上海市各区县2016届高三上学期期末考试数学理试题汇编:函数(含答案)
- 格式:doc
- 大小:823.00 KB
- 文档页数:13
高中数学学习材料唐玲出品上海市各区县2016届高三上学期期末考试数学理试题汇编函数一、填空题1、(宝山区2016届高三上学期期末)方程0624=--xx 的解集为 .2、(崇明县2016届高三上学期期末)已知 f (x )、g(x )分别是定义在R 上的偶函数和奇函数,且 f (x ) −g(x ) =2x+x ,则f (1) +g(1) =3、(奉贤区2016届高三上学期期末)方程9360x x+-=的实数解为_________ 4、(虹口区2016届高三上学期期末)函数1()2x f x +=的反函数1()_________.f x -=5、(黄浦区2016届高三上学期期末)若函数22()1f x x a x =-+-为偶函数且非奇函数,则实数a 的取值范围为 .6、(金山区2016届高三上学期期末)方程4x – 6⨯2x +8=0的解是7、(静安区2016届高三上学期期末)方程3(1)(1)l o g (98)l o g (1)3x x x x x +--+⋅+=的解为 .8、(闵行区2016届高三上学期期末)方程4260xx--=的解为 .9、(普陀区2016届高三上学期期末)若函数()1f x x =-,()1g x x x =-+,则()()f x g x +=________.10、(青浦区2016届高三上学期期末)函数11,02()1,0x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .11、(松江区2016届高三上学期期末)若幂函数()x f 的图像过点22,2⎛⎫ ⎪ ⎪⎝⎭,则()12f -= ▲ . 12、(杨浦区2016届高三上学期期末)已知函数()34log 2f x x ⎛⎫=+ ⎪⎝⎭,则方程()14f x -=的解x = _____________.13、(闸北区2016届高三上学期期末)函数ln(1),0()1ln,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ;14、(长宁区2016届高三上学期期末)方程9x +3x -2 = 0的解是___________. 15、(闵行区2016届高三上学期期末)若函数()2x af x -=()a ∈R 满足(1)(1)f x f x +=-,且()f x 在[,)m +∞上单调递增,则实数m 的最小值等于 .16、(青浦区2016届高三上学期期末)函数()lg(23)xxf x =-的定义域为 . 17、(松江区2016届高三上学期期末)已知函数()f x ,对任意的[1,)x ∈+∞,恒有(2)2()f x f x =成立, 且当[1,2)x ∈时,()2f x x =-. 则方程1()3f x x =在区间[1,100]上所有根的和为 ▲ .18、(杨浦区2016届高三上学期期末)已知()f x 是定义在R 上的奇函数,当01x ≤≤时,()2f x x =,当0x >时,()()()11f x f x f +=+,若直线y kx =与函数()y f x =的图象恰有11个不同的公共点,则实数k 的取值范围为____________.19、(长宁区2016届高三上学期期末)设函数 y =f (x )的反函数是 y =f -1(x ),且函数 y =f (x )过点P (2,-1),则 f -1(-1)=二、选择题1、(崇明县2016届高三上学期期末)汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( ) (A)消耗1 升汽油,乙车最多可行驶5千米(B)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 (C)甲车以80 千米/小时的速度行驶1 小时,消耗10 升汽油(D)某城市机动车最高限速80 千米/小时. 相同条件下,在该市用丙车比用乙车更省油2、(虹口区2016届高三上学期期末)设函数22,0,(),0,x x f x log x x ⎧+≤⎪=⎨>⎪⎩若关于x 的方程()f x a =有四个不同的解1234,,,,x x x x且1234,x x x x <<<则3122341()x x x x x ++的取值范围是 ( ) (A )()3,-+∞ (B )(),3-∞ (C )[)3,3- (D )(]3,3-3、(金山区2016届高三上学期期末)如图,AB 为定圆O 的直径,点P 为半圆AB 上的动点.过点P作AB 的垂线,垂足为Q ,过Q 作OP 的垂线,垂足为M .记弧AP 的长为x ,线段QM 的长为y ,则函数y =f (x )的大致图像是( ).4、(静安区2016届高三上学期期末)函数213(10)x y x -=-≤<的反函数是 ( )A .311log ()3y x x =-+≥B .311log (1)3y x x =-+<≤C .311log (1)3y x x =+<≤ D .311log ()3y x x =+≥5、(闵行区2016届高三上学期期末)设2345()2510105f x x x x x x =+++++,则其反函数的解析式为( ).(A) 511y x =+- (B) 511y x =--(C) 511y x =-+- (D) 511y x =---6、(普陀区2016届高三上学期期末)若函数()()lg 1,1sin ,12x x f x a x x π⎧->⎪=⎨⎛⎫≤⎪ ⎪⎝⎭⎩,关于x 的方程 ()()()210f x a f x a -++=,给出下列结论:①存在这样的实数a ,使得方程由3个不同的实根;②不存在这样的实数a ,使得方程由4个不同的实根;③存在这样的实数a ,使得方程由5个不同的实数根;④不存在这样的实数a ,使得方程由6个不同的实数根.其中正确的个数是( ).A 1个 .B 2个 .C 3个 .D 4个7、(杨浦区2016届高三上学期期末)下列函数中,既是偶函数,又在()π,0 上递增的函数的个数是 ( )① x tan y = ② ()x cos y -= ③ ⎪⎭⎫ ⎝⎛π-=2x sin y ④2x cot y =A. 1个B. 2个C. 3个D. 4个8、(长宁区2016届高三上学期期末)关于函数,有下列四个命题:①的值域是; ②是奇函数;③在上单调递增;④方程总有四个不同的解.其中正确的是 ( )A . ①②B . ②③C . ②④D . ③④三、解答题1、(奉贤区2016届高三上学期期末)已知函数()x f y =是单调递增函数,其反函数是()1y f x -=.(1)、若⎪⎭⎫ ⎝⎛>-=2112x x y ,求()1y f x -=并写出定义域M ; (2)、对于(1)的()1y f x -=和M ,设任意2121,,x x M x M x ≠∈∈,求证:()()212111x x x f x f-<---;(3)、若()x f y =和()1y f x -=有交点,那么交点一定在x y =上.2、(虹口区2016届高三上学期期末) 对于函数1(),1f x x=-定义[]11()(),()()().n n f x f x f x f f x n N *+==∈已知偶函数()g x 的定义域为(,0)(0,),(1)0g -∞⋃+∞=; 20150,1()().x x g x f x >≠=当且时, (1)求234(),(),(),f x f x f x 并求出函数()y g x =的解析式;(2) 若存在实数,()a b a b <使得函数[](),g x a b 在上的值域为[],mb ma ,求实数m 的取值范围.3、(静安区2016届高三上学期期末)已知定义在实数集R 上的偶函数()x f 和奇函数()x g 满足()()12x f x g x ++=.(1)求()f x 与()g x 的解析式;(2)若定义在实数集R 上的以2为最小正周期的周期函数()x ϕ,当11x -≤≤时,()()x f x ϕ=,试求()x ϕ在闭区间[2015,2016]上的表达式,并证明()x ϕ在闭区间[2015,2016]上单调递减;(3)设22()21h x x mx m m =++-+(其中m 为常数),若2(())1h g x m m ≥--对于[1,2]x ∈恒成立,求m 的取值范围.4、(普陀区2016届高三上学期期末)已知集合M 是满足下列性质的函数()f x 的全体,存在实数()0a k k ≠、,对于定义域内的任意x 均有()()f a x kf a x +=-成立,称数对(),a k 为函数()f x 的“伴随数对”(1)判断()2f x x =是否属于集合M ,并说明理由;(2)若函数()sin f x x M =∈,求满足条件的函数()f x 的所有“伴随数对”; (3)若()()1,1,2,1-都是函数()f x 的“伴随数对”,当12x ≤<时,()cos 2f x x π⎛⎫= ⎪⎝⎭;当2x =时,()0f x =.求当20142016x ≤≤时,函数()y f x =的解析式和零点.5、(杨浦区2016届高三上学期期末)已知函数()D)(x x f ∈,若存在常数T (T>0),对任意D x ∈都有()() x f T T x f ⋅=+,则称函数() x f 为T 倍周期函数 (1)判断()x x h =是否是T 倍周期函数,并说明理由.(2)证明()x41 x g ⎪⎭⎫⎝⎛=是T 倍周期函数,且T 的值是唯一的.(3)若() )N (n n f *∈是2倍周期函数,()11f =,()42f -=,n S 表示()n f 的前n 项和,1n 2n2n S S C -=,若10)1a (log C a n ++<恒成立,求a 的取值范围.6、(长宁区2016届高三上学期期末)已知函数,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有成立,则称函数是D 上的m 级类增周期函数,周期为T .若恒有成立,则称函数是D 上的m级类周期函数,周期为T . (1)已知函数上的周期为 1 的 2 级类增周期函数,求实数a 的取值范围; (2)已知上的m 级类周期函数,且上的单调递增函数,当时,,求实数m 的取值范围.参考答案 一、填空题1、{}3log 22、-123、3log 24、2log 1(0)x x ->5、(1,)+∞6、x=1或x =27、3x =8、2log 3x =9、 10、(,1)-∞-11、1412、1 13、单调递增,奇函数 14、x =0 15、1 16、(,0)-∞ 17、1190218、(264-,436-) 19、2二、选择题1、D2、D3、A4、B5、C6、C7、A8、B三、解答题 1、解:(1)、(),11+=-x x f⎪⎭⎫⎝⎛+∞-=,43M 3+2=5分(2)、()()11112121212111+++-=+-+=---x x x x x x x f x f 7分1131,142x x >-∴+>,211,4322>+∴->x x 9分11121>+++∴x x ,1111021<+++<∴x x 10分 21212111x x x x x x -<+++-∴()()212111x x x f x f -<-∴-- 11分(3)、设()b a ,是()x f y =和()1y f x -=有交点(第21题解图)y1x1-1O 即()()⎩⎨⎧==-a f b a f b 1,()()a f b b f a ==∴, 12分 当b a =,显然在x y =上 13分 当b a >,函数()x f y =是单调递增函数,()a b b f a f >∴>∴,)(矛盾 15分 当b a <,函数()x f y =是单调递增函数,()a b b f a f <∴<∴,)(矛盾 16分因此,若()x f y =和()1y f x -=的交点一定在x y =上 16分 2、解:(1)因为()11()()1,1f x f x x x==≠-故 []()2111()()10,1,111f x ff x x x xx===-≠≠-- [][]32431()()(0,1),11(1)1()()(0,1),(3)1f x ff x x x x xf x f f x x x x===≠≠--==≠≠-分故对任意的3,()()(2,3,4),n i i n N f x f x i +∈==有于是20153671221()()()1(0,1);f x f x f x x x x ⨯+===-≠≠201510,1()()1.x x g x f x x>≠==-故当时, 1(1)0,0()1.g x g x x =>=-又故当时,由()g x 为偶函数,1100,()()11.x x g x g x x x<->=-=-=+-当时, 11,0,1()1110.x xg x xx x ⎧+<⎪⎪==-⎨⎪->⎪⎩,因此. ……(6分)(2) 由于()y g x =的定义域为(,0)(0,)-∞⋃+∞, 又,,a b mb ma a b <<可知与同号,0m <且;进而[](),g x a b 在递减,且0.a b << ……(8分)函数()y g x =的图像,如图所示. 由题意,有1()1,1()1,g a ma a g b mb b ⎧=+=⎪⎪⎨⎪=+=⎪⎩……(10分) 故,a b 是方程11m x x+=的两个不相等的负实数根,即方程210m x x --=在(),0-∞上有两个不相等的实根,于是140101010.4m a b m ab m m ⎧⎪∆=+>⎪⎪+=<⎨⎪⎪=->⎪⎩⇔-<< ……(12分) 综合上述,得:实数m 的取值范围为1,0.4⎛⎫-⎪⎝⎭……(14分) 注:若采用数形结合,得出直线y m x =与曲线11(0)y x x=+<有两个不同交点,并进行求解也可.3、解:(1)假设1()()2x f x g x ++=①,因为()x f 是偶函数, ()x g 是奇函数所以有1()()2x f x g x -+-+-=,即1()()2x f x g x -+-= ②∵()f x ,()g x 定义在实数集R 上, 由①和②解得,11221()222x x xx f x +-++==+,11221()222x x x x g x +-+-==-.(2) ()x ϕ是R 上以2为正周期的周期函数, 所以当[2015,20x ∈时,2016[1,0]x -∈-,201620161()(2016)(2016)22x x x x f x ϕϕ--=-=-=+,即()x ϕ在闭区间[2015,2016]上的表达式为201620161()22x x x ϕ--=+.下面证明()x ϕ在闭区间[2015,2016]上递减:201620161()222x x x ϕ--=+≥,当且仅当201621x -=,即2016x =时等号成立.对于任意1220152016x x ≤<≤,1212212120162016201612201620162016111()()22(21)(2)222x x x x x x x x f x f x --------=+--=--,因为1220152016x x ≤<≤,所以121221,210x x x x --<-<,220160221x -≤=,120160221x -<=,12016112x ->,2120162016220x x ---<, 从而12()()0x x ϕϕ->,所以当1220152016x x ≤<≤时, ()x ϕ递减.(证明1()22xx f x =+在[1,0]-上递减,再根据周期性或者复合函数单调性得到也可)(3)∵()t g x =在[1,2]x ∈单调递增,∴31524t ≤≤.∴222()211h t t mt m m m m =++-+≥--对于315,24t ⎡⎤∈⎢⎥⎣⎦恒成立,∴222tmt+≥-对于315,24t⎡⎤∈⎢⎥⎣⎦恒成立,令22()2tk tt+=-,则221222t tt t+=+≥,当且仅当2t=时,等号成立,且322<所以在区间315,24t⎡⎤∈⎢⎥⎣⎦上22()2tk tt+=-单调递减,∴max317()()212k t k==-,∴1712m≥-为m的取值范围.4、5、(1) 设:()() x h T T x h ⋅=+则 x T T x ⋅=+ 对任意x 恒成立 (2分)T 无解∴ ()x x h = 不是T 倍周期函数 (2分)(2) 设:()() x g T T x g ⋅=+则 xT x 41T 41⎪⎭⎫⎝⎛⋅=⎪⎭⎫⎝⎛+ 对任意x 恒成立 (2分)T 41T=⎪⎭⎫⎝⎛21T = (2分)下证唯一性: 若 21T >, 214141T 21T =⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛= 矛盾 若 21T <, 214141T 21T =⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛= 矛盾∴ 21T = 是唯一的 (2分)(3)()()()2 12f 21f 3f ==+=()()()22 32f 23f 5f ==+=()()()32 52f 25f 7f ==+=()()()1-n 2 3-2n 2f 23-2n f 1n 2f ==+=-()()()()1222211-2n f 5f 3f 1f n 1n 2-=++++=++++- (2分)同理: ()()()()()()124222142n f 6f 4f 2f n 1n 2--=++++-=++++- ∴ ()()()()123n 2f 2f 1f S n n 2--=+++=同理:()()()321n 2f 2f 1f S n 1n 2+-=-+++=- ()32123S S C n n 1n 2n 2n --==- (2分) 3C 1-= 9C 2=显然:2n ≥ 0C n > 且 ()()()()()()32522327223212332123C C n 2n n 2n n n 1n 1n n1n +⋅-+⋅-=----=+++ ()()<+⋅-32722n 2n()()32522n 2n +⋅- ∴ 1C C n1n <+ 即单调递减 ∴ ()9C C 2m a x n == (2分) 10)1a (log C a n ++<恒成立,∴ >++10)1a (log a ()9C max n =∴ 1)1a (log a ->+① 1a > 时 a11a >+ 解得 :1a > ② 1a 0<< 时 a 11a <+ 解得 :251a 0+-<< ∴ 251a 0+-<< 或 1a > (2分) 6、1)由题意可知:f (x+1)>2f (x ),即-(x+1)2+a (x+1)>2(-x 2+ax )对一切[3,+∞)恒成立,整理得:(x-1)a <x 2-2x-1,∵x≥3,令x-1=t,则t∈[2,+∞),g(t)=t-2 t在[2,+∞)上单调递增,∴g(t)min=g(2)=1,∴a<1.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x-1)=m•2x-1,…当x∈[n,n+1)时,f(x)=mf(x-1)=m2f(x-2)=…=m n f(x-n)=m n•2x-n,即x∈[n,n+1)时,f(x)=m n•2x-n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且m n•2n-n≥m n-1•2n-(n-1),即m≥2.。
金山区2015学年第一学期期末考试高三数学试卷(满分:150分,完卷时间:120分钟)(答题请写在答题纸上)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.3213lim +-∞→n n n = .2.已知全集U =R ,集合M ={x | x 2–4x –5〈0},N ={x | x ≥1},则M ∩(U N ) = .3.若复数z 满足i21i 43-+=z (i 为虚数单位),则z = .4.若直线l 1:6x +my –1=0与直线l 2:2x -y +1=0平行,则m = . 5. 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛212332c c ,解为⎩⎨⎧==12y x ,则c 1–c 2= .6.方程4x – 62x +8=0的解是 .7.函数y =sec x sin x 的最小正周期T = . 8.二项式62)1(x x -展开式中3x 系数的值是 .9.以椭圆1162522=+y x 的中心为顶点,且以该椭圆的右焦点为焦点的抛物线方程是 。
10.在报名的5名男生和3名女生中,选取5人参加数学竞赛,要求男、女生都有,则不同的选取方式的种数为 .(结果用数值表示)11.方程cos2x +sin x =1在(0,)上的解集是 .12.行列式dc ba(a 、b 、c 、d{–1,1,2})所有可能的值中,最小值为 .13.已知点P 、Q 分别为函数1)(2+=xx f (x ≥0)和1)(-=x x g 图像上的点,则点P 和Q 两点距离的最小值为 .14.某种游戏中,用黑、黄两个点表示黑、黄两个“电子狗”,它们从棱长为1的正方体ABCD –A 1B 1C 1D 1的顶点A 出发沿棱向前爬行,每爬完一条棱称为“爬完一段”.黑“电子狗"爬行的路线是AA 1→A 1D 1→…,黄“电子狗"爬行的路线是AB →BB 1→…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须是异面直线(其中i 是正整数).设黑“电子狗”爬完2015段、黄“电子狗”爬完2014段后各自停止在正方体的某个顶点处,这时黑、黄“电子狗”间的距离是 .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。
上海市闸北区2016届高三一模数学理试卷2015.12一. 填空题(本大题共9题,每题6分,共54分)1. 2521(2)(1)x x+-的展开式中常数项为 ;2. 函数ln(1),0()1ln,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ; 3. 一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是 ;4. 在菱形ABCD 中,1AB =,60DAB ︒∠=,E 为CD 的中点,则AB AE ⋅u u u r u u u r的值是 ;5. 如图,靠山有一个水库,某人先从水坝的底部A 测得水坝对面的山顶P 的仰角为40︒,再沿坝面向上走80米到水坝的顶部B 测得56ABP ︒∠=,若坝面与水平面所成的锐角为30︒,则山高为 米;(结果四舍五入取整)6. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 ;(用数字作答)7. 等差数列{}n a 的公差为d ,关于x 的不等式2120dx a x +≥的解集为[0,9],则使数列{}n a 的前n 项和n S 最大的正整数n 的值是 ;8. 过点0(3,)M y 作圆22:1O x y +=的切线,切点为N ,如果6OMN π∠≥,那么0y 的取值范围是 ;9. 如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记AOP ∠为x ([0,])x π∈,OP 所经过的在正方 形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论:①3()32f π=;② 对任意[0,]2x π∈,都有()()422f x f x ππ-++=;③ 对任意12,(,)2x x ππ∈,且12x x ≠,都有1212()()0f x f x x x -<-; 其中所有正确结论的序号是 ;二. 选择题(本大题共3题,每题6分,共18分)10. “抛物线2y ax =的准线方程为2y =”是“抛物线2y ax =的焦点与双曲线2213y x -= 的焦点重合”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11. 已知,m n 是两条不同直线,,αβ是两个不同平面,给出下列四个命题: ① 若,αβ垂直于同一平面,则α与β平行; ② 若,m n 平行于同一平面,则m 与n 平行;③ 若,αβ不平行,则在α内不存在与β平行的直线; ④ 若,m n 不平行,则m 与n 不可能垂直于同一平面 其中真命题的个数为( )A. 4B. 3C. 2D. 112. 已知i r 和j r 是互相垂直的单位向量,向量n a u u r 满足:n i a n ⋅=r u u r ,21n j a n ⋅=+r u u r ,*n N ∈,设n θ为i r 和n a u u r的夹角,则( )A. n θ随着n 的增大而增大B. n θ随着n 的增大而减小C. 随着n 的增大,n θ先增大后减小D. 随着n 的增大,n θ先减小后增大三. 解答题(本大题共4题,共18+20+20+20=78分)13. 如图,在平面直角坐标系xOy 中,角α的顶点在原点,始边与x 轴的非负半轴重合,终边交单位圆于点A ,且[,)42ππα∈,将角α的终边绕原点逆时针方向旋转3π,交单位圆 于点B ,过B 作BC y ⊥轴于点C ;(1)若点A 3,求点B 的横坐标; (2)求△AOC 的面积S 的最大值;14. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴;为迎接2015年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销;经调查测算,该促销产品在“双十一”的销售量p (万件)与促销费用x (万元)满足231p x =-+(其中0x a ≤≤,a 为正常数),已知生产该产品还需投入成本102p +万 元(不含促销费用),每一件产品的销售价格定为20(4)p+元,假定厂家的生产能力完全能 满足市场的销售需求;(1)将该产品的利润y (万元)表示为促销费用x (万元)的函数; (2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值;15. 如图,已知动直线l 交圆22(3)9x y -+=于坐标原点O 和点A ,交直线6x =于点B ; (1)若||35OB =,求点A 、点B 的坐标;(2)设动点M 满足OM AB =u u u u r u u u r,其轨迹为曲线C ,求曲线C 的方程(,)0F x y =;(3)请指出曲线C 的对称性、顶点和图形范围,并说明理由;(4)判断曲线C 是否存在渐近线,若存在,请直接写出渐近线方程;若不存在,说明理由;16. 已知数列{}n a 的前n 项和为n S ,且点(,)n n S *()n N ∈在函数122x y +=-的图像上;(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:10b =,1n n n b b a ++=,求{}n b 的通项公式;(3)在第(2)问的条件下,若对于任意的*n N ∈,不等式1n n b b λ+<恒成立,求实数λ的取值范围;参考答案一. 填空题1. 3;2. 单调递增,奇函数;3.34; 4. 1; 5. 176;6. 96;7. 5;8. [1,1]-; 9. ①②;二. 选择题10. A; 11. D; 12. B;三. 解答题13.(1)12-;(2)318+;14.(1)4161y x x =--+;(2)1x =,max 13y =; 15.(1)2412(,)55A ±,(6,3)B ±;(2)326x y x =-;(3)关于x 轴对称;顶点(0,0);[0,6)x ∈,y R ∈;(4)6x =;16.(1)2nn a =;(2)n 为奇数,223n n b -=;n 为偶数,223n n b +=;(3)1λ>;。
高中数学学习材料马鸣风萧萧*整理制作上海市各区县2016届高三上学期期末考试数学理试题汇编平面向量一、填空题1、(宝山区2016届高三上学期期末)向量a r ,b r 满足a 1=r ,3a 2b -=r r ,a r 与b r的夹角为60°,则b =r.2、(崇明县2016届高三上学期期末)在矩形 ABCD 中, AB =2, AD =1,边DC (包含点 D 、C )的动点 P 与 CB 延长线上(包含点B )的动点Q 满足 的取值范围是___________3、(奉贤区2016届高三上学期期末)已知点()1,5A -和向量()2,3a =,若a AB 3=,则点B 的坐标为__________.4、(奉贤区2016届高三上学期期末)线段AB 的长度为2,点A 、B 分别在x 非负半轴和y 非负半轴上滑动,以线段AB 为一边,在第一象限内作矩形ABCD (顺时针排序),1BC =,设O 为坐标原点,则OD OC ⋅的取值范围是__________.5、(黄浦区2016届高三上学期期末)若非零向量a ,b ,c 满足230a b c ++=,且a b b c c a ⋅=⋅=⋅,则b 与c 的夹角为 .6、(嘉定区2016届高三上学期期末)已知直角梯形ABCD ,AD ∥BC ,︒=∠90BAD .2=AD ,1=BC ,P 是腰AB 上的动点,则||PC PD +的最小值为__________.7、(静安区2016届高三上学期期末)在平面直角坐标系xOy 中,坐标原点(0,0)O 、点(1,2)P ,将向量绕点O 按逆时针方向旋转56π后得向量,则点Q 的横坐标是 .8、(闵行区2016届高三上学期期末)已知ABC △中,43AB i j =+,34AC i j =-+,其中i j、是基本单位向量,则ABC △的面积为 .9、(浦东新区2016届高三上学期期末)已知向量()2,1,(1,)a b m =-=r r平行,则m =10、(浦东新区2016届高三上期末)有一列向量{}n a u u r :111222(,),(,),,(,),n n n a x y a x y a x y ===u r u u r u u rL 如果从第二项起,每一项与前一项的差都等于同一个向量,那么这列向量称为等差向量列。
上海市闸北区2016届高三一模数学理试卷2015.12一. 填空题(本大题共9题,每题6分,共54分)1. 2521(2)(1)x x+-的展开式中常数项为 ; 2. 函数ln(1),0()1ln,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ; 3.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是 ;4. 在菱形ABCD 中,1AB =,60DAB ︒∠=,E 为CD 的中点,则AB AE ⋅的值是 ; 5. 如图,靠山有一个水库,某人先从水坝的底部A 测得水坝对面的山顶P 的仰角为40︒,再沿坝面向上走80米到水坝的顶部B 测得56ABP ︒∠=,若坝面与水平面所成的锐角为30︒,则山高为 米;(结果四舍五入取整)6. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 ;(用数字作答)7. 等差数列{}n a 的公差为d ,关于x 的不等式2120dx a x +≥的解集为[0,9],则使数列{}n a 的前n 项和n S 最大的正整数n 的值是 ;8.过点0)M y 作圆22:1O x y +=的切线,切点为N ,如果6OMN π∠≥,那么0y 的取值范围是 ;9. 如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记AOP ∠为x ([0,])x π∈,OP 所经过的在正方 形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论:①()3f π=;② 对任意[0,]2x π∈,都有()()422f x f x ππ-++=;③ 对任意12,(,)2x x ππ∈,且12x x ≠,都有1212()()0f x f x x x -<-;其中所有正确结论的序号是 ;二. 选择题(本大题共3题,每题6分,共18分)10. “抛物线2y ax =的准线方程为2y =”是“抛物线2y ax =的焦点与双曲线2213y x -=的焦点重合”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11. 已知,m n 是两条不同直线,,αβ是两个不同平面,给出下列四个命题: ① 若,αβ垂直于同一平面,则α与β平行; ② 若,m n 平行于同一平面,则m 与n 平行;③ 若,αβ不平行,则在α内不存在与β平行的直线; ④ 若,m n 不平行,则m 与n 不可能垂直于同一平面 其中真命题的个数为( )A. 4B. 3C. 2D. 112. 已知i 和j是互相垂直的单位向量,向量n a 满足:n i a n ⋅= ,21n j a n ⋅=+ ,*n N ∈,设n θ为i 和n a的夹角,则( )A. n θ随着n 的增大而增大B. n θ随着n 的增大而减小C. 随着n 的增大,n θ先增大后减小D. 随着n 的增大,n θ先减小后增大三. 解答题(本大题共4题,共18+20+20+20=78分)13. 如图,在平面直角坐标系xOy 中,角α的顶点在原点,始边与x 轴的非负半轴重合,终边交单位圆于点A ,且[,)42ππα∈,将角α的终边绕原点逆时针方向旋转3π,交单位圆 于点B ,过B 作BC y ⊥轴于点C ;(1)若点A B 的横坐标; (2)求△AOC 的面积S 的最大值;14. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴;为迎接2015年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行 促销;经调查测算,该促销产品在“双十一”的销售量p (万件)与促销费用x (万元)满足231p x =-+(其中0x a ≤≤,a 为正常数),已知生产该产品还需投入成本102p +万 元(不含促销费用),每一件产品的销售价格定为20(4)p+元,假定厂家的生产能力完全能满足市场的销售需求;(1)将该产品的利润y (万元)表示为促销费用x (万元)的函数; (2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值;15. 如图,已知动直线l 交圆22(3)9x y -+=于坐标原点O 和点A ,交直线6x =于点B ;(1)若||OB =,求点A 、点B 的坐标;(2)设动点M 满足OM AB =,其轨迹为曲线C ,求曲线C 的方程(,)0F x y =;(3)请指出曲线C 的对称性、顶点和图形范围,并说明理由;(4)判断曲线C 是否存在渐近线,若存在,请直接写出渐近线方程;若不存在,说明理由;16. 已知数列{}n a 的前n 项和为n S ,且点(,)n n S *()n N ∈在函数122x y +=-的图像上;(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:10b =,1n n n b b a ++=,求{}n b 的通项公式;(3)在第(2)问的条件下,若对于任意的*n N ∈,不等式1n n b b λ+<恒成立,求实数λ的取值范围;参考答案一. 填空题1. 3;2.单调递增,奇函数;3.; 4. 1; 5. 176; 6. 96; 7. 5; 8. [1,1]-; 9. ①②;二. 选择题10. A ; 11. D ; 12. B ;三. 解答题13.(1)12-;(214.(1)4161y x x =--+;(2)1x =,max 13y =; 15.(1)2412(,)55A ±,(6,3)B ±;(2)326x y x =-;(3)关于x 轴对称;顶点(0,0);[0,6)x ∈,y R ∈;(4)6x =;16.(1)2nn a =;(2)n 为奇数,223n n b -=;n 为偶数,223n n b +=;(3)1λ>;。
高中数学学习材料金戈铁骑整理制作上海市各区县2016届高三上学期期末考试数学理试题汇编函数一、填空题1、(宝山区2016届高三上学期期末)方程0624=--x x 的解集为 .2、(崇明县2016届高三上学期期末)已知 f (x )、g(x )分别是定义在R 上的偶函数和奇函数,且 f (x ) −g(x ) =2x +x ,则f (1) +g(1) =3、(奉贤区2016届高三上学期期末)方程9360x x +-=的实数解为_________4、(虹口区2016届高三上学期期末)函数1()2x f x +=的反函数1()_________.f x -=5、(黄浦区2016届高三上学期期末)若函数22()1f x x a x =-+-为偶函数且非奇函数,则实数a 的取值范围为 .6、(金山区2016届高三上学期期末)方程4x – 6⨯2x +8=0的解是7、(静安区2016届高三上学期期末)方程3(1)(1)l o g (98)l o g (1)3x x xx x +--+⋅+=的解为 .8、(闵行区2016届高三上学期期末)方程4260x x --=的解为 . 9、(普陀区2016届高三上学期期末)若函数()1f x x =-,()1g x x x =-+,则()()f x g x +=________.10、(青浦区2016届高三上学期期末)函数11,02()1,0x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .11、(松江区2016届高三上学期期末)若幂函数()x f 的图像过点22,2⎛⎫ ⎪ ⎪⎝⎭,则()12f -= ▲ . 12、(杨浦区2016届高三上学期期末)已知函数()34log 2f x x ⎛⎫=+⎪⎝⎭,则方程()14f x -=的解x = _____________. 13、(闸北区2016届高三上学期期末)函数ln(1),0()1ln ,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ;14、(长宁区2016届高三上学期期末)方程9x +3x -2 = 0的解是___________.15、(闵行区2016届高三上学期期末)若函数()2x a f x -=()a ∈R 满足(1)(1)f x f x +=-,且()f x 在[,)m +∞上单调递增,则实数m 的最小值等于 .16、(青浦区2016届高三上学期期末)函数()lg(23)x x f x =-的定义域为 .17、(松江区2016届高三上学期期末)已知函数()f x ,对任意的[1,)x ∈+∞,恒有(2)2()f x f x =成立, 且当[1,2)x ∈时,()2f x x =-. 则方程1()3f x x =在区间[1,100]上所有根的和为 ▲ .18、(杨浦区2016届高三上学期期末)已知()f x 是定义在R 上的奇函数,当01x ≤≤时,()2f x x =,当0x >时,()()()11f x f x f +=+,若直线y kx =与函数()y f x =的图象恰有11个不同的公共点,则实数k 的取值范围为____________.19、(长宁区2016届高三上学期期末)设函数 y =f (x )的反函数是 y =f -1(x ),且函数 y =f (x )过点P (2,-1),则f -1(-1)=二、选择题1、(崇明县2016届高三上学期期末)汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )(A)消耗1 升汽油,乙车最多可行驶5千米(B)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(C)甲车以80 千米/小时的速度行驶1 小时,消耗10 升汽油(D)某城市机动车最高限速80 千米/小时. 相同条件下,在该市用丙车比用乙车更省油2、(虹口区2016届高三上学期期末)设函数22,0,(),0,x x f x log x x ⎧+≤⎪=⎨>⎪⎩ 若关于x 的方程()f x a =有四个不同的解1234,,,,x x x x且1234,x x x x <<<则3122341()x x x x x ++的取值范围是 ( ) (A )()3,-+∞ (B )(),3-∞ (C )[)3,3- (D )(]3,3-3、(金山区2016届高三上学期期末)如图,AB 为定圆O 的直径,点P 为半圆AB 上的动点.过点P作AB 的垂线,垂足为Q ,过Q 作OP 的垂线,垂足为M .记弧AP 的长为x ,线段QM 的长为y ,则函数y =f (x )的大致图像是( ).4、(静安区2016届高三上学期期末)函数213(10)x y x -=-≤<的反函数是 ( ) A .311log ()3y x x =-+≥ B .311log (1)3y x x =-+<≤C .311log (1)3y x x =+<≤D .311log ()3y x x =+≥ 5、(闵行区2016届高三上学期期末)设2345()2510105f x x x x x x =+++++,则其反函数的解析式为( ).(A) 511y x =+- (B) 511y x =--(C) 511y x =-+- (D) 511y x =---6、(普陀区2016届高三上学期期末)若函数()()lg 1,1sin ,12x x f x a x x π⎧->⎪=⎨⎛⎫≤⎪ ⎪⎝⎭⎩,关于x 的方程 ()()()210f x a f x a -++=,给出下列结论:①存在这样的实数a ,使得方程由3个不同的实根;②不存在这样的实数a ,使得方程由4个不同的实根;③存在这样的实数a ,使得方程由5个不同的实数根;④不存在这样的实数a ,使得方程由6个不同的实数根.其中正确的个数是( ).A 1个 .B 2个 .C 3个 .D 4个7、(杨浦区2016届高三上学期期末)下列函数中,既是偶函数,又在()π,0 上递增的函数的个数是 ( )① x tan y = ② ()x cos y -= ③ ⎪⎭⎫ ⎝⎛π-=2x sin y ④2x cot y = A. 1个 B. 2个 C. 3个 D. 4个8、(长宁区2016届高三上学期期末)关于函数,有下列四个命题:①的值域是; ②是奇函数;③在上单调递增;④方程总有四个不同的解.其中正确的是 ( )A . ①②B . ②③C . ②④D . ③④三、解答题1、(奉贤区2016届高三上学期期末)已知函数()x f y =是单调递增函数,其反函数是()1y f x -=.(1)、若⎪⎭⎫ ⎝⎛>-=2112x x y ,求()1y f x -=并写出定义域M ; (2)、对于(1)的()1y f x -=和M ,设任意2121,,x x M x M x ≠∈∈, 求证:()()212111x x x f x f-<---; (3)、若()x f y =和()1y f x -=有交点,那么交点一定在x y =上.2、(虹口区2016届高三上学期期末) 对于函数1(),1f x x=-定义[]11()(),()()().n n f x f x f x f f x n N *+==∈已知偶函数()g x 的定义域为(,0)(0,),(1)0g -∞⋃+∞=; 20150,1()().x x g x f x >≠=当且时,(1)求234(),(),(),f x f x f x 并求出函数()y g x =的解析式;(2) 若存在实数,()a b a b <使得函数[](),g x a b 在上的值域为[],mb ma ,求实数m 的取值范围.3、(静安区2016届高三上学期期末)已知定义在实数集R 上的偶函数()x f 和奇函数()x g 满足()()12x f x g x ++=.(1)求()f x 与()g x 的解析式;(2)若定义在实数集R 上的以2为最小正周期的周期函数()x ϕ,当11x -≤≤时,()()x f x ϕ=,试求()x ϕ在闭区间[2015,2016]上的表达式,并证明()x ϕ在闭区间[2015,2016]上单调递减;(3)设22()21h x x mx m m =++-+(其中m 为常数),若2(())1h g x m m ≥--对于[1,2]x ∈恒成立,求m 的取值范围.4、(普陀区2016届高三上学期期末)已知集合M 是满足下列性质的函数()f x 的全体,存在实数()0a k k ≠、,对于定义域内的任意x 均有()()f a x kf a x +=-成立,称数对(),a k 为函数()f x 的“伴随数对”(1)判断()2f x x =是否属于集合M ,并说明理由;(2)若函数()sin f x x M =∈,求满足条件的函数()f x 的所有“伴随数对”;(3)若()()1,1,2,1-都是函数()f x 的“伴随数对”,当12x ≤<时,()cos 2f x x π⎛⎫= ⎪⎝⎭; 当2x =时,()0f x =.求当20142016x ≤≤时,函数()y f x =的解析式和零点.5、(杨浦区2016届高三上学期期末)已知函数()D)(x x f ∈,若存在常数T (T>0),对任意D x ∈都有()() x f T T x f ⋅=+,则称函数() x f 为T 倍周期函数(1)判断()x x h =是否是T 倍周期函数,并说明理由.(2)证明()x41 x g ⎪⎭⎫ ⎝⎛=是T 倍周期函数,且T 的值是唯一的. (3)若() )N (n n f *∈是2倍周期函数,()11f =,()42f -=,n S 表示()n f 的前n 项和,1n 2n 2n S S C -=,若10)1a (log C a n ++<恒成立,求a 的取值范围. 6、(长宁区2016届高三上学期期末)已知函数,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有成立,则称函数是D 上的m 级类增周期函数,周期为T .若恒有成立,则称函数 是D 上的m 级类周期函数,周期为T .(1)已知函数上的周期为 1 的 2 级类增周期函数,求实数a 的取值范围;(2)已知上的m 级类周期函数,且上的单调递增函数,当时,,求实数m 的取值范围.参考答案一、填空题1、{}3log 22、-123、3log 24、2log 1(0)x x ->5、(1,)+∞6、x=1或x =27、3x =8、2log 3x =9、10、(,1)-∞- 11、1412、1 13、单调递增,奇函数 14、x =0 15、1 16、(,0)-∞ 17、1190218、(264-,436-) 19、2二、选择题1、D2、D3、A4、B5、C6、C7、A8、B三、解答题1、解:(1)、(),11+=-x x f ⎪⎭⎫ ⎝⎛+∞-=,43M 3+2=5分 (2)、()()11112121212111+++-=+-+=---x x x x x x x f x f 7分 1131,142x x >-∴+>,211,4322>+∴->x x 9分 11121>+++∴x x ,1111021<+++<∴x x 10分 21212111x x x x x x -<+++-∴()()212111x x x f x f -<-∴-- 11分(3)、设()b a ,是()x f y =和()1y f x -=有交点(第21题解图)y 1x1-1O 即()()⎩⎨⎧==-a f b a f b 1,()()a f b b f a ==∴, 12分 当b a =,显然在x y =上 13分 当b a >,函数()x f y =是单调递增函数,()a b b f a f >∴>∴,)(矛盾 15分 当b a <,函数()x f y =是单调递增函数,()a b b f a f <∴<∴,)(矛盾 16分 因此,若()x f y =和()1y f x -=的交点一定在x y =上 16分2、解:(1)因为()11()()1,1f x f x x x ==≠-故 []()2111()()10,1,111f x f f x x x x x ===-≠≠-- [][]32431()()(0,1),11(1)1()()(0,1),(3)1f x f f x x x x xf x f f x x x x ===≠≠--==≠≠-分 故对任意的3,()()(2,3,4),n i i n N f x f x i +∈==有 于是20153671221()()()1(0,1);f x f x f x x x x ⨯+===-≠≠201510,1()()1.x x g x f x x>≠==-故当时, 1(1)0,0()1.g x g x x =>=-又故当时,由()g x 为偶函数,1100,()()11.x x g x g x x x <->=-=-=+-当时, 11,0,1()1110.x x g x xx x ⎧+<⎪⎪==-⎨⎪->⎪⎩,因此. ……(6分) (2) 由于()y g x =的定义域为(,0)(0,)-∞⋃+∞,又,,a b mb ma a b <<可知与同号,0m <且;进而[](),g x a b 在递减,且0.a b << ……(8分)函数()y g x =的图像,如图所示. 由题意,有 1()1,1()1,g a ma a g b mb b ⎧=+=⎪⎪⎨⎪=+=⎪⎩……(10分) 故,a b 是方程11m x x+=的两个不相等的负实数根,即方程210m x x --=在(),0-∞上有 两个不相等的实根,于是140101010.4m a b m ab m m ⎧⎪∆=+>⎪⎪+=<⎨⎪⎪=->⎪⎩⇔-<< ……(12分)综合上述,得:实数m 的取值范围为1,0.4⎛⎫- ⎪⎝⎭……(14分) 注:若采用数形结合,得出直线y m x =与曲线11(0)y x x=+<有两个不同交点,并进行求解也可. 3、解:(1)假设1()()2x f x g x ++=①,因为()x f 是偶函数, ()x g 是奇函数所以有1()()2x f x g x -+-+-=,即1()()2x f x g x -+-= ②∵()f x ,()g x 定义在实数集R 上,由①和②解得,11221()222x x x x f x +-++==+,11221()222x x x x g x +-+-==-. (2) ()x ϕ是R 上以2为正周期的周期函数, 所以当[2015,20x ∈时, 2016[1,0]x -∈-,201620161()(2016)(2016)22x x x x f x ϕϕ--=-=-=+,即()x ϕ在闭区间[2015,2016]上的表达式为201620161()22x x x ϕ--=+. 下面证明()x ϕ在闭区间[2015,2016]上递减:201620161()222x x x ϕ--=+≥,当且仅当201621x -=,即2016x =时等号成立.对于任意1220152016x x ≤<≤,1212212120162016201612201620162016111()()22(21)(2)222x x x x x x x x f x f x --------=+--=--, 因为1220152016x x ≤<≤,所以121221,210x x x x --<-<,220160221x -≤=,120160221x -<=,12016112x ->,2120162016220x x ---<, 从而12()()0x x ϕϕ->,所以当1220152016x x ≤<≤时, ()x ϕ递减.(证明1()22x x f x =+在[1,0]-上递减,再根据周期性或者复合函数单调性得到也可) (3)∵()t g x =在[1,2]x ∈单调递增,∴31524t ≤≤. ∴222()211h t t mt m m m m =++-+≥--对于315,24t ⎡⎤∈⎢⎥⎣⎦恒成立,∴222tmt+≥-对于315,24t⎡⎤∈⎢⎥⎣⎦恒成立,令22()2tk tt+=-,则221222t tt t+=+≥,当且仅当2t=时,等号成立,且322<所以在区间315,24t⎡⎤∈⎢⎥⎣⎦上22()2tk tt+=-单调递减,∴max317()()212k t k==-,∴1712m≥-为m的取值范围.4、5、(1) 设:()() x h T T x h ⋅=+则 x T T x ⋅=+ 对任意x 恒成立 (2分)T 无解∴ ()x x h = 不是T 倍周期函数 (2分)(2) 设:()() x g T T x g ⋅=+则 xT x 41T 41⎪⎭⎫⎝⎛⋅=⎪⎭⎫ ⎝⎛+ 对任意x 恒成立 (2分)T 41T=⎪⎭⎫⎝⎛21T = (2分)下证唯一性: 若 21T >, 214141T 21T =⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛= 矛盾 若 21T <, 214141T 21T =⎪⎭⎫⎝⎛>⎪⎭⎫ ⎝⎛= 矛盾∴ 21T = 是唯一的 (2分)(3)()()()2 12f 21f 3f ==+=()()()22 32f 23f 5f ==+=()()()32 52f 25f 7f ==+=()()()1-n 2 3-2n 2f 23-2n f 1n 2f ==+=-()()()()1222211-2n f 5f 3f 1f n 1n 2-=++++=++++- (2分)同理: ()()()()()()124222142n f 6f 4f 2f n 1n 2--=++++-=++++- ∴ ()()()()123n 2f 2f 1f S n n 2--=+++=同理:()()()321n 2f 2f 1f S n 1n 2+-=-+++=- ()32123S S C n n 1n 2n 2n --==- (2分) 3C 1-= 9C 2=显然:2n ≥ 0C n > 且 ()()()()()()32522327223212332123C C n 2n n 2n n n 1n 1n n1n +⋅-+⋅-=----=+++ ()()<+⋅-32722n 2n()()32522n 2n +⋅- ∴ 1C C n1n <+ 即单调递减 ∴ ()9C C 2m a x n == (2分) 10)1a (log C a n ++<恒成立,∴ >++10)1a (log a ()9C max n =∴ 1)1a (log a ->+① 1a > 时 a11a >+ 解得 :1a > ② 1a 0<< 时 a 11a <+ 解得 :251a 0+-<< ∴ 251a 0+-<< 或 1a > (2分) 6、1)由题意可知:f (x+1)>2f (x ),即-(x+1)2+a (x+1)>2(-x 2+ax )对一切[3,+∞)恒成立,整理得:(x-1)a <x 2-2x-1,∵x≥3,令x-1=t,则t∈[2,+∞),g(t)=t-2 t在[2,+∞)上单调递增,∴g(t)min=g(2)=1,∴a<1.(2)∵x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=mf(x-1)=m•2x-1,…当x∈[n,n+1)时,f(x)=mf(x-1)=m2f(x-2)=…=m n f(x-n)=m n•2x-n,即x∈[n,n+1)时,f(x)=m n•2x-n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴m>0且m n•2n-n≥m n-1•2n-(n-1),即m≥2.。
上海市闸北区2016届高三一模数学理试卷2015.12一. 填空题(本大题共9题,每题6分,共54分)1. 2521(2)(1)x x+-的展开式中常数项为 ; 2. 函数ln(1),0()1ln,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ; 3. 一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是 ;4. 在菱形ABCD 中,1AB =,60DAB ︒∠=,E 为CD 的中点,则AB AE ⋅u u u r u u u r的值是 ;5. 如图,靠山有一个水库,某人先从水坝的底部A 测得水坝对面的山顶P 的仰角为40︒,再沿坝面向上走80米到水坝的顶部B 测得56ABP ︒∠=,若坝面与水平面所成的锐角为30︒,则山高为 米;(结果四舍五入取整)6. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 ;(用数字作答)7. 等差数列{}n a 的公差为d ,关于x 的不等式2120dx a x +≥的解集为[0,9],则使数列{}n a 的前n 项和n S 最大的正整数n 的值是 ;8. 过点0(3,)M y 作圆22:1O x y +=的切线,切点为N ,如果6OMN π∠≥,那么0y 的取值范围是 ;9. 如图,正方形ABCD 的边长为2,O 为AD 的中点,射线OP 从OA 出发,绕着点O 顺时针方向旋转至OD ,在旋转的过程中,记AOP ∠为x ([0,])x π∈,OP 所经过的在正方 形ABCD 内的区域(阴影部分)的面积()S f x =,那么对于函数()f x 有以下三个结论:①3()3f π=;② 对任意[0,]2x π∈,都有()()422f x f x ππ-++=;③ 对任意12,(,)2x x ππ∈,且12x x ≠,都有1212()()0f x f x x x -<-;其中所有正确结论的序号是 ;二. 选择题(本大题共3题,每题6分,共18分)10. “抛物线2y ax =的准线方程为2y =”是“抛物线2y ax =的焦点与双曲线2213y x -= 的焦点重合”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件11. 已知,m n 是两条不同直线,,αβ是两个不同平面,给出下列四个命题: ① 若,αβ垂直于同一平面,则α与β平行; ② 若,m n 平行于同一平面,则m 与n 平行;③ 若,αβ不平行,则在α内不存在与β平行的直线; ④ 若,m n 不平行,则m 与n 不可能垂直于同一平面 其中真命题的个数为( )A. 4B. 3C. 2D. 112. 已知i r 和j r 是互相垂直的单位向量,向量n a u u r 满足:n i a n ⋅=r u u r ,21n j a n ⋅=+r u u r ,*n N ∈,设n θ为i r 和n a u u r的夹角,则( )A. n θ随着n 的增大而增大B. n θ随着n 的增大而减小C. 随着n 的增大,n θ先增大后减小D. 随着n 的增大,n θ先减小后增大三. 解答题(本大题共4题,共18+20+20+20=78分)13. 如图,在平面直角坐标系xOy 中,角α的顶点在原点,始边与x 轴的非负半轴重合,终边交单位圆于点A ,且[,)42ππα∈,将角α的终边绕原点逆时针方向旋转3π,交单位圆 于点B ,过B 作BC y ⊥轴于点C ;(1)若点A 的纵坐标为32,求点B 的横坐标; (2)求△AOC 的面积S 的最大值;14. 经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴;为迎接2015年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销;经调查测算,该促销产品在“双十一”的销售量p (万件)与促销费用x (万元)满足231p x =-+(其中0x a ≤≤,a 为正常数),已知生产该产品还需投入成本102p +万 元(不含促销费用),每一件产品的销售价格定为20(4)p+元,假定厂家的生产能力完全能 满足市场的销售需求;(1)将该产品的利润y (万元)表示为促销费用x (万元)的函数; (2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值;15. 如图,已知动直线l 交圆22(3)9x y -+=于坐标原点O 和点A ,交直线6x =于点B ; (1)若||35OB =,求点A 、点B 的坐标;(2)设动点M 满足OM AB =u u u u r u u u r,其轨迹为曲线C ,求曲线C 的方程(,)0F x y =;(3)请指出曲线C 的对称性、顶点和图形范围,并说明理由;(4)判断曲线C 是否存在渐近线,若存在,请直接写出渐近线方程;若不存在,说明理由;16. 已知数列{}n a 的前n 项和为n S ,且点(,)n n S *()n N ∈在函数122x y +=-的图像上;(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:10b =,1n n n b b a ++=,求{}n b 的通项公式;(3)在第(2)问的条件下,若对于任意的*n N ∈,不等式1n n b b λ+<恒成立,求实数λ的取值范围;参考答案一. 填空题1. 3;2. 单调递增,奇函数;3.34; 4. 1; 5. 176;6. 96;7. 5;8. [1,1]-; 9. ①②;二. 选择题10. A; 11. D; 12. B;三. 解答题13.(1)12-;(2)318+;14.(1)4161y x x =--+;(2)1x =,max 13y =; 15.(1)2412(,)55A ±,(6,3)B ±;(2)326x y x =-;(3)关于x 轴对称;顶点(0,0);[0,6)x ∈,y R ∈;(4)6x =;16.(1)2nn a =;(2)n 为奇数,223n n b -=;n 为偶数,223n n b +=;(3)1λ>;。
浦东新区2015学年度第一学期期末质量测试高三数学试卷 (含答案)2016.1注意:1. 答卷前,考生务必在答题纸上指定位置将学校、姓名、考号填写清楚. 2. 本试卷共有32道试题,满分150分,考试时间130分钟.一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.注:填写其他等价形式则得分1.已知集合{}{}=3,2A x x B x x ≤=<,则R A C B =I []2,32.已知向量()2,1,(1,)a b m =-=r r 平行,则m = 12-3.关于,x y 的一元二次方程组23122x y x y +=⎧⎨-=⎩的系数矩阵2312⎛⎫ ⎪-⎝⎭4.计算:1132lim 32n nnn n ++→∞-+ 3 5.若复数z 满足1012ii z=-(i 为虚数单位),则z6.()1021x +的二项展开式中的第八项为 3960x7.某船在海平面A 处测得灯塔B 在北偏东30︒方向,与A 相距6.0海里.船由A 向正北方向航行8.1海里达到C 处,这时灯塔B 与船相距_____4.2______海里(精确到0.1海里) 8.已知3cos(),,252ππααπ⎛⎫-=∈ ⎪⎝⎭,则sin 3πα⎛⎫+= ⎪⎝⎭ 310-9.如图,已知正方体1111D C B A ABCD -,21=AA ,E 为棱1CC 的中点,则AE 与平面11B C C B 所成的角为552arctan.(2arcsin 3,(结果用反三角表示)10.已知函数()f x 的图像与()2xg x =的图像关于直线y x =对称,令()(1)h x f x =-,则关于函数()h x 有下列命题:①()h x 的图像关于原点对称; ②()h x 的图像关于y 轴对称; ③()h x 的最大值为0; ④()h x 在区间(1,1)-上单调递增。
其中正确命题的序号为____②③_____(写出所有正确命题的序号)。
上海市各区县2016届高三上学期期末考试数学理试题汇编函数一、填空题1、(宝山区2016届高三上学期期末)方程的解集为 .2、(崇明县2016届高三上学期期末)已知 f (x)、g(x)分别是定义在R上的偶函数和奇函数,且 f (x) ?g(x) =2x+x,则f (1) +g(1) =3、(奉贤区2016届高三上学期期末)方程的实数解为_________4、(虹口区2016届高三上学期期末)函数的反函数5、(黄浦区2016届高三上学期期末)若函数为偶函数且非奇函数,则实数的取值范围为.6、(金山区2016届高三上学期期末)方程4x– 62x +8=0的解是7、(静安区2016届高三上学期期末)方程的解为 .8、(闵行区2016届高三上学期期末)方程的解为 .9、(普陀区2016届高三上学期期末)若函数,,则________.10、(青浦区2016届高三上学期期末)函数,若,则实数的取值范围是 .11、(松江区2016届高三上学期期末)若幂函数的图像过点,则= ▲.12、(杨浦区2016届高三上学期期末)已知函数,则方程的解= _____________.13、(闸北区2016届高三上学期期末)函数的单调性为;奇偶性为;14、(长宁区2016届高三上学期期末)方程9x +3x -2 = 0的解是___________.15、(闵行区2016届高三上学期期末)若函数满足,且在上单调递增,则实数的最小值等于 .16、(青浦区2016届高三上学期期末)函数的定义域为 .17、(松江区2016届高三上学期期末)已知函数,对任意的,恒有成立,且当时,. 则方程在区间上所有根的和为▲.18、(杨浦区2016届高三上学期期末)已知是定义在上的奇函数,当时,,当时,,若直线与函数的图象恰有11个不同的公共点,则实数的取值范围为____________.19、(长宁区2016届高三上学期期末)设函数 y =f(x)的反函数是 y =f-1(x),且函数 y=f(x)过点P(2,-1),则f-1(-1)= ___________.二、选择题1、(崇明县2016届高三上学期期末)汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()(A)消耗1 升汽油,乙车最多可行驶5千米(B)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(C)甲车以80 千米/小时的速度行驶1 小时,消耗10 升汽油(D)某城市机动车最高限速80 千米/小时. 相同条件下,在该市用丙车比用乙车更省油2、(虹口区2016届高三上学期期末)设函数若关于的方程有四个不同的解且则的取值范围是 ( )(A)(B)(C)(D)3、(金山区2016届高三上学期期末)如图,AB为定圆O的直径,点P为半圆AB上的动点.过点P作AB的垂线,垂足为Q,过Q作OP的垂线,垂足为M.记弧AP的长为x,线段QM的长为y,则函数y=f(x)的大致图像是( ).4、(静安区2016届高三上学期期末)函数的反函数是 ( )A.B.C.D.5、(闵行区2016届高三上学期期末)设,则其反函数的解析式为().(A)(B)(C)(D)6、(普陀区2016届高三上学期期末)若函数,关于的方程,给出下列结论:①存在这样的实数,使得方程由3个不同的实根;②不存在这样的实数,使得方程由4个不同的实根;③存在这样的实数,使得方程由5个不同的实数根;④不存在这样的实数,使得方程由6个不同的实数根.其中正确的个数是()1个2个3个4个7、(杨浦区2016届高三上学期期末)下列函数中,既是偶函数,又在上递增的函数的个数是()①②③④A. 1个B. 2个C. 3个D. 4个8、(长宁区2016届高三上学期期末)关于函数,有下列四个命题:①的值域是;②是奇函数;③在上单调递增;④方程总有四个不同的解.其中正确的是()A. ①②B. ②③C. ②④D. ③④三、解答题1、(奉贤区2016届高三上学期期末)已知函数是单调递增函数,其反函数是.(1)、若,求并写出定义域;(2)、对于(1)的和,设任意,求证:;(3)、若和有交点,那么交点一定在上.2、(虹口区2016届高三上学期期末)对于函数定义已知偶函数的定义域为(1)求并求出函数的解析式;(2) 若存在实数使得函数上的值域为,求实数的取值范围.3、(静安区2016届高三上学期期末)已知定义在实数集R上的偶函数和奇函数满足.(1)求与的解析式;(2)若定义在实数集R上的以2为最小正周期的周期函数,当时,,试求在闭区间上的表达式,并证明在闭区间上单调递减;(3)设(其中m为常数),若对于恒成立,求m的取值范围.4、(普陀区2016届高三上学期期末)已知集合是满足下列性质的函数的全体,存在实数,对于定义域内的任意均有成立,称数对为函数的“伴随数对”(1)判断是否属于集合,并说明理由;(2)若函数,求满足条件的函数的所有“伴随数对”;(3)若都是函数的“伴随数对”,当时,;当时,.求当时,函数的解析式和零点.5、(杨浦区2016届高三上学期期末)已知函数,若存在常数T(T>0),对任意都有,则称函数为T倍周期函数(1)判断是否是T倍周期函数,并说明理由.(2)证明是T倍周期函数,且T的值是唯一的.(3)若是2倍周期函数,,,表示的前n 项和,,若恒成立,求a的取值范围.6、(长宁区2016届高三上学期期末)已知函数,如果对于定义域D内的任意实数x,对于给定的非零常数m ,总存在非零常数T ,恒有成立,则称函数是D上的m 级类增周期函数,周期为T .若恒有成立,则称函数是D上的m 级类周期函数,周期为T .(1)已知函数上的周期为 1 的 2 级类增周期函数,求实数a的取值范围;(2)已知上的m 级类周期函数,且上的单调递增函数,当时,,求实数m 的取值范围.参考答案一、填空题1、2、-3、4、5、6、x=1或x=27、8、9、10、11、12、1 13、单调递增,奇函数 14、x=0 15、116、17、18、(,) 19、2二、选择题1、D2、D3、A4、B5、C6、C7、A8、B三、解答题1、解:(1)、3+2=5分(2)、7分,9分,10分11分(3)、设是和有交点即,12分当,显然在上 1 3分当,函数是单调递增函数,矛盾 15分当,函数是单调递增函数,矛盾 16分因此,若和的交点一定在上 16分2、解:(1)因为故对任意的于是由为偶函数,. ……(6分)(2) 由于的定义域为,又且……(8分)函数的图像,如图所示. 由题意,有……(10分)故是方程的两个不相等的负实数根,即方程在上有两个不相等的实根,于是……(12分)综合上述,得:实数的取值范围为……(14分) 注:若采用数形结合,得出直线与曲线有两个不同交点,并进行求解也可.3、解:(1)假设①,因为是偶函数,是奇函数所以有,即②∵,定义在实数集R上,由①和②解得,,.(2)是R上以2为正周期的周期函数, 所以当时,,,即在闭区间上的表达式为.下面证明在闭区间上递减:,当且仅当,即时等号成立.对于任意,,因为,所以,,,,,从而,所以当时,递减.(证明在上递减,再根据周期性或者复合函数单调性得到也可) (3)∵在单调递增,∴.∴对于恒成立,∴对于恒成立,令,则,当且仅当时,等号成立,且所以在区间上单调递减,∴,∴为m的取值范围.4、5、(1)设:则对任意x恒成立(2分)无解不是T倍周期函数(2分)(2)设:则对任意x恒成立(2分)(2分)继续阅读。
上海市各区县2016届高三上学期期末考试数学理试题汇编函数一、填空题1、(宝山区2016届高三上学期期末)方程0624=--xx 的解集为 .2、(崇明县2016届高三上学期期末)已知 f (x )、g(x )分别是定义在R 上的偶函数和奇函数,且 f (x ) −g(x ) =2x+x ,则f (1) +g(1) =3、(奉贤区2016届高三上学期期末)方程9360x x+-=的实数解为_________ 4、(虹口区2016届高三上学期期末)函数1()2x f x +=的反函数1()_________.f x -=5、(黄浦区2016届高三上学期期末)若函数22()1f x x a x =-+-为偶函数且非奇函数,则实数a 的取值范围为 .6、(金山区2016届高三上学期期末)方程4x – 6⨯2x +8=0的解是7、(静安区2016届高三上学期期末)方程3(1)(1)l o g (98)l o g (1)3x x x x x +--+⋅+=的解为 .8、(闵行区2016届高三上学期期末)方程4260xx--=的解为 . 9、(普陀区2016届高三上学期期末)若函数()1f x x =-,()1g x x x =-+,则()()f x g x +=________.10、(青浦区2016届高三上学期期末)函数11,02()1,0x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .11、(松江区2016届高三上学期期末)若幂函数()x f 的图像过点22,2⎛⎫ ⎪ ⎪⎝⎭,则()12f -= ▲ . 12、(杨浦区2016届高三上学期期末)已知函数()34log 2f x x ⎛⎫=+ ⎪⎝⎭,则方程()14f x -=的解x = _____________.13、(闸北区2016届高三上学期期末)函数ln(1),0()1ln,01x x f x x x⎧+≥⎪=⎨<⎪-⎩的单调性为 ;奇偶性为 ;14、(长宁区2016届高三上学期期末)方程9x +3x -2 = 0的解是___________. 15、(闵行区2016届高三上学期期末)若函数()2x af x -=()a ∈R 满足(1)(1)f x f x +=-,且()f x 在[,)m +∞上单调递增,则实数m 的最小值等于 .16、(青浦区2016届高三上学期期末)函数()lg(23)xxf x =-的定义域为 . 17、(松江区2016届高三上学期期末)已知函数()f x ,对任意的[1,)x ∈+∞,恒有(2)2()f x f x =成立, 且当[1,2)x ∈时,()2f x x =-. 则方程1()3f x x =在区间[1,100]上所有根的和为 ▲ .18、(杨浦区2016届高三上学期期末)已知()f x 是定义在R 上的奇函数,当01x ≤≤时,()2f x x =,当0x >时,()()()11f x f x f +=+,若直线y kx =与函数()y f x =的图象恰有11个不同的公共点,则实数k 的取值范围为____________.19、(长宁区2016届高三上学期期末)设函数 y =f (x )的反函数是 y =f -1(x ),且函数 y =f (x )过点P (2,-1),则 f -1(-1)= ___________.二、选择题1、(崇明县2016届高三上学期期末)汽车的“燃油效率”是指汽车每消耗1 升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( ) (A)消耗1 升汽油,乙车最多可行驶5千米(B)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多 (C)甲车以80 千米/小时的速度行驶1 小时,消耗10 升汽油(D)某城市机动车最高限速80 千米/小时. 相同条件下,在该市用丙车比用乙车更省油2、(虹口区2016届高三上学期期末)设函数22,0,(),0,x x f x log x x ⎧+≤⎪=⎨>⎪⎩若关于x 的方程()f x a =有四个不同的解1234,,,,x x x x且1234,x x x x <<<则3122341()x x x x x ++的取值范围是 ( ) (A )()3,-+∞ (B )(),3-∞ (C )[)3,3- (D )(]3,3-3、(金山区2016届高三上学期期末)如图,AB 为定圆O 的直径,点P 为半圆AB 上的动点.过点P作AB 的垂线,垂足为Q ,过Q 作OP 的垂线,垂足为M .记弧AP 的长为x ,线段QM 的长为y ,则函数y =f (x )的大致图像是( ).4、(静安区2016届高三上学期期末)函数213(10)xy x -=-≤<的反函数是 ( )A .311log ()3y x x =-+≥B .311log (1)3y x x =-+<≤C .311log (1)3y x x =+<≤ D .311log ()3y x x =+≥5、(闵行区2016届高三上学期期末)设2345()2510105f x x x x x x =+++++,则其反函数的解析式为( ).(A) 511y x =+- (B) 511y x =-- (C) 511y x =-+- (D) 511y x =---6、(普陀区2016届高三上学期期末)若函数()()lg 1,1sin ,12x x f x a x x π⎧->⎪=⎨⎛⎫≤⎪ ⎪⎝⎭⎩,关于x 的方程 ()()()210f x a f x a -++=,给出下列结论:①存在这样的实数a ,使得方程由3个不同的实根;②不存在这样的实数a ,使得方程由4个不同的实根;③存在这样的实数a ,使得方程由5个不同的实数根;④不存在这样的实数a ,使得方程由6个不同的实数根.其中正确的个数是( ).A 1个 .B 2个 .C 3个 .D 4个7、(杨浦区2016届高三上学期期末)下列函数中,既是偶函数,又在()π,0 上递增的函数的个数是 ( )① x tan y = ② ()x cos y -= ③ ⎪⎭⎫ ⎝⎛π-=2x sin y ④2x cot y =A. 1个B. 2个C. 3个D. 4个8、(长宁区2016届高三上学期期末)关于函数,有下列四个命题:①的值域是;②是奇函数;③在上单调递增;④方程总有四个不同的解.其中正确的是 ( )A . ①②B . ②③C . ②④D . ③④三、解答题1、(奉贤区2016届高三上学期期末)已知函数()x f y =是单调递增函数,其反函数是()1y f x -=.(1)、若⎪⎭⎫ ⎝⎛>-=2112x x y ,求()1y f x -=并写出定义域M ; (2)、对于(1)的()1y f x -=和M ,设任意2121,,x x M x M x ≠∈∈,求证:()()212111x x x f x f-<---;(3)、若()x f y =和()1y f x -=有交点,那么交点一定在x y =上.2、(虹口区2016届高三上学期期末) 对于函数1(),1f x x=-定义[]11()(),()()().n n f x f x f x f f x n N *+==∈已知偶函数()g x 的定义域为(,0)(0,),(1)0g -∞⋃+∞=; 20150,1()().x x g x f x >≠=当且时, (1)求234(),(),(),f x f x f x 并求出函数()y g x =的解析式;(2) 若存在实数,()a b a b <使得函数[](),g x a b 在上的值域为[],mb ma ,求实数m 的取值范围.3、(静安区2016届高三上学期期末)已知定义在实数集R 上的偶函数()x f 和奇函数()x g 满足()()12x f x g x ++=.(1)求()f x 与()g x 的解析式;(2)若定义在实数集R 上的以2为最小正周期的周期函数()x ϕ,当11x -≤≤时,()()x f x ϕ=,试求()x ϕ在闭区间[2015,2016]上的表达式,并证明()x ϕ在闭区间[2015,2016]上单调递减;(3)设22()21h x x mx m m =++-+(其中m 为常数),若2(())1h g x m m ≥--对于[1,2]x ∈恒成立,求m 的取值范围. 4、(普陀区2016届高三上学期期末)已知集合M 是满足下列性质的函数()f x 的全体,存在实数()0a k k ≠、,对于定义域内的任意x 均有()()f a x kf a x +=-成立,称数对(),a k 为函数()f x 的“伴随数对”(1)判断()2f x x =是否属于集合M ,并说明理由;(2)若函数()sin f x x M =∈,求满足条件的函数()f x 的所有“伴随数对”; (3)若()()1,1,2,1-都是函数()f x 的“伴随数对”,当12x ≤<时,()cos 2f x x π⎛⎫=⎪⎝⎭; 当2x =时,()0f x =.求当20142016x ≤≤时,函数()y f x =的解析式和零点.5、(杨浦区2016届高三上学期期末)已知函数()D)(x x f ∈,若存在常数T (T>0),对任意D x ∈都有()() x f T T x f ⋅=+,则称函数() x f 为T 倍周期函数 (1)判断()x x h =是否是T 倍周期函数,并说明理由.(2)证明()x41 x g ⎪⎭⎫⎝⎛=是T 倍周期函数,且T 的值是唯一的.(3)若() )N (n n f *∈是2倍周期函数,()11f =,()42f -=,n S 表示()n f 的前n 项和,1n 2n2n S S C -=,若10)1a (log C a n ++<恒成立,求a 的取值范围.6、(长宁区2016届高三上学期期末)已知函数,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有成立,则称函数是D 上的m 级类增周期函数,周期为T .若恒有成立,则称函数是D 上的m级类周期函数,周期为T . (1)已知函数上的周期为 1 的 2 级类增周期函数,求实数a 的取值范围; (2)已知上的m 级类周期函数,且上的单调递增函数,当时,,求实数m 的取值范围.参考答案 一、填空题1、{}3log 22、-123、3log 24、2log 1(0)x x ->5、(1,)+∞6、x=1或x =27、3x =8、2log 3x =9、 10、(,1)-∞-11、1412、1 13、单调递增,奇函数 14、x =0 15、1 16、(,0)-∞ 17、1190218、(264-,436-) 19、2二、选择题1、D2、D3、A4、B5、C6、C7、A8、B三、解答题 1、解:(1)、(),11+=-x x f⎪⎭⎫⎝⎛+∞-=,43M 3+2=5分(2)、()()11112121212111+++-=+-+=---x x x x x x x f x f 7分1131,142x x >-∴+> ,211,4322>+∴->x x 9分11121>+++∴x x ,1111021<+++<∴x x 10分 21212111x x x x x x -<+++-∴()()212111x x x f x f-<-∴-- 11分(3)、设()b a ,是()x f y =和()1y f x -=有交点 即()()⎩⎨⎧==-a f b a f b 1,()()a f b b f a ==∴, 12分 当b a =,显然在x y =上 13分 当b a >,函数()x f y =是单调递增函数,()a b b f a f >∴>∴,)(矛盾 15分 当b a <,函数()x f y =是单调递增函数,()a b b f a f <∴<∴,)(矛盾 16分 因此,若()x f y =和()1y fx -=的交点一定在x y =上 16分2、解:(1)因为()11()()1,1f x f x x x==≠-故(第21题解图)y1x1-1O []()2111()()10,1,111f x ff x x x xx===-≠≠-- [][]32431()()(0,1),11(1)1()()(0,1),(3)1f x ff x x x x xf x f f x x x x===≠≠--==≠≠- 分故对任意的3,()()(2,3,4),n i i n N f x f x i +∈==有于是20153671221()()()1(0,1);f x f x f x x x x ⨯+===-≠≠201510,1()()1.x x g x f x x>≠==-故当时, 1(1)0,0()1.g x g x x =>=-又故当时,由()g x 为偶函数,1100,()()11.x x g x g x x x<->=-=-=+-当时, 11,0,1()1110.x x g x xx x⎧+<⎪⎪==-⎨⎪->⎪⎩,因此. ……(6分) (2) 由于()y g x =的定义域为(,0)(0,)-∞⋃+∞, 又,,a b mb ma a b <<可知与同号,0m <且;进而[](),g x a b 在递减,且0.a b << ……(8分)函数()y g x =的图像,如图所示. 由题意,有1()1,1()1,g a ma a g b mb b ⎧=+=⎪⎪⎨⎪=+=⎪⎩……(10分)故,a b 是方程11m x x+=的两个不相等的负实数根,即方程210m x x --=在(),0-∞上有 两个不相等的实根,于是140101010.4m a b m ab m m ⎧⎪∆=+>⎪⎪+=<⎨⎪⎪=->⎪⎩⇔-<< ……(12分)综合上述,得:实数m 的取值范围为1,0.4⎛⎫- ⎪⎝⎭……(14分) 注:若采用数形结合,得出直线y m x =与曲线11(0)y x x=+<有两个不同交点,并进行求解也可.3、解:(1)假设1()()2x f x g x ++=①,因为()x f 是偶函数, ()x g 是奇函数所以有1()()2x f x g x -+-+-=,即1()()2x f x g x -+-= ② ∵()f x ,()g x 定义在实数集R 上, 由①和②解得,11221()222x x xx f x +-++==+,11221()222x x x x g x +-+-==-.(2) ()x ϕ是R 上以2为正周期的周期函数, 所以当[2015,2016]x ∈时,2016[1,0]x -∈-,201620161()(2016)(2016)22x x x x f x ϕϕ--=-=-=+,即()x ϕ在闭区间[2015,2016]上的表达式为201620161()22x x x ϕ--=+.下面证明()x ϕ在闭区间[2015,2016]上递减:201620161()222x x x ϕ--=+≥,当且仅当201621x -=,即2016x =时等号成立.对于任意1220152016x x ≤<≤,1212212120162016201612201620162016111()()22(21)(2)222x x x x x x x x f x f x --------=+--=--,因为1220152016x x ≤<≤,所以121221,210x x x x--<-<,220160221x -≤=,120160221x -<=,12016112x ->,2120162016220x x ---<, 从而12()()0x x ϕϕ->,所以当1220152016x x ≤<≤时, ()x ϕ递减.(证明1()22xx f x =+在[1,0]-上递减,再根据周期性或者复合函数单调性得到也可)(3)∵()t g x =在[1,2]x ∈单调递增,∴31524t ≤≤.∴222()211h t t mt m m m m =++-+≥--对于315,24t ⎡⎤∈⎢⎥⎣⎦恒成立,∴222t m t +≥-对于315,24t ⎡⎤∈⎢⎥⎣⎦恒成立,令22()2t k t t +=-,则221222t t t t+=+≥,当且仅当2t =时,等号成立,且322<所以在区间315,24t ⎡⎤∈⎢⎥⎣⎦上22()2t k t t +=-单调递减,∴max 317()()212k t k ==-,∴1712m ≥-为m 的取值范围.4、5、(1) 设:()() x h T T x h ⋅=+则 x T T x ⋅=+ 对任意x 恒成立 (2分)T 无解∴ ()x x h = 不是T 倍周期函数 (2分)(2) 设:()() x g T T x g ⋅=+则 xT x 41T 41⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛+ 对任意x 恒成立 (2分) T 41T =⎪⎭⎫ ⎝⎛ 21T =(2分) 下证唯一性: 若 21T >, 214141T 21T =⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛= 矛盾 若 21T <, 214141T 21T =⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛= 矛盾 ∴ 21T = 是唯一的 (2分) (3)()()()2 12f 21f 3f ==+=()()()22 32f 23f 5f ==+=()()()32 52f 25f 7f ==+=()()()1-n 2 3-2n 2f 23-2n f 1n 2f ==+=-()()()()1222211-2n f 5f 3f 1f n 1n 2-=++++=++++- (2分)同理: ()()()()()()124222142n f 6f 4f 2f n 1n 2--=++++-=++++- ∴ ()()()()123n 2f 2f 1f S n n 2--=+++=同理:()()()321n 2f 2f 1f S n 1n 2+-=-+++=- ()32123S S C n n 1n 2n 2n --==- (2分) 3C 1-= 9C 2=显然:2n ≥ 0C n > 且 ()()()()()()32522327223212332123C C n 2nn 2n n n 1n 1n n 1n +⋅-+⋅-=----=+++ ()()<+⋅-32722n 2n()()32522n 2n +⋅- ∴ 1C C n1n <+ 即单调递减 ∴ ()9C C 2m a x n == (2分)10)1a (log C a n ++<恒成立,∴ >++10)1a (log a ()9C max n =∴ 1)1a (log a ->+① 1a > 时 a11a >+ 解得 :1a > ② 1a 0<< 时 a 11a <+ 解得 :251a 0+-<< ∴ 251a 0+-<< 或 1a > (2分) 6、1)由题意可知:f (x+1)>2f (x ),即-(x+1)2+a (x+1)>2(-x 2+ax )对一切[3,+∞)恒成立,整理得:(x-1)a <x 2-2x-1,∵x ≥3,令x-1=t ,则t ∈[2,+∞),g (t )=t-2t在[2,+∞)上单调递增,∴g (t )min =g (2)=1,∴a <1.(2)∵x ∈[0,1)时,f (x )=2x ,∴当x ∈[1,2)时,f (x )=mf (x-1)=m •2x-1,…当x ∈[n ,n+1)时,f (x )=mf (x-1)=m 2f (x-2)=…=m n f (x-n )=m n •2x-n ,即x ∈[n ,n+1)时,f (x )=m n •2x-n ,n ∈N *,∵f (x )在[0,+∞)上单调递增,∴m>0且m n•2n-n≥m n-1•2n-(n-1),即m≥2.。