NIOSH Publications on Control of Nitrous Oxide in Dental Operatories. Exposure can be minimized by effective controls. National Institute for Occupational Safety and Health (NIOSH) publications state that controls, including System Maintenance, Ventilation and Work Practices can effectively reduce N2O concentrations in dental operations. Your Porter Scavenger System is an important part of the system of controls.CAUTIONSStatic Damage Hazard: Computer and other electronic components can be permanently damaged by static electric discharge. Use caution when working with the molded manifold cover off, especially in the area of the RESET1 button.Use no Oil: Never use oils, greases, organic lubricants or any combustible materials on or near this product.Power Outage: During any power outage, remember to turn OFF the flowmeter and manually turn OFF the tank valves. When the power is restored, the Vanguard will come back to its status prior to the power outage. If gas was flowing when the power went out, gas will be flowingwhen the power is restored.2Table of ContentsWarnings and Precautions (2)4222 Vanguard Manifold System Diagram (4)Vanguard “A” Alarm Diagram (5)4222 Vanguard Manifold Schematic (5)Important Features to Know About the 4222 Manifold System ...........................................6 – 7 How System Operates . (6)Failsafe in Manifold (6)Pressure Tested at 150 PSIG (7)Wiring in Manifold System (7)Shut-off Operation (7)Silence Button (7)Normal Operation Indications for Alarm Station (7)Manifold System Testing and Start-up (8)150 PSIG Nitrogen Pressure Test (9)Function Testing Changeover Manifold (9)Steps to Check Tank Switching Process (10)Trouble Shooting Information (11)Warranty, Orders and Return Policies (12)342224VANGUARD A ALARMStock Number 6201A Stock Number 6251A(WALL)(DESK)* TO BE REMOVEDFITTINGS2FITTINGS VALVE (2)AFTER 150 PSIG 24 HR.NITROGEN TEST5PORTER4222AUTOMATICCHANGEOVER MANIFOLD SYSTEMThe system that monitors and switches to your reserve tank when your primary tank is empty, all of which is accomplished automatically with only the gas serviceman maintaining the gas supply and tank status light entry condition by pushing the gas service acknowledge button located on the manifold.IMPORTANT FEATURES TO KNOW ABOUT THE PORTERAUTOMATIC CHANGEOVER MANIFOLDHOW THE SYSTEM OPERATESMake sure oxygen and nitrous oxide tanks are hooked-up and turned ON. Regulators must be set at 50 PSIG regulated pressure to insure normal operation.At alarm station PUSH (GAS / OFF) button to start up system.The alarm should indicate normal line pressure condition lights and the tank status light should lock on tank position 1 or 2 after a few seconds.NOTE: It is important to know that on initial start-up of your manifold system, when there is no pressure in the lines, it may require the service acknowledge button on the manifold to be depressed several times to allow the manifold to switch back and forth between tanks to initially fill piping system to the 50 PSIG level.If pressure in the system is at 40 PSIG or below, the alarm will indicate a low-pressure light and audible tone.If a reserve tank is available, the manifold will switch over automatically after 10-20 seconds of low status to the reserve tank. The low-pressure light and audible tone will change to the normal light when the pressure reaches the safety zone. Normal line pressure is 50 PSIG (gauge observable on the manifold).The tank that is now empty and off-line will indicate a flashing light signal at the alarm and manifold. This condition will remain until the service acknowledge button on manifold is depressed to turn OFF flashing signal.This should be done only when the gas supply is replenished by the gas service man. System must be ON to reset tank at service acknowledge button.Now your tank status lights should indicate one light ON and one light OFF indicating primary tank is in use and reserve tank is available for back-up.FAILSAFE IN MANIFOLDThe 4222 manifold has a built-in failsafe feature. For your patients’ safety, the manifold will not deliver nitrous oxide through to the piping system if oxygen supply pressure is depleted or turned off.6PRESSURE TESTED AT 150 PSIGThe 4222 manifold is made to be tested for leaks at 150 PSIG for 24 hours with dry nitrogen. After completion of this test, remove red test plugs on top of each solenoid at the manifold for proper operation of system.WIRING IN MANIFOLD SYSTEMThe alarm connection to the system is accomplished by a six foot length modular male connection cable that connects to the signal interconnect assembly. From this point through to the manifold, all connections for transferring DC power and signal is carried through the four-conductor alarm cable. The colored wires in the alarm cable must terminate to the same terminal throughout the system.•Terminal 1 carries DC power to system.•Terminals 2 and 3 carry signal for changeover.•Terminal 4 is a power ground.•Voltage reading (12 Vdc ± 2 Vdc) should be taken with voltmeter negative ( - ) on #4 ground, voltmeter positive ( + ) on #1.•Voltage at terminal #2 is nominally +1.5 Vdc and at terminal #3 is nominally +0.4 Vdc.SHUT-OFF OPERATONDepress the OFF button. Alarm beeps 3 times and all lights flash before shutting down.SILENCE BUTTONThe silence button is used to turn OFF the audible alarm condition.NORMAL OPERATION INDICATIONS FOR ALARM STATION1. The yellow LED flashing and one short beep indicates that the oxygen or nitrous oxide linepressure(s) is below 40 PSIG.2. The red LED flashing and two short beeps indicate that the oxygen or nitrous oxide linepressure(s) is above 60 PSIG.3. Four beeps indicate that the system has a hardware problem, usually signifying that a pressureswitch has failed.4. Five beeps indicate that the alarm has lost communications with the manifold and that the alarmis no longer indicating the status of the oxygen and nitrous oxide tanks.5. The green LED light indicates that the line pressure is at normal pressure.78150 PSIG NITROGEN PRESSURE TESTUsing the Porter Nitrogen Test Fixture Follow These Steps:1. Connect regulator to nitrogen tank.2. Turn selector valve handle to closed position (no flow or pressure coming out ends if tank wouldbe ON).3. Turn tank on slowly and set line pressure gauge at 150 PSIG.4. Insert male Quick Connect end of test hose (O2 or N2O) into pressure female Quick Connect.5. Connect O2 or N2O manifold diameter indexed safety system (DISS) hose, which is sent withmanifold, to test hose male DISS fitting end and attach to appropriate inlet DISS connection on manifold.6. Turn selector valve to pressure position, SLOWLY.7. Turn ON Vanguard alarm.8. Read gauge on manifold. Setting should be 150 PSIG.9. Disconnect test hose from pressure Quick Connect, then DISS manifold hose from inlet fitting onmanifold.10. Turn OFF Vanguard Alarm to turn off high indicator lights / LEDs. Pressure should hold.11. Examine for leaks for 24 hours. (Reference NFPA 99 Requirements.)12. After completion of 150 PSIG leak test, remove red plugs on top of solenoid and remove theplugs on the pressure relief valves.FUNCTION TESTING CHANGEOVER MANIFOLDInitial Start-up and Testing Procedure1. Make sure oxygen and nitrous oxide tanks are hooked up and turned ON. Regulators must beset at 50 PSIG regulated pressure to insure normal operation.2. At Alarm Station – PUSH – (GAS / OFF) button to start up system.3. The alarm should indicate normal line pressure condition lights and the tank status lightshould lock on tank position 1 or 2.NOTE: It is important to know that on initial start-up of your manifold system, when there is no pressure in the lines, it may require the service acknowledge button on the manifold to be depressed several times to allow the manifold to switch back and forth between tanks to initially fill piping system to the 50 PSIG level.4. Now that the piping system is filled and the manifold has conducted its initial start-up function,it must be checked for its automatic changeover capability.95. Steps to Check Tank Switching Process5.1. Turn down set pressure on primary tank regulator to 35 PSIG (note how much of a turnis made on regulator adjusting stem) while bleeding down system pressure throughdental meter at 5 L/min rate of flow.40 PSIG the manifold will announce an audible and visual alarm condition for 10 to5.2. At20 seconds and switch to reserve tank. The manifold will shut the primary solenoidand open the reserve solenoid, which will deliver gas at 50 PSIG and signal the normallight. After changeover has occurred, reset regulator on Tank #1 to original conditionposition 50 PSIG.5.3. Manifold display panel and alarm will show a blinking light at the primary tanklocation.service acknowledge button on manifold to turn OFF blinking light at Tank 15.4. Pushlocation.5.5. Reverse the procedure to switch back to Tank #1. Turn down pressure to 35 PSIG onreserve regulator while continuing to flow gas at 5 L/min downstream at a dentalmeter. Manifold will again announce alarm condition and switch back to primary tank.Reset Tank #2 regulator back to 50 PSIG setting.service acknowledge button on manifold to turn OFF blinking light at Tank 25.6. Pushlocation.5.7. Repeat this process for both oxygen and nitrous oxide.10TROUBLE SHOOTINGSymptom Possible Cause / Remedy1. Tanks will not changeover. Defective pressure switch will not create a low-pressure signalto produce changeover response.2. Tanks change over beforetanks are empty. This may result from piping system having a leak and bleeding down pressure over night. Tank pressure will remain the same due to the manifold and alarm system being turned OFF and holding cylinder pressure stable.Inspect line pressure in the morning for setting to remain between 45 to 55 PSIG.3. System has no lights. Remove cover on Power/Signal Junction Assembly (Refer topage 4) and check if Red LED indicator is on to show powersupply is working.Defective OFF / Button, or electronics. Contact Porter forfurther assistance.4. Tanks change over, butpressure does not come upto 50 PSIG. Check regulator for correct pressure setting.DISS inlet fitting has a check valve stuck shut restricting pressure.Depress or hold service acknowledge button to fill system to bring up line pressure.Defective solenoid prevents pneumatic circuit from opening for delivering line pressure.5. The yellow and red LEDsare flashing and the unit isbeeping four beeps. The pressure switch is defective on the gas for which the yellow and red LEDs are flashing. Replace the pressure switch.CAUTIONStatic Damage Hazard: Computer and other electronic components can be permanently damaged by static electric discharge. Use caution when working with the molded manifold cover off, especially in the area of the RESET1 button.6. Lights Flashing; locked intoa random flashing pattern. Caution, carefully depress Reset1 button only on manifold. (Refer “Caution” above and page 6.)Defective electronics or timing problem. Contact Porter for further assistance.7. Alarm will not silence. Caution, carefully depress Reset1 button only on manifold.(Refer to “Caution” above and page 6.)Defective electronics or timing problem. Contact Porter forfurther assistance.8. Cannot turn OFF system Caution, carefully depress Reset1 button only on manifold.(Refer to “Caution” above and page 6.)11WARRANTYTHIS WARRANTY IS GIVEN IN PLACE OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR OTHERWISE.Under no circumstances shall Parker Hannifin Corporation be liable for incidental or consequential damages as those terms are defined in the uniform commercial code.Parker Hannifin Corporation, Porter Instrument Division warrants that each product or part shall be free from defects in workmanship and materials, under normal use and with appropriate maintenance, for one (1) year from the date of delivery to customer unless otherwise specified in writing. All rubber and plastic parts and accessories are warranted under the same conditions for a period of ninety (90) days from date of purchase.No statement or claim about the product by any employee, agent, representative, or dealer of Parker Hannifin Corporation shall constitute a warranty by Parker Hannifin Corporation or give to rise to any liability or obligation of Parker Hannifin Corporation.Parker Hannifin Corporation shall not be liable for any damage, injury or loss arising out of the use of the product, whether as a result of a defect in the product or otherwise, if, prior to such damage, injury or loss, the product was (1) damaged or misused; (2) repaired, altered or modified by persons other than Parker Hannifin Corporation; (3) not installed in strict compliance with applicable codes and ordinances; or (4) not installed by an authorized Parker Hannifin Corporation dealer. Parker Hannifin Corporation's obligation for breach of this warranty, or for negligence or otherwise, shall be strictly and exclusively limited to the repair or replacement of the product or part. This warranty shall be void on any product on which the serial number has been altered, defaced or removed.ORDERS All orders are to be made through authorized Parker Hannifin Corporation distributors. All billing will be done through said distributors. Direct orders will be handled through the authorized local dealer as determined by Parker Hannifin Corporation.RETURNS No returns will be accepted unless authorized in writing by Porter Instrument Division, and accompanied by a properly completed return goods authorization. All returns are subject to a re-stocking and possible rework charges to be determined by Porter Instrument Division.Policies subject to change without notice.12DATE: 01/15/02 ECN: 02-0045 DR: ALE CH: BTTAP: JPB Page 13 of 13NUMBER: 0110010E REV. Vanguard “A”Operator’s Manual FM-952 EREVISION HISTORYR EV .D ATE E CN # D ESCRIPTION OF C HANGES D R C H A PPR 001/15/02 02-0045 New document release. ALE BTT JPBA01/20/04 04-0033 p. 4 – B-1805-002 was B-1805-001; p. 10 Quick was Quik (3 places) ALE KKS ALEB 9/03/04 04-0769p. 8 Voltage at #2 nom +1.5 and #1 nom at +0.4 Vdc was Voltage at #1 is 12 Vdc and #2 is 1.5 Vdc and #3 is 0.5 Vdc. “short” was “quick” (4 places); p. 10 Step 11 remove the plug on the pressure relief valve was bleed system; p. 11 remove note on 5.1 Do not shut off valve to cylinder will drain piping system and not simulate changeover; p. 11 step 5.2 add 50 PSIG; p. 12 Step 4 re-arrange order of possible causes. ALE WHK ALEC 6/13/05 05-0374Page 6: Showed correct positions of reset buttons. Page 8: Under Wiring In Manifold Systems section “#3 nominally +0.4 Vdc” was “#1 nominally +0.4 Vdc” Page 10 under 150 PSIG Nitrogen Pressure Test section: added number 10. MAM WHK ALED4/6/06 06-0188 Updated warranty statement on page 13. MAM WHK TGTE 7/2/07 07-0403Table of Contents: removed “CXA” &”MXVA”. Page 4: removed “CXA” & “MXVA”. Combined pages 5 & 6, renumbered pages. Page 6: removed “CXA/DXA”, added “after a few seconds” & “10 to”. Page 7: “3 times” was “1 time”, notes 3 & 4; removed “short” Page 10, section 5.2: added “10 to”. Page 11, symptom 5: removed “short. MAM。
BWAD技术参数BWAD(Baseband Waveform Adaptive Data)技术是一种无线通信技术,主要用于改善无线传输中的抗干扰能力和频谱效率。
下面是BWAD技术的技术参数。
1.调制方式:BWAD技术使用高阶调制方式,如16-QAM、64-QAM或256-QAM。
高阶调制可以提高频谱效率,但对信号质量要求较高。
2. 信道编码:BWAD技术采用卷积码或LDPC(Low-Density Parity Check)码等纠错编码方式。
纠错编码可以提高无线信道中的可靠性,减少误码率。
3.自适应调制与编码:BWAD技术可以根据信道质量的变化实时调整调制方式和编码率。
当信道质量较好时,可以使用高阶调制和低码率编码;当信道质量较差时,可以使用低阶调制和高码率编码,以保证数据的可靠传输。
4.频谱效率:BWAD技术可以实现较高的频谱效率,即通过单位频谱资源传输的数据量。
高阶调制和自适应调制与编码的方式可以提高频谱利用率,减少频谱浪费。
5.自适应功率控制:BWAD技术可以根据信道质量的变化自动调整发射功率。
当信道质量好时,可以降低发射功率以减少功耗;当信道质量差时,可以增大发射功率以提高信号质量。
6. 多天线技术:BWAD技术可以利用多天线技术,如MIMO(Multiple-Input Multiple-Output)技术来提高无线信号的质量和容量。
多天线技术可以提供空间分集和空间复用的优势,减少无线传输中的多径效应和干扰。
7.预编码和均衡:BWAD技术使用预编码和均衡算法来抵消多径效应和信道衰落引起的失真。
预编码可以在发送端对信号进行处理,使其在接收端能够更好地恢复原信号;均衡算法则可以在接收端对接收信号进行处理,使其恢复到更接近发送时的状态。
8.时空分集:BWAD技术利用时空分集技术来提高无线信道的可靠性。
通过在不同的时间、频率和空域上发送相同的数据,可以减少信号在传输过程中受到的噪声和干扰的影响。
技术与应用经济与社会发展研究问题,因此导致产生的成本过高。
而区块链技术的应用则大大改变了这一状况,在区块链技术下,支付系统可以实现国际金融与贸易双方的直接交易,此种方式下就不再像以往那样需要第三方机构的介入了。
对于国际金融与贸易来说,通过应用区块链技术所构建的银行间金融交易系统可以提供全球化的跨境实时支付清算服务,从而使得国际金融与贸易在跨境支付清算上变得更加便利。
四、区块链技术对国际金融与贸易的影响分析从上述区块链技术在国际金融与贸易中的应用上可以看出,通过应用区块链技术大大提高了国际金融与贸易的交易效率,改变了传统国际金融与贸易交易过程中需要第三方机构介入的情况,有效的节约了成本。
其次:区块链的出现缓解了国际金融与贸易交易双方间的信息不对称性矛盾,有利于缓解国际贸易过程中的信息壁垒问题,有效的拓宽了资金的流通渠道,使得国际金融与贸易双方间的交流变得更加顺畅。
最后:区块链技术的出现推动了互联网信息技术的进一步发展,让人们重新认识到了互联网的发展高度,也有利于促进国际金融与贸易过程中对互联网技术的进一步应用和创新。
五、结语文章重点分析了区块链技术的特征以及在国际金融与贸易中的具体应用,相信随着国际金融与贸易发展需求的进一步提高,以及区块链技术的不断成熟与突破,其在国际金融与贸易中发挥的作用将会变得越来越大。
希望通过文章对区块链技术在国际金融与贸易中的应用分析,可以对我国的国际金融与贸易发展提供到帮助作用。
参考文献[1]王硕. 区块链技术在金融领域的研究现状及创新趋势分析[J]. 上海金融, 2016 (2):26-29.[2]宫晓林, 杨望, 曲双石. 区块链的技术原理及其在金融领域的应用[J]. 国际金融,2017(2):46-54.[3]曹淑艳,王小钰,卢艳桥,曹亚南.中外金融区块链研究综述[J].理论学习与探索,2017(3):84-87.[4]冯文芳,申风平.区块链:对传统金融的颠覆[J].甘肃社会科学,2017(5):244-249.浅谈ACC信号光纤传输民航山东空管局 宋玉华摘要:本文重点讲述了空管系统ACC OTE共用天线系统功能的实施和应用。
2018年10期创新前沿科技创新与应用Technology Innovation and ApplicationVanguard 设备使用卫星链路传输雷达数据的参数调优谷瑞(新疆民航通信网络有限责任公司,新疆乌鲁木齐830016)引言Vanguard 系列路由器在民航通信领域有着广泛应用。
新疆民航空管Vanguard 语音数据网已建设完成,但是在测试过程中,该网络存在雷达数据传输严重异常的情况,无法满足自动化用户的接入要求。
经过不懈努力与反复实验,该问题已得到较好解决。
1新疆空管Vanguard 语音数据网的构成Vanguard 系列多业务接入路由器较好的支持多种协议如IP 、帧中继、X.25、TBOP 等之间的互通,主要用于将多种业务接入广域网,并具有维护简单、故障率低等优点。
新疆空管Vanguard 语音数据网中的节点以点对点的方式传输VHF 信号、雷达数据等多种空管业务,以Van -guard 6840路由器作为节点设备,由民航ku 卫星网提供中继链路,作为地面传输方式的重要保障手段。
图1表现了新疆地区远端雷达站的雷达数据传输至民航乌鲁木齐空管中心所经过的设备和物理线路。
使用V.24接口的雷达信号数据通过Vanguard 路由器的TBOP (面向比特透明传输协议)端口进入Vanguard 路由器。
TBOP协议可以透明传输HDLC 数据帧,适用于传输雷达数据。
经过内部处理后,雷达数据被承载到Vanguard 帧中继端口的一条PVC 虚电路上,从以v.35为物理接口的广域网帧中继接口向外发送,通过民航Ku 卫星网和SDH 本地网的透明传输到达雷达数据用户侧的Vanguard 路由器,再接入用户。
2Vanguard 路由器雷达数据业务传输中遇到的问题解决思路使用恒光HCT-8810雷达数据测试仪对由图1所示物理线路传输的雷达数据进行测试,发现收到的雷达数据存在大量扇区丢失、正北帧丢失的情况,且由雷达数据时延测试测得延迟平均达15秒。
在寻找雷达数据传输异常的原因的过程中,发现Van -guard 路由器上存在一些异常现象。
登陆远端雷达站Van -guard 路由器的管理界面,依次进入Main>Status/statistics>Detailed Port Stat 菜单,查看输入雷达数据的TBOP 端口的状态,发现端口下存在大量Lost Seg -ments (网络层丢包)和Frames Queued (数据链路层排队未发出的帧);并且在同一路由器上进入Main>Status/statis -tics>Detailed Link Stat 菜单,查看帧中继站的状态,显示在广域网帧中继链路上存在隐式拥塞。
而将中继链路替换为地面链路后,上述问题即消失,并且将两台Vanguard 做背靠背连接再进行测试,得到雷达数据时延测试结果为与雷达数据源处测摘要:文章结合新疆民航空管Vanguard 语音数据网的实际运用经验,分析通常用在其中继端口的Annex G 协议是如何利用X.25协议进行流量控制的,并以此为基础通过实验确定了与小带宽、大时延的卫星电路相适配的Vanguard 帧中继虚电路的相关参数。
关键词:Vanguard ;路由器;X.25;帧中继;滑动窗口;雷达数据中图分类号:TN927文献标志码:A文章编号:2095-2945(2018)10-0029-03Abstract :Based on the practical application experience of Xinjiang civil aviation air traffic control vanguard voice data network,this paper analyzes how the Annex G protocol (which is usually used in the following port)uses X.25protocol to control the traffic.Based on this,the parameters of the vanguard frame relay circuit are determined by experiments to be adapted to the satellite cir ⁃cuits with small bandwidth and long delay.Keywords :vanguard;Router;X.25;frame relay;sliding window;radar data作者简介:谷瑞(1989,12-),男,汉族,毕业于电子科技大学,学历本科。
现在新疆民航通信网络有限责任公司工作,职称为助理工程师。
研究方向为数据通信技术在民航领域的运用。
图1新疆空管Vanguard 语音数据网传输雷达数据的示意图29--2018年10期创新前沿科技创新与应用Technology Innovation and Application得的时延相差仅30ms ,该时延差即为两台Vanguard 设备传输雷达信号的固有开销。
因此,需解决Vanguard 路由器通常使用的雷达数据业务配置在使用卫星链路时存在流量控制问题。
3调整X.25滑动窗口相关参数改善雷达数据质量Vanguard 系列路由器在使用帧中继作为广域网接口协议时,在承载帧中继虚电路的frame station (帧中继站)上主要使用的是ANSI T1.617Annex G 协议。
该协议规定了如何使用帧中继的DLCI 虚电路传输X.25分组数据。
利用X.25协议完善的差错校正和流量控制机制,Annex G 虚电路可以提供可靠的传输业务,也是由原有的X.25网络向帧中继网络过渡的一种手段。
而X.25协议的数据链路层和分组层(对应OSI 协议的网络层)均使用滑动窗口方式来实现流量控制。
因此可考虑调整帧中继站中的X.25相关参数,与滑动窗口有关参数的默认值如下:K Frame Window (数据链路层滑动窗口尺寸):7W Packet Window (网络层包缓冲区大小):7P Packet Size:128(网络包大小)Data Queue Upper Threshold:5(数据队列上限)Data Queue Lower Threshold:0(数据队列下限)Window Subtractor:0(窗口减法器)3.1K Frame Window 参数的调整根据计算机网络的相关理论,在数据链路层的连续ARQ 协议中需对已发出但未收到确认信息的数据帧的数量加以限制,即使用发送窗口对发送端进行流量控制。
使用有限的几个比特来编号,用作帧的序号,并使“窗口”的值小于帧序号的最大值,用以表示最多可以发送多少个未收到确认信息的帧。
如使用3位比特进行编号,即帧序号为0(二进制为000)到7(二进制为111),此即模8的帧结构;如使用7位比特编号,即帧序号从0到127,此即模128的帧结构。
X.25协议的LAPB 规程(平衡型链路访问规程)定义的数据链路层滑动窗口的控制参数是窗口尺寸k ,即在收到确认信息前可以发送的最大帧数,对应于frame station (帧中继站)的K Frame Window 参数。
在模8帧结构下,K Frame Window 参数的取值范围为1到7。
k 值的选定取决于物理链路的传播时延和数据的传送速率,对于大多数链路来说,模8帧结构都已经够用,而X.25协议规定在用于卫星链路这种长时延链路时,应采用模128的帧结构,帧序号范围应更大。
在V anguard 的参数设置中,K 值的取值范围为1到63。
据此可修改K 参数为最大值,方法如下:进入Main>Configure>Port 菜单,将Frame Sequence Counting 参数由NORM (即模8帧结构)修改为EXT (即模128);进入Main>Configure>FRI Stations 菜单,将K Frame Window 值修改为最大值63。
3.2W Packet Window 参数的调整根据厂家的定义,W Packet Window 参数规定了Packet Buffering (包缓冲区)的大小,它的含有是能够被缓存和重发的三层数据包的数量,用来协调不同网络设备之间的速度匹配问题,过小的缓冲空间在发生拥塞时容易丢包出错。
类似于K 参数,W Packet Window 参数也为滑动窗口控制参数的取值范围,不同在于分组层的W Packet Win -dow 对单个逻辑信道(即虚电路)进行流量控制,链路层的K Frame Window 控制的是DTE-DCE 接口上的流量。
并W Packet Window 参数值也有模8和模128之分,在X.25分组层的GFI (一般格式标识符)的定义中可以体现这种区分。
图2GFI 字符格式GFI 位于分组报文头,由4比特组成,分别定义为QDSS ,其中SS 为模式比特,SS=01表示分组的顺序号是模8方式,SS=10表示是模128方式。
修改W Packet Window 参数的方法如下:进入Main>Configure>Port 菜单,将Packet Sequence Counting 参数由NORM (即模8)修改为EXT (即模128);进入Main>Configure>FRI Stations 菜单,将W Packet Window 参数修改为经验值40;经测试仅将W Packet Window 从默认值修改成40以后,雷达信号时延立即降低至1秒以下。
3.3Window Subtractor 参数的调整根据V anguard 原厂资料《Vanguard Managed Solu -tions :Frame Relay Interface/Access 》的x25窗口配置建议,应在使用高延时的链路时调整window Subtractor 参数,一般应使该参数接近或等于W packet window 的大小,设置该参数的同时应将同一帧中继站的以下两个参数做修改:Data Queue Upper Threshold:15Data Queue Lower Threshold:4根据上表,因V anguard 所用的卫星中继带宽为64kbps ,故尝试将window subtractor 的值设置为4,将帧中继站的参数修改为:K Frame Window:63W Packet Window:40P Packet Size:128Data Queue Upper Threshold:15Data Queue Lower Threshold:4Window subtractor :4修改参数后时延大为下降,从平均时延15s 降至30--2018年10期创新前沿科技创新与应用Technology Innovation and Application700ms 左右,且雷达数据测试也未发现大量丢扇区和正北的情况。